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Abstract

Microblogging sites are a unique and dynamic Web 2.0 communica-
tion medium. Understanding the information flow in these systems can
not only provide better insights into the underlying sociology, but is
also crucial for applications such as content ranking, recommendation
and filtering, spam detection and viral marketing. In this paper, we
characterize the propagation of URLs in the social network of Twitter,
a popular microblogging site. We track 15 million URLs exchanged
among 2.7 million users over a 300 hour period. Data analysis uncov-
ers several statistical regularities in the user activity, the social graph,
the structure of the URL cascades and the communication dynamics.
Based on these results we propose a propagation model that predicts
which users are likely to mention which URLs. The model correctly
accounts for more than half of the URL mentions in our data set, while

maintaining a false positive rate lower than 15%.

1 Introduction

Microblogging is a relatively new phenomenon in the
Web 2.0 world of user generated content. Twitter! is one
of the most popular microblogging sites today. Twitter
users post fweets, short messages of up to 140 characters
containing a variety of content [9, 2], ranging from daily
activity updates, discussions, photos, interesting URLs
and random thoughts. Each Twitter user chooses which
other users to follow and the tweets from the followed
users are aggregated in a single reverse-chronologically
ordered stream.

The social graph of followers is a unique and very dy-
namic communication medium and is host to an increas-
ing number of viral phenomena: breaking news propaga-
tion, emergency broadcasts, marketing, public relations,
campaigning, activism and many more. Modelling and
understanding the flow of information in microblogging
systems can potentially lead to more effective use of this
new communication medium and provide insights into
the underlying sociology.
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One of the commonly shared pieces of information on
Twitter are the URLs. When a user tweets an interesting
URL, her followers, in turn, might re-tweet it to let their
followers know about it [4]. This is the basic mechanism
through which the URLSs spread in the follower graph.

Goal. In this paper, we focus on characterizing and
modelling the information cascades formed by the indi-
vidual URL mentions in the Twitter follower graph. The
information cascades have been studied before in other
Web 2.0 systems, such as Flickr [3], blogs [14, 17], Digg
[16, 13] and YouTube [16]. Most of the prior work builds
information propagation models to either reproduce cas-
cades with statistical properties matching the empirical
observations or to predict how far the information will
diffuse in the network given its initial spread. We ad-
dress a different problem: predicting which users will
tweet which URLs given a training set of existing URL
mentions.

Motivation. Accurate prediction of URL mentions is
an important enabler of a number of possible applica-
tions. First, knowing the tweeting probabilities for each
user and URL can be used to generate a ranked list of
URLS for each user providing a personalized recommen-
dation of URLs that the user is likely to find interesting.
For users who follow many other users, this method can
be used to prevent information overload by ranking and
filtering the incoming tweets. Second, aggregating the
probabilities per URL quantifies the URL’s future poten-
tial to diffuse in the social network. This could serve
as method for early identification of viral URLs. Third,
having an accurate propagation model trained for a spe-
cific social network can also help viral marketing cam-
paigns to select URL injection points that would max-
imize the spread of the campaign URL in the network.
Finally, a model predicting URL diffusion is not only
useful when its predictions are correct, but also when the
new data does not match them. A sudden outbreak of
anomalous activity that is not correctly predicted by the
model most definitely signifies an event worthy of atten-



tion. This approach could potentially be used for spam
detection.

Outline & results. In this paper, we analyze the
spread of 15M (million) unique URLs among 2.7M users
based on a 300 hour data set aggregated from Twit-
ter. We measure several statistical properties of the data.
First, the Twitter follower graph is a small world with
a giant connected component and mean shortest path of
3.61. Second, the tweeting frequencies across the dif-
ferent users and across the different URLs are power-law
distributed. Third, the information cascades on the social
graph tend to be shallow and wide, having an exponen-
tially distributed depth. Fourth, the cascades for each
URL are composed of smaller connected components,
whose both number per-cascade and size follow power-
law distributions. Finally, the diffusion delay between
URL tweets in a cascade is log-normally distributed with
a median of 50 minutes.

Based on the above empirical observations, we pro-
pose a propagation model that simultaneously takes into
account several key factors: content popularity, user in-
fluence and the rate of propagation. These factors be-
come the unknown parameters of the model. We use the
gradient ascent method to find the parameter values that
maximize the number of correctly predicted URL men-
tions in the Twitter test data. The evaluation shows that
the model can predict more than half of the individual
URL mentions in the test data set while having a less
than 15% false positive rate.

2 Related work

Diffusion processes in networks have been studied in a
variety of different areas. In epidemiology, extensive re-
search has been done in predicting the spread of disease
in populations. A number of models draw on that re-
search to model the spread of information in the social
graph as viral processes [8, 1, 15]. However, epidemi-
ological models generate bimodal distributions of infec-
tion sizes, i.e., either most or few nodes are infected with
information. This does not explain the observations from
Web 2.0 systems well, which has led to development of
alternative models, e.g. in which the transmissibility falls
off with distance from the source [17].

Information diffusion has been studied in many Web
2.0 systems, including Flickr [3], blogs [14, 17], Digg
[16, 13] and YouTube [16]. This work, in general, fo-
cuses on building models that generate information cas-
cades whose statistical properties match the empirical
observations; or models that predict how far the infor-
mation will spread in the network. Unlike the existing
work, our aim is to make predictions at a much finer level
of granularity per user-URL pair, rather than modelling
larger-scale aggregates of user activity.

Several models for diffusion on graphs have been pro-
posed. In the linear threshold model [6] each node has
an associated threshold value. If the number of infected
neighbors of a node exceeds its threshold then the node
itself becomes infected. The independent cascade model
[5] associates a fixed spreading probability per graph
edge and allows each node to attempt infecting another
node only once. Further studies have generalized these
models [10]. In all of the work, the propagation model’s
parameters are either constant or drawn from distribu-
tions. In our approach, we find the optimal parameter
values by training the model on actual information diffu-
sion data.

Earlier measurement studies of Twitter measured the
properties of the follower graph and looked at its changes
over time[11, 7], others studied the geographic distribu-
tion of users [9] and examined the phenomenon of re-
tweeting [4]. Most recently, the results of Kwak et al.
[12] look a number of properties of the Twitterspehere.
Many of the results align with ours, in particular, retweet
trees are measured to be shallow and their with power-
law distributed size.

3 Data set

3.1 Data acquisition

Tweets. For 300 hours, starting on Thu, 10 Sep 2009
19:56:47 GMT the Twitter Search API was continuously
queried for the search string http. The text of each
tweet returned by the query was parsed for any URLs
and user names it contained.

URLSs. Each URL mentioned in the tweets was stored.
If the URL was created by one of the popular URL
shortening services, HTTP redirects were recursively fol-
lowed to expand the URL to its original form. All the
URLSs were also URL-decoded to ensure uniform repre-
sentation under the percent-encoding (%xx) notation.

User graph. For each tweet, we queried the Twitter
API for the metadata about the tweet’s author as well as
all the users that the author follows.

The final outcome is a dataset of timestamped URL
mentions together with where they happened in the social
graph.

3.2 Limitations

Stream continuity. The Twitter search API allows
for specifying the minimum timestamp for the tweets re-
turned in the query results. In this way, the complete
stream of tweets can be systematically downloaded. The
combined availability of Twitter and our crawling infras-
tructure during the data acquisition period was 99.6%,



component size 2 3 | 4|5 |6 | 2483290
#components 513 | 31 | 6|21 1

Table 1: The size distribution of the strongly connected components
of the follower graph.
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Figure 1: User graph degree distribution. In the follower graph,
each arc points from the follower to the followee. Both the node in-
degree and the out-degree distributions are log-normal (dotted lines,
in-degree: o In V' (u = 6.85, 02 = 6.55), out-degree: o< In N'(p =
5.99,02 = 3.84)))

which means that at most 0.5% of the tweets can possi-
bly be missing from the stream.

User graph. The user graph contains only those users
whose tweets appeared in the stream, i.e., only users that
during the 300 hour observation period posted at least
one public tweet containing a URL. The graph does not
contain any users who do not mention any URLSs in their
tweets or users that have chosen to make their Twitter
stream private.

For each newly encountered user ID, the list of fol-
lowed users was only fetched once. Our data set does
not capture the changes occurring in the user graph over
the observation period.

4 Follower graph properties

The user graph consists of 2.7M nodes connected with
218M arcs. Each arc points from the follower to the fol-
lowee.

Component sizes. The user graph is directed, the dis-
tribution of the sizes of the strongly connected compo-
nent sizes is in Table 1. The Twitter user graph has a
giant connected component encompassing the majority
of the users. This is characteristic of many other social
networks, both on-line and real-world (§2).

Degree distribution. We have measured the degree
distribution in the user graph (Fig. 1). Both the in-degree
and the out-degree distributions have tight log-normal
fits.

Path lengths. An important structural metric in
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Figure 2: Shortest path length distribution. We compute the short-
est path for each of the 1000 randomly chosen source-destination pairs.
There are two cases: the paths are allowed to traverse along the arcs
only (directed) or in both ways ignoring the direction of the arc (undi-
rected). The oo symbol indicates that no path exists for a source-
destination pair.

graphs is their shortest path distribution. The Twitter
graph is a small world (Fig. 2) with a mean directed path
length of 3.61.

S URL sharing activity

URL mentions. Users can include more than one URL
as part of the tweets. In our set of 27M tweets there are
15M unique URLs mentioned. Each tweet has a maxi-
mum length of 140 characters, which puts a limit on the
maximum number of URLSs that can be included in a sin-
gle tweet. The vast majority of the tweets contain no
more than two URLs.

User activity. Users vary wildly in how frequently
they tweet URLs. For the two different metrics we have
used, the user activity is power-law distributed (Fig. 3).

URL popularity. The different URLs are mentioned
with different frequencies in the Twitter social network,
again fitting the power-law distribution. (Fig. 4).

6 Information cascades

When QRalice, a Twitter user, mentions a URL, all
of her followers can immediately see her tweet in their
feeds. When @bob, a follower of @alice, sees a URL
coming from her, he can also tweet that URL to let his
followers know about it. This is one of the common
mechanisms through which URLs propagate in the Twit-
ter social network.

We have chosen the URLs as the subject of the study
since they are a low-noise language-independent signal
whose propagation can be easily tracked using the Twit-
ter APL.
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Figure 3: User activity. The user activity measured by how many
tweets or unique URLs the user posted. For both metrics, the user
activity is power-law distributed (dotted line: oc 2~ 1-29),
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Figure 4: URL popularity. URL popularity measured by the num-
ber of tweets and number of unique users that mentioned the URL. In
both cases we obtain the power-law distributions, o 2~ 13 for tweets
and oc 4% for unique users.

Retweets. Often when users tweet a URL that was
found in another user’s feed, they give credit to the orig-
inal URL poster. This phenomenon became known as
retweeting [4]. If @bob wants to give credit to Galice,
he prepends her message with RT @alice: followed
by the text of the original tweet of @alice. RT stands
for re-tweet. We only focus on the tweets containing
URLSs, even though any tweet can be retweeted in this
way.

Retweets are a strong indication of the direction of in-
formation flow in the Twitter social graph in that they
explicitly identify the source.

6.1 Definitions

We next define two types of information cascades: F-
cascades, for which the flow of URLs is constrained to

the follower graph and RT-cascades, for which we dis-
regard the follower graph and use the who-credits-whom
data from the retweets.

Let G(V, E) be the Twitter follower graph consisting
of users from the set V. Graph G is directed, there is an
arc (v1,v2) € E in the graph iff the user v; follows user
vs. Let U be the set of all URLs.

Let a F-cascade F'(u) be a graph of all the users that
have tweeted the URL v € U. An arc (v, vz) exists in
F(u) iff: 1) v; and v tweeted about u, 2) v; mentioned
u before vy and 3) vs is the follower of v;.

Similarly, the RT-cascade R(u) is a graph of all the
users that have either retweeted the URL v € U or have
been credited as the source of the URL in a retweet. An
arc (vy,vq) exists in R(u) iff: 1) vy tweeted about u,
2) v; mentioned u before vy and 3) vy credited v as the
source of the URL w.

Each retweet credits only a single user?, which makes
each RT-cascade a forest consisting of trees. On the
other hand, in the F-cascades, each node can have several
followees that mentioned a URL before it and in gen-
eral F-cascades are directed acyclic graphs. Both F- and
RT-cascades are not necessarily connected graphs. Each
weakly connected component of an F- or RT-cascade is a
subcascade. The root of a subcascade is the subcascade
node that mentioned the URL first.

6.2 Cascade properties

RT-cascades vs. F-cascades. Even though there is a
large overlap between the two types of cascades, 33% of
the retweets that we have observed credit users that the
retweeters do not follow.

Number of subcascades. Each cascade consists of
one or more subcascades. The number of subcascades
per cascade is power-law distributed (Fig. 6).

Subcascade size. For each cascade the subcascades
not only vary in number, but also in size. The distribution
of the subcascade sizes taken across all the cascades is in
Figure 6. Again, power-law fits describe the data well.

Subcascades are shallow. For a given node 7 and
URL w, the distance from the subcascade root to 7 is an
important metric characterizing the information flow in
the network. Taken across all the subcascades, the maxi-
mum distance to root falls off exponentially (Fig. 7). The
average distance falls off even faster.

The distances to the root are short, even when com-
pared with the already short average path length in the
follower graph (Fig. 2). One hypothesis explaining this
data could be that when a user receives some interesting
URL along an path longer than 1, then that user is very
likely to start following the original source of the URL

2we parse out only the user name that immediately follows the RT
characters
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Figure 5: Number of subcascades per cascade. For each cascade
we look at how many subcascades it consists of and plot the distribu-
tion. There is a clear power-law falloff (dotted line: oc 2z~ 1-83),
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Figure 6: Subcascade sizes. The distribution of subcascades sizes
taken across the set of all the subcascades. Power-law fits (dotted lines):
o 19 for RT-cascades and o< &~ 1-% for the F-cascades.

(subcascade root), thus shortening the potential future
paths to one hop. Twitter does not place any constraints
on the number of followers or followees, which allows
the participants to optimize the information pathways for
efficiency. Verifying this hypothesis would require addi-
tional data on how the follower graph evolves over time.
We use the shallowness property of the cascades to re-
duce the computational effort of training our propagation
model (§8), by considering only the one hop neighbor-
hoods of nodes that have already tweeted a given URL.

The influence of the powerusers. A number of fol-
lowers per user varies over several orders of magni-
tude (Fig. 1). The URLs tweeted by the highly con-
nected users reach large audiences and are likely to be
(re)tweeted by their followers. Figure 8 shows that in-
deed this is the case. However, the causality is likely to
be bidirectional: the users’s URLs are tweeted more be-
cause they have many folllowers, but also they have ac-
cumulated many followers because what they tweet tends
to be interesting and viral.
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Figure 7: Subcascades are shallow. For each subcascade we mea-
sure the average and maximum distance from the root to each of the
subcascade nodes. We plot the distributions of these values taken across
all the subcascades. Both distributions fall off exponentially.
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Figure 8: The influence of the powerusers. For all subcascades we
plot the subcascade size against the number of followers of the subcas-
cade root. For users that have more than approx. 500 followers there is
a larger than 50% chance that if they are the root then their URL will
be (re)tweeted more than once (i.e., median>1).

Rate of diffusion. When @alice tweets a URL some
time elapses until her followers see that and tweet the
URL. The diffusion delay for URL u and user i is the
time from the moment the first of the followees of ¢
tweeted w until the moment 7 tweeted u. The diffusion
delay taken across all the (u, 7) pairs is log-normally dis-
tributed with a median of 50 minutes (Fig. 9). The log-
normal diffusion delay is incorporated into our propaga-
tion model (§7) to improve its accuracy.

7 Propagation model

Given the observations made in the previous sections, we
construct two models of information propagation in so-
cial networks (§7.1). The models take into account the
influence of users on one another, the virality of the URL
and the diffusion delay. These factors have correspond-
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Figure 9: Diffusion delay. Log-normal distribution of the delay
between the user first hears about a URL from one of the followees
until the moment the user tweets about that URL. The fit is In N (u =
3.91, o2 = 6.86). The median is 50 minutes. All URL mentions, not
only retweets are taken into account.

ing unknown parameters in the model. The optimal pa-
rameter values are found using the gradient ascent train-
ing algorithm (§7.2) with the goal of maximizing the
number of predicted URL mentions while at the same
time minimizing the number of false positives.

7.1 Tweeting probability

At-Least-One (ALO) model. Let p} =
A(ejiy Biyvu)T(piy02,t%) be the probability that
the user 4 retweets URL u. The A component repre-
sents the time-independent (atemporal) part and 7" the
time-dependent (temporal) part.

The A component is defined as:

Alajis Biyyu) = 1= (1=vu5:) H (1 =yuayipi) (1)

Gii—i

The parameters are as follows: v, € [0, 1] is the virality
of URL u, §; € [0, 1] is the baseline probability of user i
tweeting any URL and the «j; € [0, 1] parameters define
the influence of a followee j over user ¢. The notation
¢ — 7 means ““¢ follows ;.

The expression for A is the probability that at least one
of the events happens: 1) the URL w is viral (v,,) and the
user is influenced by some followee j (c;;) that tweeted
u with probability p; or 2) u is viral and the user decides
to tweet it by herself or is influenced by some unknown
entity, as quantified by ;.

The epxression for T' follows our observations from
§6.2 that the empirically observed diffusion time ¢}* of
user ¢ tweeting about u is log-normally distributed. The
cumulative distribution function is parametrized by pu;
and o;:

1 Int¥ — p;
T (s, 02,t%) = —er fe(————
(w ) fe( s

1Y% _5 )7 (2)

where erfc is the complementary error function.

Linear Threshold (LT) model. The ALO model as-
sumes that it is enough to be influenced by one user
to cause that user to tweet. The linear threshold (LT)
model [6] generalizes over that by introducing a per-node
threshold which must be exceeded by the cumulative in-
fluence from all the followees for the user to tweet. We
replace the A component by:

Alagi, Bisvu) = s(vu(Bi + Z Yuejipy)), (3

where s(z) = == is the sigmoid serving as a
continuous thresholding function.

In our experiments, although the threshold is fixed, the
ovj; parameters can be adjusted to achieve the effect of
having a variable per-node threshold.

7.2 Training

The model is parametrized by o;, 8;, Vu, iti, 0;. These
parameters are unknown and are learned in the follow-
ing process. The training data set S consists of tuples
(t € V,u e Uttt € [0,00], F € {true, false}), where
1 is the tweeting user, v is the URL, F' is the flag indicat-
ing whether u tweeted ¢ and ¢} is the exposure time mea-
sured as the longest time since one of the followees of ¢
mentions v until either: 1) ¢ mentions u (F' = true) or if
it does not then 2) t.,,4, the time at the end of the training
data set (F' = false). The positive events (F' = true)
cover all the actual URL mentions. The negative events
(F' = false) are generated as follows. For each positive
event (i, u, t¥, true) and each follower j of ¢ that has not

y Vi
tweeted u, generate (j,u,t¥, false). This reflects our
empirycal observation that the URL cascades are shal-
low (§6.2). As we show in the evaluation (§8), including
only one-hop follower neighborhood of the nodes that
tweeted u provides sufficient training data for the model,
while preserving the computational feasibility.

Optimization goal. Given the training data set .S, the
goal is to find the optimal set of parameters o;, 53;, Yu,
Wi, ;. Optimality is defined as follows.

If the (¢, w) pair occurs as an event in S, it does so only
once either as a positive or negative event. If the event is
positive then this defines the target probability p} = 1
otherwise p;' = 0.

Our model defines the estimated probability 15? =
Ay Biyvu)T (i 02, %), The goal of the optimiza-
tion is to bring the estimated probabilities p* as close to
the target probabilities p}* as possible.

The pzi variables are a function of other p? variables.
Finding the values of these variables would entail solving
a system of non-linear equations, which is an intractable
problem for the current p} definitions. To overcome this,



we compute each pz‘ directly based on the known tar-
get probabilities p} from the training data set (zeroes or
ones).

Accuracy metrics. To measure the accuracy of the
pA;f‘ predictions we borrow two concepts from the infor-
mation retrieval literature: precision and recall. Let k,
be the number of true positives, k¢, true negatives, k¢,
false positives and ky,, false negatives. Then the preci-
ktpkr;c — and recall r = kw’i’,’wn. Intuitively,
precision aswers the question: among all the positives
predicted by the model, how many of them are true? and
for recall: among all the positives, how many of them are
predicted by the model?

The k:p, ktn, kfp and kg, numbers are obtained by
comparing the true values p;’ with the predictions of the
model pz‘. In our case, pj is binary, but p? is a value
from [0,1]. We approximate the k& values by comput-
ing their expected values given the estimated probabil-
ities s kip = D(uies, Pis Kip = Zuies, Pi
kpn = Z(u,i)esp(l = pi'), ki = Z(u,i)esn(l - pi)
The sums iterate over the trainig set .S, where ), is the
set of positive events and .S, is the set of negative events.
The precision p and recall r are then defined in terms of
the & values as in the previous paragraph.

Ideally, we would like both the precision and recall
to be high. A commonly used metric that combines
the two is the F-score® defined as the harmonic mean

sion p =

of precision and recall F' = pzi:, which simplifies to
. 2k1p . .
F = oyt hy Thy The goal is to maximize F' under
the o, Bs, Yus [4i, 0 parameters.
Iterations. We wuse the gradient ascent
method for finding the optimal F(X) under

X = (i, Bi,Vu, i, 0:). The process is iterative.
Starting from the randomly initialized X, we obtain
successively better approximations by computing
Xiy1 = X + cVF, where VF is the gradient of F" and
c is the constant controlling the convergence rate. The
parameters in X are forced to stay within their bounds
in each iteration. After a fixed number of iterations we
obtain the optimal value of X.

Computational complexity. Each iteration above
computes a new value X, as well as the gradient VF'.
Computing X, involves 1) iterating through training
set S and computing the pzf values, 2) computing the k
values and 3) the I". In step 1) each a; is referenced at
most once in the product and also each event in 7' is refer-
enced at most once (one p;“ computed per event), hence
the computational complexity is O(max{|S|,|X|}). In
step 2) each event in T is reference at most once and
step 3) has a constant cost. The complexity of comput-
ing X; 41 is O(max{|S],|X|}).

3http://en.wikipedia.org/wiki/Fl_score

Computing VF' involves computing the partial dif-
ferentials of all the variables in X. This can be bro-
ken down to computing the differentials of individual
terms comprising the sums in the k values. There are
|S| such terms. Each term can possibly reference only
one 7, among all us and only one o;,i4,04,3; among
all the is, hence computing V F' involves summing over
at most 55| terms (once for each of the 5 parameter
classes a,3,7,1,0). Computing each term involves iterat-
ing over the relevant «;;, however each «; is referenced
only once. The complexity of V' computation is hence
O(max{[S], [ X|})-

The iteration progresses until the desired numerical
precision is reached. The computational complexity of
m iterations is O(m max{|S|, | X|}).

8 Model evaluation

8.1 Setup

Training and test data sets. We divide our 300 hour
data set (§3) into two 150 hour parts. The training data
set S is generated based on the events from the first 150h
window excluding the URLs that were mentioned less
than 5 times. For each URL u mentioned by user ¢ we
add a positive entry (i, u, t¥, true) to S (§7.2). For each
URL wu not mentioned by user ¢, if there exists at least one
followee 5 of ¢ that mentioned v we add a negative entry
(i,u,t¥, false) to S. To reduce the size of the training
data set, a negative entry is only added if ¢ has tweeted
some URL after j, otherwise we assume j’s influence on
1 is too low to warrant an entry in the training data set.
In other words, the models will only be trained to predict
tweeting probabilities for the users that are one-hop away
in the follower graph from the nodes that have mentioned
u and only for arcs along which URL has been transmit-
ted. Predicting mention probabilities for all (u, ) pairs
(not only the one-hop neighborhood) is computationally
challenging (§9).

For positive entries, the delay ¢} is set to the time that
elapsed from the beginning of the first 150h window till
the first mention of u by ¢, but only if no followee of ¢
mentioned u. Otherwise, ¢} is set to the time elapsed
from the earliest mention of u by a followee of ¢ till the
first mention of w by i (i.e., the diffusion delay, §6.2).
For negative entries, the delay ¢} is set to the time that
elapsed from the earliest mention of u by a followee of ¢
until the end of the first 150h window.

For the test data set we pick 100 random URLSs that
were mentioned at least 10 times both in each of the first
and the second 150h windows. All the mentions of these
URLSs in the second 150h window become the test data
set. The goal is to predict these events as accurately as
possible.



There are approximately 700k positive and 9M nega-
tive entries in the training data set with 500k unique users
and 50k unique URLs. The test data set has 5.2k URL
mentions that need to be predicted.

Models. Our evaluation covers the following models
(§7.1): ALO - the at-least-one model (§7.1), LT - the
linear threshold model, LTr - a simplified version of LT
that has one «r; parameter per influencing node instead of
having an «;; parameter for each pair of influencing and
influenced nodes (this substantially reduces the compu-
tational effort). Finally, for the simple baseline, we use
RND, a model making uniformly random decisions. The
number of parameters in each model (the size of X, §7.2)
are 12.5M for LT and ALO and 1.6M for LTr. The sig-
moid parameters for LT are set to a = 20 and b = 0.5.

Training. We train all models starting from a random
parameter initialization for 30 iterations of gradient as-
cent (§7.2). Training takes at most 20min on a single
modern CPU core.

Metrics. Each model, after it has been trained, outputs
p¥ predictions in the range [0, 1]. We use the discretiza-
tion threshold \ = 0.5 to classify the events into positive
(pi* > M) or negative (p;' < A). For each u, we take the
one-hop neighborhood of all the nodes that mentioned .
Within the scope of one-hop we compute the precision,
recall and the F-score based on the discretized predic-
tions and the true events from the test data set.

8.2 Results

Precision, recall, F-score. Figure 10 presents the pre-
cision, recall and F-score values for the one-hop neigh-
borhood.

We observe the linear threshold model (LT) is able to
correctly predict almost half of the URL mentions (55%
recall) with at most 15% of false positives among the
predictions (85% precision). It also gives the highest F-
score out of all the models. Although negatives dominate
the training and test data sets, LT learns the parameters
affecting the positives well. The recall indicates that the
model is unable to effectively learn the parameters for
the 45% of positives in test set. These positives can most
likely be explained by some other factors that the model
does not account for. These factors are are most possibly
external in nature as Twitter is a part of a much larger
URL sharing ecosystem.

Controlling the precision-recall tradeoff: Some ap-
plications may require a higher precision from the model.
The precision-recall tradeoff is controlled by varying the
discretization threshold. The tradeoff for the LT model*
is illustrated in Fig. 11. After the initial sharp increase
in precision and decrease in recall, precision continues
to increase without compromising on recall. Given that

4The curves for other models were similar
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Figure 10: Performance of the models. For each model we measure
the precision, recall and the F-score within the scope of the one-hop
neighborhood of the nodes that have already mentioned the test URLs.
The linear threshold model has the highest F-score and is able to predict
more than half of the events (55% recall) at less than 15% false postive
rate (85% precision).
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Figure 11: The precision-recall tradeoff. By adjusting the dis-
cretization threshold, the recall can be traded off for precision if the
application requires it.

negatives dominate in our training data set, it underlines
the ability of the model to learn the positives well and at
higher thresholds it removes only the negatives, further
improving precision. We are currently exploring alterna-
tive techniques for increasing the recall.

9 Discussion

The information propagation laws. In our 300 hour
data set of 15M tweets we have observed several strong
regularities. The user activity and the frequency of URL
mentions are power-law distributed. The URL cascades
are shallow with exponentially falling off height. They
are composed of subcascades whose both number and
size follow power-law distributions. We have also found
that the diffusion delay follows the log-normal distribu-



tion extremely well.

Predicting the next hop and beyond. Our propaga-
tion model (§7) specifies the tweeting probabilities p}* as
the function of the tweeting probabilities of the neigh-
bors (pj's). However, during training that dependency is
removed by substituting the neighbor p¥'s with the known
values from the training data set. In this way, the set
of pis that need to be computed is determined by the
training data set and the evaluation (§8) shows that if the
training and prediction scope is narrowed down to the
followers of the users that tweet URLSs, our model pre-
dicts more than half of the events with less than 15% of
false positives. Taking into account the empirical obser-
vation that most cascades are shallow (§6), the one hop
neighborhood is likely to include most of the new URL
mentions.

To be able to predict further than one hop away, the
model would need to include p}'s for more (u, %) pairs,
however given the large number of URLs and the social
network fan-out, this quickly becomes a computationally
infeasible problem even for a two-hop neighborhood.

Another challenge is predicting not only the spread of
the URLSs but also the appearance of new root nodes ini-
tiating new subcascades. This requires a more detailed
analysis of the conditions under which these events hap-
pen to be able to model them accurately.

Training. We have used the gradient ascent method
for finding the set of model parameters under which
the F-score is maximized. There is no guarantee that
the global maximum has been reached. However, we
have run training with different random seeds and arrived
at models with identical (high) performance. Training
could potentially be recast as another known combina-
torial optimization problem, within which more precise
optimality arguments could be made. This is currently
under active investigation.

Continous model updates. Twitter is a real-time
medium with a continuous stream of URL tweets. Keep-
ing the model up-to-date while the new data is arriving is
a separate and challenging problem. The iterative train-
ing algorithm we are using could be running constantly,
following the changing optimal point in the parameter
space. As new users and URLSs appear, their correspond-
ing parameters could be trained separately and more ag-
gressively for faster alignment with the rest of the model.
The training algorithm is embarrassingly parallel, com-
posed mostly of large sums and can readily be scaled on
frameworks such as e.g., MapReduce.

10 Conclusions

We have tracked the spread of 15M URLs over a 300
hour period on the Twitter microblogging service. Sev-
eral statistical regularities are discovered: the power-

laws in user activity, the exponentially falling off cas-
cade depth, the decomposition of cascades into subcas-
cades and finally the log-normal distribution of the diffu-
sion delay. We also propose an information propagation
model that predicts over half of the future URL mentions,
while having only a 15% false postive rate. The model
can serve as an important building block for several ap-
plications: personalized URL recommendation, filtering
of incoming tweets and spam detection, problem areas
we hope to explore further.
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