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ABSTRACT
Approximate circuit designs allow us to tradeoff computation
quality (e.g., accuracy) and computational effort (e.g., energy),
by exploiting the inherent error-resilience of many applications.
As the computation quality requirement of an application gen-
erally varies at runtime, it is preferable to be able to recon-
figure approximate circuits to satisfy such needs and save un-
necessary computational effort. In this paper, we present a
reconfiguration-oriented design methodology for approximate
circuits, and propose a reconfigurable approximate adder de-
sign that degrades computation quality gracefully. The pro-
posed design methodology enables us to achieve better quality-
effort tradeoff when compared to existing techniques, as demon-
strated in the application of DCT computing.

1. INTRODUCTION
A large and growing number of applications are inherently

error-tolerant, which do not require “strict” correctness but
rather approximate correctness. Applications of such kind in-
clude multimedia, DSP, wireless communication, data mining
and synthesis. They may process noisy data sets and the asso-
ciated algorithms are stochastic or involve a human interface
with limited perceptual capability. For these applications, ap-
proximate computing, being able to trade off computation qual-
ity (e.g., accuracy) and computational effort (e.g., energy), has
attracted lots of attention recently [1–17].

As the computation quality requirement of an application
may vary significantly at runtime, it is preferable to design
quality-configurable systems (QCSs) that are able to tradeoff
computation quality and computational effort on-the-fly ac-
cording to application needs [15–17]. One of the key elements
in a QCS would be the reconfigurable approximate hardware
building blocks, which provide various quality-effort configu-
ration points for the system to tune itself. Most existing ap-
proximate hardware designs (e.g., [10–14]), however, do not
explicitly take such reconfiguration needs into consideration,
which limits their applicability.
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To tackle the above problem, in this work, we investigate
how to design an approximate circuit that can better sup-
port system reconfiguration. To be specific, we explore the
various configuration points of a QCS and evaluate its recon-
figuration behavior according to a “quality-effort” curve that
describes the relationship between the quality we can achieve
and the effort we need to pay. Such “quality-effort” curve is
able to guide us to develop more effective approximate circuits,
i.e., we could achieve more benefits by conducting optimiza-
tion towards a better “quality-effort” curve. As adders are the
primary components for building many error-tolerant applica-
tions (e.g., DSP applications) and largely determine the per-
formance and energy consumption in such systems, we propose
a novel reconfiguration-oriented approximate adder design and
apply it to a discrete cosine transform (DCT) computing plat-
form. Experimental results demonstrate that our proposed ap-
proximate adder is able to provide much better quality-effort
tradeoff when compared to existing designs.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present related work and motivate this work. The
proposed accuracy-configurable approximate adder and its ap-
plication in DCT computing platform are then detailed in Sec-
tion 3 and Section 4, respectively. Next, Section 5 presents our
experimental results. Finally, Section 6 concludes this paper
and discusses potential work in the future.

2. RELATED WORK AND MOTIVATION

2.1 Related Work
There have been a large number of recent works in approx-

imate computing (e.g., [1–17]), leveraging the inherent error-
resilience of applications at various levels of design hierarchy.

Generally speaking, approximate hardware designs imple-
ment a slightly different yet more energy-efficient and/or faster
Boolean function. There are a few attempts to systematically
evaluate and/or generate approximate circuits. [7] proposed
to construct an equivalent untimed circuit that represents the
behavior of an approximate circuit and evaluate it by com-
paring to the original implementation. [8] investigated the
behavior of approximate circuits under timing variations. [9]
presented a systematic logic synthesis framework to generate
functionally approximate circuits that satisfy a given quality
constraint. In addition, various approximate designs for spe-
cific arithmetic components were presented in the literature,
taking advantage of the structural properties of these com-
ponents. In [10], a truncation-error-tolerant adder is used to
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Figure 1: Accuracy-configurable adder in [17].

ease the restriction on computation accuracy and applied in
DSP applications. In [11], simplified full adder cells are uti-
lized to form approximate adders with reduced power. In [12],
the authors try to find out a new optimal in a timing-starved
adder by trading off error magnitude and error rate. In [13], a
speculative carry select adder with error detection and recov-
ery capability is proposed. In [14], a low-power approximate
multiplier design is presented.

In practice, the computation quality requirement of an ap-
plication may vary significantly under different circumstances.
The above static approximate circuit designs with fixed ap-
proximation quality thus are likely to fail to meet application
quality requirement or cause extra performance/energy over-
head by providing unnecessarily high quality. Motivated by
the above, the concept of scalable effort computing was stud-
ied in [15, 16], wherein reconfigurable systems are designed
to achieve the maximum benefits under varying quality con-
straints.

One accuracy-configurable adder (denoted as ACA adder)
is designed in [17] to adapt to varying accuracy requirements
of different workloads. To be specific, ACA adder performs
approximate addition first and then selectively turns on/off
some of its correction stages to generate outputs with differ-
ent levels of computation accuracy. As illustrated in Fig. 1,
this example ACA adder has four stages. In the lowest accu-
racy mode, ACA adder shuts down all the correction stages
(Stage 2, Stage 3 and Stage 4) and uses the output of ap-
proximate adder in Stage 1 directly as the final output, and
only the least significant bits S0 are guaranteed to be correct.
If higher accuracy is required, ACA adder turns on some of
the following correction stages. With all the stages turned on,
ACA adder behaves as a fully accurate adder.

2.2 Motivation
The concept of scalable effort computing studied in prior

works is interesting and promising, however, how to efficiently
evaluate and optimize such a system has not been well stud-
ied. To guide QCS design, let us plot a “quality-effort” curve
to represent the increase in computation quality with respect
to computational effort such that we can traverse on the curve
to achieve various quality-effort trade-off points and the cor-
responding error-effort curve, as shown in Fig. 2.

Consider the ACA adder presented in [17]. As discussed
earlier, its correction scheme proceeds from the least signifi-
cant bits (LSBs) to the most significant bits (MSBs). That
means, if S3 is required to be correct, we should first ensure
all the LSBs (S0, S1, and S2) are correct. Consequently, even
if we only want a result with relatively high accuracy (correct
S3), we may have to turn on all the correction stages, which
consumes much effort and dramatically weakens the benefit
of accuracy reconfiguration. The “quality-effort” curve and
“error-effort” curve of ACA adder thus follow the solid curve
in Fig. 2 (denoted as “Original”). If, however, we can design
an approximate adder with dotted “quality-effort” curve (de-
noted as “Optimized”), it is a much better QCS design. This is

Quality
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Error

Effort

Original

Optimized

(a) Quality-effort curve (b) Error-effort curve

Eoptimized Eoriginal Eoptimized Eoriginal

Figure 2: Quality-effort curve and its corresponding
error-effort curve.
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Figure 3: The proposed gracefully-degrading
accuracy-configurable adder.

because, for the same quality, the optimized design consumes
less effort than the original one. In other words, the optimized
design degrades more gracefully with the decrease of compu-
tational effort.

The above observation motivates us to design a novel accu-
racy gracefully-degrading adder (denoted as GDA adder) in
this paper. To the best of our knowledge, this is the first work
that explicitly uses quality-effort curve to guide QCS designs.

3. ACCURACY GRACEFULLY-DEGRADING
ADDER DESIGN

In this section, we describe the proposed GDA adder design.
Two mechanisms are utilized in GDA adder to reconfigure
computation accuracy, as detailed in the following subsections.

3.1 Reconfigurable Sub-Adder Bit-Length
As illustrated in Fig. 3, our proposed GDA adder consists

of some basic adder units, and each unit is a k-bit adder that
can be implemented using any design scheme.

Our first accuracy reconfiguration mechanism is to make
the bit-length of sub-adders configurable. Let us consider an
N -bit GDA adder. Given two N -bit addends A and B, we
partition them into segments (e.g., A = (A3, A2, A1, A0) and
B = (B3, B2, B1, B0)) with k bits in each1, and use adder units
to compute the segmented addends respectively. Adder units
are connected using multiplexers, which selects carry-in from
either the less significant adder unit or a carry-in prediction
component equipped with each unit. If all the multiplexers
select the carry-ins from prediction components, the delay to
execute such an N -bit addition, attributing to k-bit adder, pre-
diction component and multiplexers, will be much smaller than
the original delay of N -bit conventional adder, however with
some accuracy loss. Consequently, by setting up the control

1A0 and B0 are LSBs, while A3 and B3 are MSBs
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Figure 4: The proposed hierarchical prediction
scheme.
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Figure 5: The proposed reconfigurable prediction
scheme.

signals of multiplexers, we can determine which adder units
are combined together as groups, operating as an individual
sub-adder. In other words, the problem of reconfiguring GDA
adder into a certain mode is just equivalent to the problem of
combining adder units into certain sub-adders: the more effort
we pay, the less accuracy loss we suffer from.

3.2 Reconfigurable Carry-in Prediction
The design of carry-in prediction logic is critical for deter-

mining computation accuracy of approximate adders, and the
second mechanism for accuracy reconfiguration in GDA adder
is to reconfigure the number of carry-in prediction bits.

The simplest design can be just a “0” or “1” signal. In fact,
carry-in prediction can also be implemented using a complex
but accurate mechanism. Although different types of predic-
tion schemes are already proposed in prior works, their com-
mon idea is to generate carry-in based on the less significant
bits of addends. Obviously, it is a tradeoff between the pre-
diction accuracy and the hardware cost to build up such a
prediction.

The two N -bit addends are represented by A = (AN−1, ...,
Ai, ..., A0) and B = (BN−1, ..., Bi, ..., B0), where Ai and Bi

are the i-th bit of A and B respectively. Then, we have the
propagate P , the generate G, and the carry-in C as:

Pi = Ai ⊕Bi ,

Gi = Ai ·Bi ,

Ci+1 = Gi + Pi · Ci .

(1)

Thus, we can develop the boolean equation that calculates
carry-in C from less significant bits:

Ci = Gi−1+Pi−1 ·Gi−2+· · ·+
i−t+1∏
j=i−1

Pj ·Gi−t+

i−t∏
j=i−1

Pj ·Ci−t ,

(2)
which indicates the basic principle of observing preceding t bits
for carry-in prediction. If the carry-in Ci−t can be correctly
given, the computation is accurate; otherwise, by assuming
Ci−t = 0, we make a carry-in prediction for Ci.

By transforming Eq. 2 into different forms, we can have var-
ious implementations for the prediction component, e.g., t-bit
adder proposed in [17] or carry-look-ahead (CLA) mechanism

used by [1]. Actually, any design scheme of adder can be em-
ployed here to serve as carry-in prediction. The more bits
we observe, the larger delay we have to suffer from. In this
work, we propose a novel hierarchical prediction scheme that
can observe more bits with less delay penalty, compared to a
straightforward adder-like design.

Without loss of generality, let us simply assume 8 bits are
required to be observed for enough accuracy. Based on Eq. 2
with t = 8 and Ci−t = 0, we have one of its equivalent trans-
formations expressed by the following equations:

Ci = C′i +

i−4∏
j=i−1

Pj · C′i−4 ,

C′i = Gi−1 + Pi−1 ·Gi−2 + · · ·+
i−3∏

j=i−1

Pj ·Gi−4 ,

C′i−4 = Gi−5 + Pi−5 ·Gi−6 + · · ·+
i−7∏

j=i−5

Pj ·Gi−8 .

(3)

The above equations imply that C′i−4 will propagate to Ci only
when

i−4∏
j=i−1

Pj = Pi−1 · Pi−2 · Pi−3 · Pi−4 = 1 . (4)

Consequently, in order to “look-ahead” 8 bits, we should ob-
serve two 4-bits separately and then combine them together
with the case of Eq. 4 considered. As shown in Fig. 4, the
two 4-bit prediction components are combined by control logic
that detects the case of Eq. 4. Since the delay of this control
logic is much smaller than that of 4-bit prediction component,
the proposed prediction scheme has smaller delay than a con-
ventional 8-bit prediction without any loss of prediction accu-
racy. More importantly, by combining more prediction com-
ponents together in a similar way and adding some control
logic (see Fig. 5), we can realize a reconfigurable prediction
scheme, which controls how many prediction components are
turned on and combined together, trading off power/delay and
prediction accuracy.

4. DISCRETE COSINE TRANSFORM COM-
PUTING PLATFORM

Discrete cosine transform (DCT) serves as the basis in many
international standards of static and dynamic images (e.g.,
JPEG, MPEG, etc.) [20]. By mapping input image into fre-
quency domain, an image is expressed using a linear combina-
tion of weighted basis functions. The basis functions are fre-
quency components and the weights are frequency coefficients.
Because human visual system is more sensitive to changes in
low frequency DCT components [21], DCT computation has
inherent error-resilience for high-frequency components. For
DCT coefficients of high frequency components, accuracy loss
to a reasonable degree will not strongly degrade image qual-
ity. Consequently, a DCT computing platform that adapts
its computation accuracy to accuracy requirements of differ-
ent frequency components will be able to achieve benefits. In
this section, we investigate how to apply our proposed accu-
racy gracefully-degrading adder in DCT computing platform
and then justify its effectiveness in real application.

4.1 Accuracy Reconfigurable DCT Computing
Platform

One-dimensional (1-D) DCT of an n × n data matrix X is
defined as

Y = XC , (5)
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where C is a normalized n-th order DCT matrix2 and Y is
the matrix of frequency coefficients. As shown in Fig. 6, the
image is divided into 16 n × n blocks and then each block is
transformed from image data to frequency coefficients.

A classic DCT computing platform that utilizes a memory
look-up table to store some fixed data directly for fast compu-
tation is proposed in [19] and then developed by numerous fol-
lowing works (e.g., [18, 20]) to further reduce its hardware area.
In this platform (see Fig. 7), data sequence (xi,1, xi,2, · · · , xi,n)
is shifted sequentially with bit-parallel structure into Q shift
registers, and then concurrently loaded into R shift registers.
The data in R shift registers is concurrently shifted out through
a butterfly stage in a bit-serial manner with LSB first. By feed-
ing the bit patterns shifted out of R shift registers into ROM
and Accumulator Components (RACs) (see Fig. 8), an output
sequence (yi,1, yi,2, · · · , yi,n) is achieved. To realize an accu-
racy reconfigurable DCT computing platform, the adders in-
side RACs are replaced with the proposed gracefully-degrading
adders, so that the DCT platform can adapt to the require-
ments of different frequency coefficients.

1

n

i

1

n

i

X Y

High Frequency

Low Frequency

Figure 6: An example of image that is divided into 16
n× n blocks and its DCT process.

4.2 Rescheduling Computation Order
As discussed earlier, DCT has inherent error-resilience that

allows low computation accuracy for high frequency compo-
nents. Therefore, the elements of Y matrix {yij} with larger
i-values and j-values can tolerate accuracy loss with limited
image quality degradation. Because each time DCT platform
computes one row vector of Y :

~yi = (yi1, yi2, · · · , yin) , (6)

we set up different accuracy requirements at different time
points to explore this temporal variation of accuracy require-
ment. However, if we would like to utilize this accuracy re-
quirement changed at every clock cycle, we, therefore, have to
frequently reconfigure the computation capability accordingly
to guarantee enough computation accuracy, which is not prac-
tical. To tackle this problem, we propose to reschedule the
order of DCT computations, so that only infrequent accuracy
mode changes is needed.

Conventionally, when applying DCT in image compression,
the image is divided into blocks of size n×n and then individu-
ally processed by DCT. For each block, we will obtain an n×n
matrix of DCT coefficients. As an example shown in Fig. 6,
the image is divided into 16 blocks and DCT processes these
blocks one by one from upper-left to bottom-right. Within
each block, the data matrix X is processed one row vector af-
ter another to achieve one row vector of output matrix Y each
time. In this work, we reschedule the order of DCT computa-
tions. Since the i-th row vector ~xi of every block has the same
accuracy requirement, we bundle the i-th row vectors ~xi of all
the blocks and process them in the same accuracy mode. Af-
ter that, we turn to next bundle of row vectors ~xi+1 of all the

2Please refer to [18–20] for the details of DCT.
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Figure 7: DCT computing platform in [19].
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blocks. By doing so, the computation with the same accuracy
will last for a long time, because an image is usually divided
into many n × n blocks, typically with n = 8. In that case,
we only have 8 bundles of row vectors and hence the accuracy
mode needs to be changed only 8 times for each image.

5. EXPERIMENTAL RESULTS
In this section, we present experimental results to demon-

strate the effectiveness of the proposed GDA adder by com-
paring it against existing approximate adders.

5.1 Static Approximate Adder Comparison
We examine the static behavior of the proposed GDA adder

in this subsection. That is, we implement the different config-
uration modes of GDA adder and ACA adder3 as dedicated
32-bit static approximate adders and two approximate adders
(Lu’s adder [1] and V LCSA-1 [13]) for comparison. In ad-
dition, we also present results of accurate adders including
ripple-carry adder (RCA) and carry-lookahead adder (CLA).
The bit-lengths of sub-adders in ACA adder [17] and basic
adder units in GDA adder are both set to be 4 bits. Conse-
quently, ACA adder has 4 modes: MA = 1 for only Stage 1
turned on, MA = 2 for Stage 1 and Stage 2 turned on, and so
forth. GDA adder has 16 modes: (i) MB = 1, 2, 3, 4 for the
maximum sub-adder bit-length to be 4, 8, 12 or 16 bits, respec-
tively; (ii) MC = 1, 2, 3, 4 for the number of carry-in prediction
bits to be 4, 8, 12 or 16 bits, respectively. Gate-level simula-
tions are performed with one million randomly-generated input
patterns to these adders, and three error metrics are used to
evaluate computation accuracy: WCE, ER and AE. Experi-
mental results are shown in Table 1.

3Note that, the original ACA adder in [17] is a pipelined adder
that requires multiple cycles to achieve higher accuracy. It is im-
plemented as a combinational adder here to exclude the associated
timing and area overhead for fair comparison.
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RCA CLA V LCSA-1 Lu

Area (µm2) 1184 1736 2686 2321
Power (W) 2.407E-05 3.106E-05 5.054E-05 3.668E-05
Delay (ns) 7.88 5.40 1.24 0.83

WCE 0 0 269488128 2215641344
ER 0 0 16.6715% 32.2528%
AE 0 0 7906556 45247362

ACA
MA 1 2 3 4

Area (µm2) 2200 2416 2632 2848
Power (W) 4.209E-05 4.692E-05 4.977E-05 5.259E-05
Delay (ns) 2.10 2.78 3.53 4.28

WCE 269488128 269484032 268435456 0
ER 16.7344% 11.6149% 6.0388% 0
AE 8352852 8352848 8351497 0

GDA
(MB , MC) (1, 1) (1, 2) (1, 3) (1, 4)
Area (µm2) 1501 1597 1677 1741
Power (W) 3.940E-05 4.383E-05 4.623E-05 4.793E-05
Delay (ns) 1.44 1.78 2.11 2.44

WCE 269488128 268439552 268435456 268435456
ER 16.7344% 0.8873% 0.0453% 0.0027%
AE 8352852 509152 33690 2215

(MB , MC) (2, 1) (2, 2) (2, 3) (2, 4)
Area (µm2) 1577 1625 1689 1753
Power (W) 4.329E-05 4.567E-05 4.773E-05 4.952E-05
Delay (ns) 2.19 2.48 2.86 3.14

WCE 16843008 16777216 16777216 16777216
ER 8.8746% 0.3761% 0.0232% 0.0018%
AE 523985 31614 1954 67

(MB , MC) (3, 1) (3, 2) (3, 3) (3, 4)
Area (µm2) 1596 1628 1660 1708
Power (W) 4.437E-05 4.597E-05 4.703E-05 4.840E-05
Delay (ns) 2.93 3.22 3.51 3.85

WCE 1048832 1048576 1048576 1048576
ER 5.9984% 0.1922% 0.0122% 0.0016%
AE 32886 2015 128 17

(MB , MC) (4, 1) (4, 2) (4, 3) (4, 4)
Area (µm2) 1615 1631 1663 1711
Power (W) 4.552E-05 4.631E-05 4.735E-05 4.871E-05
Delay (ns) 3.68 3.97 4.26 4.55

WCE 65536 65536 65536 0
ER 3.0964% 0.1884% 0.0116% 0
AE 2029 123 8 0

Table 1: Comparison on static adders.

First of all, let us compare adders that can achieve 100%
accuracy, including RCA, CLA, ACA4 and GDA44

4. It can
be observed that, ACA4 and GDA44 achieve smaller delays
when compared to RCA and CLA, but are associated with
higher hardware and power cost. In particular, ACA4 has
about 5.93% smaller delay than GDA44, but consumes 66.45%
more hardware area and 7.97% more power.

Next, let us compare adders with approximated accuracy.
From Table 1, V LCSA-1 has similar computation accuracy
as ACA1 and GDA11, and it is associated with smaller delay
but much larger hardware area. As for Lu’s adder, it has the
smallest delay, but, unfortunately, much larger errors and rela-
tively larger hardware area. In approximate modes, ACA has
almost constant WCE and AE, while GDA has exponentially
decreasing WCE with respect to MB , exponentially decreasing
ER with respect to MC , and exponentially decreasing AE with
respect to both MB and MC . Such interesting observation is
also presented in Fig. 9, justifying that the two mechanisms to
reconfigure accuracy of GDA adder are suitable for different
types of error metrics and hence complement each other.

None of the above approximate adders outperforms the oth-
ers in all aspects. Consequently, a static approximate adder
design cannot provide the best quality-effort for different work-
loads, which justifies the necessity of quality-configurable ap-
proximate adder designs.

4ACAi means ACA adder with MA = i; GDAij means GDA adder
with MB = i and MC = j.

ACA

Area (µm2) 3119
MA 1 2 3 4

Power (W) 4.261E-05 4.882E-05 5.289E-05 5.696E-05
Delay (ns) 2.15 2.90 3.67 4.45
Delay* (ns) 1.64 2.49 3.39 4.42

GDA

Area (µm2) 2513
(MB , MC) (1, 1) (1, 2) (1, 3) (1, 4)
Power (W) 4.679E-05 4.777E-05 5.327E-05 5.733E-05
Delay (ns) 1.58 2.01 2.41 2.82
Delay* (ns) 1.31 1.69 2.24 2.82
(MB , MC) (2, 1) (2, 2) (2, 3) (2, 4)
Power (W) 4.590E-05 4.900E-05 5.065E-05 5.245E-05
Delay (ns) 2.49 2.87 2.96 3.11
Delay* (ns) 2.02 2.47 2.63 2.85
(MB , MC) (3, 1) (3, 2) (3, 3) (3, 4)
Power (W) 4.742E-05 4.953E-05 5.031E-05 5.120E-05
Delay (ns) 3.41 3.78 3.88 4.03
Delay* (ns) 2.85 3.29 3.42 3.61
(MB , MC) (4, 1) (4, 2) (4, 3) (4, 4)
Power (W) 4.879E-05 4.981E-05 5.057E-05 5.149E-05
Delay (ns) 4.33 4.70 4.80 4.95
Delay* (ns) 3.71 4.11 4.25 4.46
Delay/Delay*: the critical path delay of each mode before/after
performing voltage scaling to ensure the same power consumption.

Table 2: Accuracy-configurable implementation of
ACA and GDA adders.

5.2 Quality-Configurable Adder Comparison
In this subsection, we conduct detailed comparison for re-

configurable approximate adders ACA and GDA, which can
be forced into a certain accuracy mode by setting up proper
control signals.

Table 2 reports the hardware areas, power consumptions,
and delays of these reconfigurable adders. “Delay*”in the table
is a normalized delay value by performing voltage scaling to all
the modes of ACA and GDA adders to have the same power
consumption as the largest one (i.e., GDA14). Note that, the
error metrics of different configuration modes are the same
as the static implementation (see Table 1) and hence are not
shown in this table. We find that GDA adder costs 19.43%
less hardware area than ACA adder and has only 0.90% more
delay than ACA adder in accurate mode.

Based on the observations in Fig. 9, we simply choose (1,1),
(2,1), (3,1), (4,1) and (4,4) for WCE; (1,1), (1,2), (1,3), (1,4)
and (4,4) for ER; and (1,1), (2,2), (3,3) and (4,4) for AE,
as marked out as bold in Table 1. After that, we plot out
these modes and also ACA adder’s modes in Fig. 10. As ex-
pected, the error-delay curves of GDA adder present much
better characteristics when compared to ACA adder. Note
that, the above chosen configuration points do not guarantee
serving as optimal candidates for reconfiguration, and a care-
ful selection may provide better performance for a particular
application.

Finally, we conduct experiments on DCT computing plat-
form to verify the efficacy of accuracy-configurable adders. We
simulate the logic functionality of DCT platform using Mat-
lab. The matrix dimension n for DCT is specified to be 8, since
this is a typical value used in most applications (e.g., JPEG).
The quantization matrix used in experiments is the same with
JPEG. Similar to [17], peak signal to noise ratio (PSNR) is
used as the evaluation metric on image quality. Higher PSNR
means better image quality.

We replace the adders of DCT platform with RCA, CLA,
ACA and GDA adders, and compare their performance5. As
can be seen from Table 3, RCA, CLA and ACA4 are fully ac-
curate adders with the highest PSNR and among them CLA
has the highest throughput. GDA41 has higher throughput

5The delays of RCA and CLA adders are also normalized to have
the same power with others.
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Figure 9: Error metrics versus MB and MC on GDA adder.
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Figure 10: Error metrics versus delay on ACA and GDA adders.

RCA CLA
ACA GDA

ACA1 ACA2 ACA3 ACA4 ACA* GDA11 GDA21 GDA31 GDA41 GDA*
Th. (MHz) 249.27 308.00 630.21 434.22 324.41 254.20 334.45 969.10 590.45 432.29 336.76 404.86
PSNR (dB) 26.58 26.58 12.41 12.59 16.87 26.58 22.76 14.32 16.69 22.86 26.57 25.83
Th.: equivalent throughput; PSNR: peak signal to noise ratio; ACA* and GDA*: ACA and GDA in a reconfigurable manner.

Table 3: Results on DCT computing platform.

than CLA with nearly no image quality degradation. When
using four different modes of each adder to compute DCT co-
efficients separately, as expected, we can achieve higher PSNR
but lower throughput with high-accuracy modes.

Because image quality is relatively insensitive to high-frequency
DCT coefficients with larger index, we use a simple heuristic
to utilize this feature and reconfigure the DCT platform as
follows: (i) for ACA, the four modes ACA1, ACA2, ACA3

and ACA4 are used to compute (~y7, ~y8), (~y5, ~y6), (~y3, ~y4),
and (~y1, ~y2), respectively; (ii) similarly, for GDA, the four
modes GDA11, GDA21, GDA31 and GDA41 are used to com-
pute (~y7, ~y8), (~y5, ~y6), (~y3, ~y4), and (~y1, ~y2), respectively.
These two cases are denoted as ACA* and GDA*. As shown
in Table 3, ACA* and GDA* achieve much higher through-
put than RCA, CLA, and their high-accuracy modes without
much PSNR loss. Such results demonstrate the effectiveness of
using quality-configurable adders for DCT computing. When
compared to ACA*, GDA* has even higher throughput and
PSNR, which proves the efficacy of the proposed GDA adder.

As shown in Fig. 11, the image generated by GDA* (see
Fig. 11(d)) has notablely better quality than the image gen-
erated by ACA* (see Fig. 11(c)), and its quality is very close to
the image quality achieved with accurate adder (see Fig. 11(b)).

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a reconfiguration-oriented approxi-

mate adder design. By explicitly optimizing the design towards
a better “quality-effort” curve, our adder is shown to be much
more effective than existing designs. In particular, experimen-
tal results demonstrate that we can simultaneously achieve
much better throughput and image quality when applying our
adder to a DCT application.

This work highlights the importance of“quality-effort”curve
in reconfiguration-oriented approximate circuit designs. Sim-
ple strategies to perform system reconfiguration are used in our
case studies, since they are not the focus of this work. How
to further improve QCS designs with more elegant reconfigu-
ration policy is an interesting avenue for future exploration.
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