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“We look for people who can quickly adapt to chges
in the workplace.”

source: http://www.cartoonstock.com/directory/w/workload.asp
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The Secretary Problem

® How to choose the best
candidate!?

® Assumptions

® Interview candidates one by
one

® Make a decision to hire or
not immediately after the
interview

® Cannot go back and hire

 Marriage problem, Sultan’s dowry problem, ,
&€ P Y P another candidate

googol game, optimal stopping problem, etc.

® Know the total number of
candidates to be interviewed

source: http://quoratopstories.tumblr.com/post/108021448078/what-are-the-most-interesting-or-popular |
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* Class of Sequential Decision Problems
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The Secretary Problem

® Naive solutions

o O
e 5o

the possibility of success
=

O
—

N

® |[nterview the first candidate and set the benchmark

® Or,interview N-I|candidates and choose the last one

simulation of 100 candidates

0 20 40 60 80 100
the number of candidates for exploration

Experiment steps:

1. Permute the sequence of

[1,2,...,100]
2. Set the number of
candidates for exploration
3. Set the benchmark and
choose the best candidate

4. Run 10,000 times

repeatedly
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The Secretary Problem

simulation of 100 candidates simulation of 100 candidates
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The Secretary Problem

® Optimal strategy [T.S. Ferguson, 1989]
® Reject the first NV/e ~ 0.37N candidates categorically
® Accept the first one above the top category after NV /e

® The highest probability is 1 /e
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Multi-Armed Bandits (MAB) Problem

® Pull an arm to get a payoff of the arm for each round

® Assume each round costing one dollar, and a total
budget of N dollars

MULTI-ARMED

| | | MULTI-ARMED
BANDIT

BANDIT _ BANDIT

MULTI-ARMED
BANDIT

K arms

Exploration vs. Exploitation
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Multi-Armed Bandits (MAB) Problem

® Pull an arm to get a payoff of the arm for each round

® Assume each round costing one dollar, and a total
budget of N dollars

' | | MULTI-ARMED | MULTI-ARMED | MULTI-ARMED "
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Multi-Armed Bandits (MAB) Problem

® Pull an arm to get a payoff of the arm for each round

® Assume each round costing one dollar, and a total
budget of N dollars

' | | MULTI-ARMED | MULTI-ARMED | MULTI-ARMED

BANDIT _ BANDIT _ BANDIT _ BANDIT

Maximum reward?
Which arm? tions by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016



Multi-Armed Bandits (MAB) Problem

® Mean value (MV)

Arm 1 Arm 2 Arm 3 %Arm4

..................................................................................................................................................................................

Step1 | 11=1  11=1 | 1/1=1 | 0/1=0 Play all the arms once

Step 2 (1+O)/2 05 1 T 0 Break ties randomly

..................................................................................................................................................................................

Step3 05 (1+2)2= 15 1 0 Play the best arm

..................................................................................................................................................................................

Step4 = 05 ;(3+1)/3=1.3; 1 0 Play the best arm

.................................................................................................................................................................................

Step5 = 05  (4+0)/4=1 1 0 Break ties randomly

..................................................................................................................................................................................

Step6 = 05 1 (1+3)/2=2 0  Play the best arm

.................................................................................................................................................................................

Step7 05 1 (4+2)3=2 0  Play the bestarm

..................................................................................................................................................................................

Step8 05 1 (4+2)/4 15 0 Play the best arm

..................................................................................................................................................................................

Find the best arm 3 via mean value but never explore arm 4

: %)
E- Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016 ’E""



Multi-Armed Bandits (MAB) Problem

® Mean value (MV) + standard deviation (SD)

Arm 1 Arm 2 Arm 3 Arm 4
Step11/1+1:2 """""""""""""""""" M41=2  1s1=2 OM+1=1
Step2 (1+0)/2+081322 """""""""""""""""""""""""""" o
‘Step3 13 (+7y2+08=18 2 r
‘Stepd 3 18(1+O)/2+08 """ 1 3 """""""""""""""" r
‘Step5 13 (2+0)3+0.6=1 27 """""""""""""" 3 o
Step6(1+O)/3+O6 """ 093 127 3 '
‘Step7 093 (2+0)/4+0.4=09 3 T
‘Step8 0 9309(1+O)/3+06 """ 0o T
‘Step9 03 09 093 (1+1)/2408=18

Assumption of SD:1->0. 8 >0.6->0.4->0.2 -
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Multi-Armed Bandits (MAB) Problem

e Optimal strategy [T. L. Lai & H. Robbins, | 985]

® Play each arm once for the first K rounds

® Play the explored best arm with upper confidence bound

® Result

® Mean + upper confidence bound (UCB)

21log N
chi:\/ oEN N~ N

® N is the number of times for selecting an arm
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Multi-Armed Bandits (MAB) Problem

Maximum reward?

® c-greedy strategy [N. Cesa-Bianchi & P. Fischer, 1998]
e W/ith probability of 1 — €; to play the explored best arm

® With probability of ¢, to randomly select inferior arms

l E? Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016 ’@
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Some Variants: Finding k Arms

® Find the top-k arms

® Find top arms in disjoint groups of arms
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Some Variants: Unknown N

® []. Langford & T. Zhang, 2008]

® No knowledge of a time horizon to maximize reward

| | | MULTI-ARMED | MULTI-ARMED
BANDIT _ BANDIT _ BANDIT

MULTI-ARMED
BANDIT

K arms
t=1,2,--
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Some Variants: Infinite Arms

® [Y.Wang, ].Y.Audibert & R. Munos, 2009]

® Online advertising tasks with infinite advertisements

’“HH Eon |
[r A A AL v -] - l’:
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BANDIT ) ) ) BANDIT
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Some Variants: Adversarial Bandits

® [O.Besbes,Y. Gur & A. Zeevi, 2014]

® Example: time-varying expected payoff for bandits
expectation as in online investments in financial markets

LAY

T

e : li
" MULTI-ARMED MULTI-ARMED MULTI-ARMED

MULTI-ARMED
BANDIT _ BANDIT

BANDIT

BANDIT

K arms

Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016 @
‘ 0% v



Some Variants: Adversarial Bandits

® [O.Besbes,Y. Gur & A. Zeevi, 2014]

® Example: time-varying expected payoff for bandits
expectation

MULTI-ARMED
BANDIT

MULTI-ARMED
BANDIT

MULTI-ARMED
BANDIT

" BANDIT

T K armS
) expectation
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Some Variants: Contextual Bandit

e [Lietal 2010]

® Additional contextual information in online advertising
and online recommendations
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Feature vectors
t=1,2,--
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Online Learning

® How to choose the best hypothesis for data?

Hypothesis
space

=2
=227

l E? Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016 @
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Online Learning

® How to choose the best hypothesis for data?

Hypothesis
space

Prediction

=2
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Online Learning

® How to choose the best hypothesis for data?

Hypothesis
space

Prediction

=3

K Response '
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Online Learning

® How to choose the best hypothesis for data?

Hypothesis
space

Prediction

g
Response '

{ Minimize the loss between response and prediction! _
E

=2
=227
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Why Online Learning
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Why Online Learning

Focus Data generation Data Data driven
areas and storage utilization
F'y 4 .
: 6 Structured data
Very complex, : Unstructured data
Z | unstructured . Multimadia
= :
H : 1B per person
E !
8 : e Relational databases
T | complex : Data-intensive
@ | relstiona . applications
o |
Ou |
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- |
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Exponential growth

Prmilive Basi
asic data storage
in data volume

and structured

Pre-relational 1 Reaticna elatonel

(19705 and before) J {1980z and 1990s) (20003 and beyond)
> |
Computing timeline

1 —e o : :
2 https://www.atkearney.com/analytics/ideas-insights/article/-/asset publisher/

hZFiG2E3WrIP/content/big-data-and-the-creative-destruction-of-today-s-business-
models/101927 101 INSTANCE hZFiG2E3WrIP redirect=/analytics/ideas-insights

20C8 2C09 2C10 201 2C12 2013 2014 2015 201€ 2017 2018 2019 202C

source: https://www.atkearney.com/analytics/ideas-insights/article/-/asset_publisher/hZFIiG2E3WrIP/content/big-data-and-the-creative-
destruction-of-today-s-business-models/101927_101_INSTANCE_hZFiG2E3WrIP_redirect=%2Fanalytics%2Fideas-insigh
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Why Online Learning
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500 TB per day

Sometimes they are RIGHT

5.2 TB per person new data e
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Online Learning for Big Data

® Online learning is to
solve problems involving
sequential interactions
between data and

, Machine Learning
environment

® Examples

® Online classifications

® Online advertising

® Online investments X/

Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016



Definition of Online Learning

® Machine learning problems

l0ss function
T/

mle (2, w),y:) + R(w)

IR

hypothesis input label regularized
function term

® Online learning problems

min th ft Tty Wt_ 1) yt)+R(wt 1)

{wlan wT}
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How To Solve Online Learning

® Statistical assumption:i.i.d. and adversarial
® Recursive Least Squares (RLS) [H. Kushner & G. G.Yin, 2003]

T
Fi_1xixy Fiq

F, = F_
g =l 1+ ZC?Ft_lQZ‘t
Wy = Wg—1 — Ftlvt@?wt—l — yt)

® Stochastic Gradient Descent (SGD) [M. Zinkevich, 2003]
wy = wy—1 — YL (7 w1 — Y¢)

® Other online convex optimization techniques

l E? Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016



Characteristics of Online Learning

® Memory: Full vs. Partial

® Online learning can take on all the training data repeatedly
or a subset of training data at once

® F[eedbaclc Full vs. Partial

® Output feedback can be partial or full

® bandits vs. online regression

® Hypothesis:i.i.d. vs. non-stationary

® Data generation can be stationary or adversarial

® Regret bound: O(log T) VS. O(\/T)

E- Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016 ",3'7"



Characteristic Taxonomy

1.d. &
full outpu

 Online
learning convex —

algorithms

partial _

output
(bandits)

- oldest
[F. R

. Perceptron
osenblatt, 1957]

- recursive least squares
[H. Kushner & G. G. Yin, 2003]

- stochastic gradient descent

[M. Zinkevich, 2003]

[S. Shal

-online su

-online convex optimization

ev-Shwartz, 2008]

follow the leader
[S. Shalev-Shwartz & S. M. Kakade, 2009]

bgradient descent

[P. Liang, 2015]

‘NO INput -

~adaptive allocations
[T. L. Lai & H. Robbins, 1985]
upper confidence bound

- Input4

[P. Auer, N. Cesa-Bianchi & P. Fischer,2002]

"pbandits with advices

C. C. Wang etc. 2005]

contextual bandits

A, Slivkins, 2014] %’«f}



* Online
learning
algorithms

o

Application Taxonomy

- Perceptron
[F. Rosenblatt, 1957]

Winnow

Classifications — [N. Littlestone, 1989]

- ALMA. 2001
non-linear ROMMA, 2002

‘classification ] MIRA, 2003
PA. 2006

- elc.
[S. C. Hoi, J. Wang, & P. Zhao, 2014]
-kernel methods
[J. Kivinen, etc., 2004] [E. Moroshko, etc., 2015]

Regressions - online support vector regression

Rankings -

g

—

[F. Parrella, 2007] [B. Gu, etc., 2015]
-online regression with varying distributions
[T. Hu, 2011] [M. S. Kan, etc., 2015]
online collaborative filtering
|J. Abernethy, etc., 2007] [S. Banerjee, 2016]
Bayesian ranking %’f}
[R. C. Weng & C. J. Lin, 2011] [W. Pan, etc.. 2015]




Our Recent Work

® Bandit algorithms for search and recommendation
(NIPS2014, ICONIP2016, CIKM2016)

® Combinatorial Pure Exploration of Multi-Armed Bandits [Chen
et al,, 2014]

® [ocality-Sensitive Linear Bandit Model for Online Social
Recommendation [Zhao et al., 201 6]

® Constructing Reliable Gradient Exploration [Zhao et al,, 2016]

® Online kernel classification (AAAI2015)

® Kernelized Online Imbalanced Learning (KOIL) [Hu et al,,
2016]

] 5 E /}
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Bandit Algorithms for Recommendation

® Tackle the adaptive issues

® Historical records are biased

® User interests change over time
® Tackle the cold start problem

® A great issue in recommender system

® |ack of enough records/observations for new items or new users
® Our consideration

® Using graph structures among items, e.g., spanning trees, paths,
matching, etc.

® Using graph structures among users, e.g., social networks, etc.

- qLoY
l E; Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016 '@
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Combinatorial Pure Exploration in

Multi-Armed Bandits

® Pure exploration of MAB in A/B testing, clinical trials,

wireless network, crowdsourcing, ...

® A fixed budget to minimize the probability of error

® A fixed confidence value to minimize the number of rounds

® N arms = n variants

X | e play arm i = a page view on the i-th variant

e reward = a click on the ads

e finding the best arm = finc

4 avd oY N\ N\ A

ing the variant

with the highest average ads clicks



Combinatorial Pure Exploration (CPE)

® Play one arm at each round

® Find the optimal set of arms satisfying certain contents
by maximizing the sum of expected rewards of arms in

the set as
M, = argmax E w(7)
MeM e
size-k-sets spanning trees
' é A
22222228 s
\‘; ;/
paths matchings
s * @ « ——»
’ AR _f /

¥ '?l\%

/ _ \ :
.\ -@ > — — & e <
- e ——o — — -4 @ o« ‘»



Motivating Examples

e matching

worker iask

Goal:

1) estimate the productivities from tests.
2) find the optimal 1-1 assignment.

productivity
(unknown)

e spanning trees and paths

- -1  Goal:
) \\ 1) estimate the delays from measurements
i ij 2) find the minimum spanning tree
‘\\ 8 or shortest path.
i-.-—_i:l
link delay

® size-Kk-sets
» finding the top-k arms.
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Our Results

® Algorithms

® T[wo general learning algorithms for a wide range of M

e Upper bounds

® Sample complexity / probability of error

® | ower bounds

® Algorithms are optimal (within log factors) for many types of M (in
particular, bases of a matroid)

® Compared with existing work
® The first lower bound for the top-k problem

® The first upper and lower bounds for other combinatorial
constraints

] E E /}
l E? Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016 %’
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Locality-Sensitive Linear Bandit Model for
Online Social Recommendation

® Motivations
® Adaptive recommendation by incorporating social information

® (Contextual bandits for online recommendation

® Arms =l Items

® Context =ll==l» [tem feature
® Reward === Click/Purchase

® Select =@l Recommend

® Applications
® Recommender system

® Online advertising
= E - /}
l E? Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016 %"
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Locality-Sensitive Linear Bandit Model for
Online Social Recommendation

® Most bandit algorithms focus on one-player modeling

® Existing social recommendation research focus on offline
training

® Our goal is to integrate social network knowledge into bandit
algorithms

~

o
. : / f»

-

n

= O
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Locality-Sensitive Linear Bandit Model

® [inear Reward Assumption:

® Given a user u and an item i with feature vector I; at time t,
the reward (preference) is modeled as

g

X . .
e where O is the unknown parameter of user u and 7J; ¢ is a
u ’

sub-Gaussian noisy term.
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Locality-sensitive Social Regularization

Construction
® Social regularization term, Input: A, a1, az, ..., ar
e Initialization:
summarizing local for each user u do
. R o 0 dxd d
information from social endAu =A™, bu 0
relations Simulation:
for oundt « 1,...,T do
. exD(1...)6 for each user u do
H’U,, p— p( ’U) Y for v = 4'\ru(G) do |
vEN (u) ZwEN(u) exp(nw) ’ Py S () P
end
. . . gul L ZL‘&;\'”(G} pl.gl.
® Ridge Regression + Social b AL (b + 36.) UCB
Regularization term fors €1,...kdo
| f't.a(i} « :L'tl_a(z')gu
1 N (12 Aa Aa 12 end .
iubu’t - Xu’teuHF T ZHHUH T ZHHU B Hu/HF Choose the arm a; — arg max, ;) 7¢,a(i)
Observe rewards r; ,
® (losed-form solution AL A+ Toanzl e
A by < bu + Tta¥Ttal .
Ou = (X XTI, + X)) Y Xy ibut + =0u0) M 4= M+ 1
U u, T3t u,tVu,t 9 U end
end

{ . W]
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Our Results

® Algorithm
® | ocality-sensitive linear bandit (LS.Lin) algorithm
® Theoretical analysis

® Upper bounds of cumulative rewards

® Compared with existing methods

® Only consider users’ local social relations to avoid
bropagation of uncertainty to whole network

® Use a softmax combination to differentiate the contribution
from different social relations

] 5 E /}
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Way Forward

® Adversarial environments
® Contextual bandits with varying distributions

® Non-linear rewards, Support approximate maximization
oracles

® Non-convex assumption
® Non-convex function for online update
® Social-related bandit algorithms

® Explore complex structure (community, structure hole, etc.)
in social network

® Model the complex behaviors among users (cooperative vs.
competitive, game theory, etc.)

= E . /}
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Useful Links

® TJutorials

® https://sites.google.com/site/banditstutorial/

® http://ttic.uchicago.edu/~shai/icml08tutorial/

® http://www.cs.princeton.edu/~ehazan/tutorial/tutorial.htm
® Workshops

e NIPS 2015 Workshop on Non-convex Optimization for
Machine Learning: Theory and Practice

® Advances in hon-convex analysis and optimization

e NIPS 2010 Workshop: Machine Learning in Online ADvertising
(MLOAD 2010)

® Multi-armed Bandit Workshop 2016 at STOR-i, Lancaster
University, UK

l E? Online Learning for Big Data Applications by Irwin King @ ICONIP2016, Kyoto, Japan, October 18,2016



https://sites.google.com/site/nips2015nonconvexoptimization/home
https://sites.google.com/site/nips2015nonconvexoptimization/home
https://sites.google.com/site/noncvxicml16/
http://research.microsoft.com/en-us/um/beijing/events/mload-2010/default.aspx#sub
http://research.microsoft.com/en-us/um/beijing/events/mload-2010/default.aspx#sub
http://www.stor-i.lancs.ac.uk/research/Workshops/Multi-armed-Bandit-Workshop
http://www.stor-i.lancs.ac.uk/research/Workshops/Multi-armed-Bandit-Workshop

Useful Links

® Summer school and course

® Online Learning Summer School (http://www.diku.dk/online-
learning-summer-school-2015/)

® Bandit Algorithms (http://banditalgs.com/)
® |ibrary of online algorithms

e DOGMA (Discriminative Online (Good?) Matlab
Algorithms) (http://dogma.sourceforge.net/)

® Vowpal Wabbit (Fast Learning) (http://hunch.net/~vw/)

e |IBOL (A Library for Online Learning Algorithms) (http://
libol.stevenhoi.org/)
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Conclusion

® Online learning is an effective approach to handle
incoming data based on the sequential decision
framework

® Reviewed literature based on characteristics and
application taxonomy

® Present our recent work in designing bandit algorithms
with graph structures
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“My momma always said, Life was like a box of chocolates.
You never know what you're gonna get”

-FORREST GUMP
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You have to do the best with what God gave you.
Mrs. Gump

| —_ . A

https://www.quotesaga.com/quote/252/ =
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Once you
stop learning,

7 A \, you start
‘ ‘_}- "~-"¥-..f?§- - :

Albert
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PARTNERS & RELATIONSHIPS
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KEY FEATURES

TO HELP TEACHERS BECOME BETTER EDUCATORS

KEEPSearch

provides specific
education related

including courses

(G

resources,

or events

KEEPCatalog KEEPCourse KEEPoll

compiles tools and
applications to

create a community
for educators to

gives educators a
chance to upload

encourages in-class
interaction among
teachers and
students to assess
learning progress

course content on
to a private or

share best practices global audience

KEEPAttendance

take attendance
data for a large or

small class by
simply scanning a

QR code!
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KeesPCours: machine leaming Q Legin SigaUp
Search Results of "machine leaming”
55Z courses
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KEEP’S MILESTONES

What have we accomplished?

4249 1345 5342

Courses Products Class Poll

Indexed Reviewed Interactions
4500+ S+4

Users Platforms Partner

fE:J onine (REBiStered . indexed = Intesratigns  Laupched




KEEP’S DIRECTION

il

MOBILE

- Analyze user’s click behavior and search patterns for

learning analytics

- Recommend personalized education programs and

services for stakeholders

- Provide gaming technology to encourage engagement

and participation

- Motivate and empower students through a fun and

innovative approach

« Connect users with one another via social networks and

special interest groups

- Promote collaboration by provide avenues for group/

community learning

- Enhance learning and teaching experiences through

personalized devices

- Develop mobile and wearable technology for KEEP
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'fi) KeeP About  News&Events  ContactUs Login

Sign Up ’ Q

Knowledge & Education Exchange Platform

the eLearning Innovator

http://www.keep.edu.hk

Y ) What is KEEP?
X ol \ Knowledge & Education Exchange Platform
% - —— —
S 'fEJ KeeP
Ny / - I‘_/) e A personalized educational portal for users to easily search, subscribe
> - »
o A & and access content from the KEEP Cloud Ecosystem.
e Supporting the development of innovative teaching and learning with
cutting-edge technology.

e Uncovering the most relevant results from different education


http://www.keep.edu.hk

CUHK Excellence

® The only university in Hong Kong having Nobel
Laureates as faculty with five Distinguished Professors-

at-Large
| Prof.Yang Prof. Charles m Prof. Sir James
Chen-Ning, Kao o | A Mirrlees,
Nobel Nobel Nobel Laureate
Laureate in Laureate in in Economic
Physics Physics Sciences

Prof.Yau
Shing-Tung,
Fields Medalist

Prof. Andrew Yao,
Turing Award

® Nine academicians of Chinese Academy of Sciences
and Chinese Academy of Engineering
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