1894

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

Modular SOC Testing With Reduced Wrapper Count

Qiang Xu, Student Member, IEEE, and Nicola Nicolici, Member, IEEE

Abstract—Motivated by the increasing design for test (DFT)
area overhead and potential performance degradation caused by
wrapping all the embedded cores for modular system-on-a-chip
(SOC) testing, this paper proposes a solution for reducing the
number of wrapper boundary register (WBR) cells. By utilizing
the functional interconnect topology and the WBRs of the sur-
rounding cores to transfer test stimuli and responses, the WBRs of
some cores can be removed without affecting the testability of the
SOC. We denote the cores without WBRs as light-wrapped cores
and present a new modular SOC test architecture for concurrently
testing both the wrapped and the light-wrapped logic cores. Since
the WBRs of cores that transfer test stimuli and test responses for
light-wrapped cores become shared resources during test, conflicts
arise during test scheduling that will negatively impact the test
application time. As a consequence, to alleviate this problem, we
present a novel test access mechanism (TAM) design algorithm
for the proposed SOC test architecture. We conduct experiments
on several SOC benchmark circuits and demonstrate that, with
an acceptable increase in test application time, the number of
WBRs can be significantly decreased. This will ultimately lessen
the necessary DFT area for modular SOC testing and reduce the
propagation delays between cores.

Index Terms—Core wrapper, electronic test, system-on-a-chip
(SO0C).

I. INTRODUCTION

YSTEM-ON-A-CHIP (SOC) design using reusable intel-

lectual property (IP) cores has become a state-of-the-art
implementation paradigm that has triggered novel business
models based on IP core providers and system integrators [7].
The IP cores are predesigned and preverified by the core
providers; however, SOC composition is the system integrator’s
duty, who is also in charge of verification and manufacturing
test of the entire SOC, including the IP-protected internal
cores. Although the IP core reuse reduces the design cycle,
the rapid increase in SOC complexity makes the test develop-
ment a major implementation bottleneck [29]. This bottleneck
is caused by the increasing number of internal cores, which
cannot be tested easily since they are not directly accessible
from the primary inputs (PIs) and primary outputs (POs).
Various solutions for exploiting the SOC’s architecture-specific
information and using functional interconnect as test access
mechanisms (TAMs), either at the core or at the system level,
have been proposed [2], [3], [15], [21], [22], [28]. Regardless

Manuscript received August 31, 2004; revised December 14, 2004. An
earlier version of this paper was presented at the 2003 IEEE International Test
Conference (ITC), Charlotte, NC, September 28—October 3. This paper was
recommended by Associate Editor K. Chakrabarty.

Q. Xu is with the Department of Computer Science and Engineering, Chinese
University of Hong Kong, Hong Kong (e-mail: qgxu@cse.cuhk.edu.hk).

N. Nicolici is with the Department of Electrical and Computer Engineering,
McMaster University, Hamilton, ON L8S 4K1, Canada (e-mail: nicola@ece.
mcmaster.ca).

Digital Object Identifier 10.1109/TCAD.2005.852447

of their potential benefits in the long term, unless implemented
automatically using a reliable test tool flow, these architecture-
specific design for test (DFT) methodologies do not provide
reusability, scalability, interoperability, and may become the
computational bottleneck in the test automation flow. This prob-
lem is overcome by modular test strategies [29], which use ded-
icated bus-based TAMs for test data transportation. However,
to enable both core reuse and easy test access, the embedded
cores are connected to TAMs using special interfaces called
core wrappers. Therefore, when the number of cores or the
number of the core’s terminals increases, the area introduced by
core wrappers will also grow, which in turn adds to the overall
cost of test. To address this issue, the main objective of this
paper is to investigate how can the wrapper count be reduced
while maintaining the benefits of modular SOC testing.

The rest of the paper is organized as follows. Section II
reviews related work on modular SOC testing and motivates the
research presented in this paper. Section III introduces light-
wrapped cores that can facilitate a decrease in test resource
usage necessary for modular SOC testing. In Section IV, we
present a novel SOC test architecture with reduced wrapper
count and provide the corresponding wrapper/TAM coopti-
mization algorithms. Section V describes our experiments and
Section VI concludes this paper.

II. PRIOR WORK AND MOTIVATION

This section overviews prior work on wrapper design and
test architectures, and motivates the proposed research work.

A. Embedded Core Wrapper Design

An overview of the standard IEEE P1500 wrapper is shown
in Fig. 1. Its main purpose is core isolation during test and it has
three main modes of operation [20]: 1) functional operation,
in which the wrapper is transparent; 2) inward-facing test
mode (INTEST), in which test access is provided to the core
itself; and 3) outward-facing test mode (EXTEST), in which
test access is provided to the circuitry outside the core. The
wrapper has a mandatory 1-bit input/output pair, wrapper serial
input (WSI) and wrapper serial output (WSQO), and optionally
one or more multibit input/output pairs, wrapper parallel input
(WPI) and wrapper parallel output (WPO). The wrapper also
comprises wrapper boundary register (WBR) cells to provide
controllability and observability for the core terminals and
wrapper bypass register (WBY) cells to serve as a bypass for
the test data access mechanism. In addition, the wrapper has
a wrapper serial control (WSC) port and an internal wrapper
instruction register (WIR) used to control the different opera-
tional modes of the wrapper. It is important to note that IEEE
P1500 standard for embedded core test standardizes only the

0278-0070/$20.00 © 2005 IEEE

XU AND NICOLICI: MODULAR SOC TESTING WITH REDUCED WRAPPER COUNT

1895

[——————————=
| |
| t
i . gy T
stimuli ~ i =% response
Core
Functional Functional
data — data
Test control
Test coptrol_ WSI WSO | Test response
+ Test stimuli Wrapper

Fig. 1. Overview of IEEE P1500’s wrapper architecture [20].
wrapper interface. Hence, the internal structure of the wrapper
can be adapted to the specific SOC requirements.

Marinissen et al. [16] described a scalable core wrapper
called TestShell, which forms the basis for the IEEE P1500
core wrapper [20]. The interconnection of internal scan chains
and wrapper cells to the external TAM lines determines the
construction of wrapper scan chains (WSCs). Since the test
application time (TAT) of a core is dependent on the maximum
WSC length, the main objective in wrapper optimization is to
build balanced WSCs. Marinissen et al. [17] addressed this
problem by describing a COMBINE heuristic for hard cores.
Later, Iyengar et al. [9] proposed the Design_wrapper algorithm
based on the best fit decreasing heuristic for the bin packing
problem, which tries to minimize the core’s TAT and required
TAM width at the same time. They also showed an important
feature of wrapper optimization for hard cores, i.e., TAT varies
with TAM width as a “staircase” function. According to this
feature, only a few TAM widths between 1 and Wy, (the
maximum number of TAM width) are relevant when assigning
TAM resources to hard cores, and these discrete widths are
called pareto-optimal TAM widths.

B. SOC Test Architectures

Three basic types of SOC test architectures have been de-
scribed in [1]: 1) the multiplexing architecture; 2) the daisy
chain architecture; and 3) the distribution architecture. In the
multiplexing and the daisy chain architecture, all cores get full
access to all TAMs, while in the distribution architecture the
total TAM is distributed over all cores. Two popular architec-
tures that support more flexible test schedules are proposed
based on the above architectures: The Test Bus architecture
proposed in [24] can be seen as a combination of the mul-
tiplexing and the distribution architecture. While the TestRail
architecture proposed in [16] is a combination of the daisy
chain and the distribution architecture. Based on the TAM lines
assignment strategy, the above modular test architectures can
be further categorized into fixed-width test architectures and
flexible-width test architectures. A vast body of research has
been carried out for both types of architectures, and only a
few representative approaches are summarized next.

For fixed-width test architectures, Iyengar et al. [9] first
formulated the integrated wrapper/TAM cooptimization prob-
lem and broke it down into a progression of four incremental
problems in order of increasing complexity. An integer linear
programming (ILP) model was then presented to solve the
problem. To decrease the CPU running time, the same authors
combined efficient heuristics and ILP methods in [10]. Koranne
[14] formulated the test scheduling problem as a network
transportation problem and presented a two-approximation al-
gorithm to solve this problem. While the above approaches
concentrate on Test Bus architecture, [4] presented an effi-
cient heuristic TR-Architect that works for both Test Bus
and TestRail architectures. In [5] and [6], TR-Architect was
extended to account for the wire length cost and test control,
respectively.

For flexible-width test architectures, Huang ef al. [8] first
mapped the test architecture optimization to the well-known
two-dimensional bin packing problem and proposed a heu-
ristic method based on the best fit algorithm to solve it.
Iyengar et al. [12] presented an improved heuristic for the
rectangle packing problem, when cores are supplied with fixed-
length scan chains. Next in [11], the same authors extended
their algorithm to incorporate precedence and power constraints
while allowing a group of tests to be preemptable, while in [13],
they considered minimizing the tester buffer reloads and mul-
tisite testing. Zou et al. [30] used sequence pairs to represent
the placement of the rectangles, borrowed from the place-
and-route literature, and then employed a simulated annealing
technique to find an optimal test schedule.

C. Motivation and Summary of Contributions

The previously mentioned solutions for the design of core
wrappers and test architectures [1], [4]-[6], [8]-[14], [16], [17],
[24], [30] assume that all the cores attached to the TAM wires
are fully wrapped, i.e., WBRs are placed on all the functional
input and output terminals. While this guarantees core isolation
during test, and hence high test quality, some embedded cores
may have high pin count, and consequently the DFT area
overhead associated with the wrappers will increase the cost
of the test. Moreover, since both core’s inputs and outputs

1896

g 5
= =
From chip >
To core
From WSI/WPI |
cdk To WSO/WPO

Wrapper boundary input cell

(@)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

2 g
7 S
From core >
To chip
From WSI/WPI |
ck To WSO/WPO

Wrapper boundary output cell

(b)

Fig. 2. Wrapper boundary cell for (a) core input and (b) core output terminal [20].

are buffered in the wrapper, at least two sets of multiplexers
(Fig. 2 shows simple implementation examples of P1500 wrap-
per boundary cells) are required to switch between the func-
tional and test modes of operation. If placed on the critical
paths, these multiplexers will lower the maximum operating
frequency, thus having a direct impact on the SOC’s perfor-
mance. An emerging challenge is to find ways of avoiding
the performance penalty without affecting the test quality. To
solve this problem, an approach based on partial isolation rings
was proposed in [23]. Despite avoiding the high number of
multiplexers, the main limitation of this solution lies in its
computational complexity. This is because prior to deciding
which input/output wrapper cells need to be inserted or re-
moved, an analysis needs to be performed to check whether
each test vector can be functionally justified. Therefore, the
extensive usage of automatic test pattern generation (ATPG)
for this analysis will reduce the methodology’s scalability and
reusability. Furthermore, the dependence of the wrapper cell
removal methodology on the test set at hand will also limit
the applicability of additional diagnosis data since the inserted
DFT hardware will support only the preanalyzed test set.

To lower the DFT area and performance overhead by re-
ducing the number of WBR cells, we believe the main chal-
lenge lies in finding a solution that will not only maintain
the test quality but also be compatible with the IEEE P1500
standard [20] and, at the same time, preserve the modularity
and scalability of the existing tool flows for TAM design
and test scheduling. Consequently, the aim of this paper is to
investigate the suitability of reusing the functional interconnect
for transferring test data to cores whose input and output WBR
cells are removed. The main contributions of this paper can be
summarized as follows:

* a new concept called light-wrapped core is introduced to
reduce the number of wrapper cells in the SOC without
impacting its testability; experimental results on bench-
mark SOCs show that up to half of the cores can be un-
wrapped (the numbers are dependent on the interconnect
topology) without affecting the test quality;

* since removing the wrapper cells from light-wrapped cores
implies the usage of functional interconnects to transfer
test data, we provide a detailed analysis of the new test
conflicts that must be avoided in order not to compromise
the test quality; based on this analysis, we introduce a
new modular SOC test architecture that employs three

separate TAM groups and facilitates concurrent testing of
both P1500-wrapped cores and light-wrapped cores;

* we introduce new algorithms for wrapper/TAM coopti-
mization and test scheduling that fully exploit the pro-
posed SOC test architecture; using experimental results on
benchmark SOCs, we aim to improve the understanding
of the limits of the inherent tradeoffs between the amount
of DFT hardware and test application time required for
modular SOC testing; it is essential to note that there is
no loss in fault coverage for user-defined logic (UDL)
since it can be modeled as a light-wrapped core, and
using the proposed SOC test architecture and its associated
algorithms UDL can be tested faster when compared to
using serial EXTEST for it.

III. LIGHT WRAPPERS FOR EMBEDDED CORES

This section introduces a new concept called light wrapper
and explains how light wrappers can be exploited during an
SOC test to reduce WBR cells while maintaining the controlla-
bility/observability of the cores under test.

From the system integrator’s standpoint, to test the em-
bedded cores and their interconnects, full controllability and
observability need to be provided at the inputs and outputs of
each core. To ensure the modularity and scalability of an SOC
test methodology, the controllability and observability of each
embedded core should be test set independent. To achieve this,
it is not necessary to wrap all the core’s terminals with WBR
cells, since the system integrator can also exploit the functional
interconnect between cores to transfer the test data. To illustrate
this observation, producers and consumers are introduced. For
a given Core;, its producers are the cores that feed its Pls
and its consumers are the cores that capture its POs in the
normal (functional) mode. Fig. 3 shows a part of an SOC,
where Cores is not wrapped with WBR cells; however, all
its producers (Core;, Cores) and its consumer (Corey) are
P1500-wrapped. For INTEST of Cores, the controllability of
its input terminals is provided through its producers’ output
WBR cells while the observability of its output terminals is
provided through its consumer’s input WBR cells. In other
words, we can shift in its test stimuli through the output WBR
cells of Core; and Coresy, feed in the test stimuli into Cores
through its normal functional path, and then capture its test
response and shift it out through the input WBR cells of Core,.
Note, Cores cannot be tested using the EXTEST of Corey,

XU AND NICOLICI: MODULAR SOC TESTING WITH REDUCED WRAPPER COUNT

m all Core; K
Wrapper
PI Cores — PO
Wrapper
Wrapper
Fig. 3. Full controllability and observability for Corez without WBR cells.

Cores, and Core4 because the state of the internal scan chain
in Cores cannot be controlled and observed in EXTEST mode.
Since we apply test stimuli and capture test responses through
functional paths, all the interconnects are tested implicitly, and
hence we do not need to perform EXTEST for Cores. It should
be noted, however, that this implicit testing of interconnects
loses the diagnostic information that differentiates between
defects in Cores’s interconnects and defects in Cores’s internal
logic. In this model, a P1500-wrapped core can serve as a
producer and consumer at the same time because there are no
test resource conflicts for using its wrapper output cells as a
producer to shift in test stimuli and its wrapper input cells as
a consumer to shift out test responses at the same time. Cores
has a light wrapper [Fig. 4(a)] and the core wrappers for the
producers and consumers need to be revised to support the
previously explained transfer mechanisms [see Fig. 4(b) whose
parameters are detailed in Section IV-B].

To summarize the above-explained observation, a core can
be tested without wrapping its terminals as long as all its
producers and consumers are P1500-wrapped. If the core does
not have other test modes except the INTEST and EXTEST
modes, then it does not need a wrapper at all [Fig. 4(a)];
however, the producers and consumers must be updated with a
P1500-compliant wrapper [Fig. 4(b)] to support the proposed
test strategy. If the core has other test modes, for example, it
contains RAM or ROM blocks and has an additional built-in
self-test (BIST) mode to test these internal memories, then, in
addition to updating the producers’ and consumers’ wrappers,
the core under test (CUT) needs a light wrapper without WBRs
to support these additional modes, i.e., the light wrapper must
include WIR and the WSC port to control the operational mode
of the core. From now onwards, light-wrapped cores will refer
to cores that do not need a wrapper at all or cores with a
light wrapper, since both of them remove all the wrapper cells,
which in turn reduce the DFT area and may improve the SOC’s
performance. The light-wrapped core requires either WSI/WSO
or WPI/WPO to shift in the test stimuli and shift out the test
responses to and from its internal scan chains. It may also
include a serial or parallel bypass register (WBY) to enable
a shortened test access path to other light-wrapped cores, if
necessary. It is interesting to note that, if the light-wrapped
core does not have internal scan chains, it can be treated as a
UDL and the proposed test strategy for it is in essence a parallel
EXTEST strategy.

1897

In addition to the DFT hardware modification to support
light-wrapped core testing, the P1500 instruction set also needs
to be extended. New instruction LOADPROD for producer
cores and UNLOADCONS for consumer cores are introduced.
Moreover, if a core serves as both producer and consumer at
the same time, an additional LDUNLDNEIGHBOR instruction
is required to transfer test data both in and out of its WBR
cells. These instructions are used to set the producer/consumer
in the appropriate operational mode to shift in/out test stimuli/
responses.

IV. NEw SOC TEST ARCHITECTURE
AND TEST SCHEDULING

Having introduced the light wrapper concept and outlined its
applicability to P1500-based testing, this section focuses on its
implications on SOC test architecture and test scheduling. Note,
this paper does not address directly the design of hierarchical
TAMs and the SOC hierarchy is assumed to be flattened. In
addition, in this paper, we do not consider test scheduling con-
straints introduced by precedence relationship, preemption, and
power. The introduction of the above features in the proposed
SOC test architecture and test scheduling requires a separate in-
vestigation and consequently can be the topic of another study.

To clarify all the issues related to testing these light-wrapped
cores, we provide a hypothetical SOC, called m4953, with nine
cores and a system bus connecting three cores. The number of
scan chains ng. and the functional interconnects of these cores
are shown in Fig. 5.1 Note, the test infrastructure of the SOC has
not been implemented yet and hence is not shown in the figure.
Additional test parameters will be given in the experimental
section. The name of this SOC follows the benchmark naming
convention presented in [19], where m refers to McMaster
University and the number 4953 denotes the test complexity.

A. Test Conflicts Caused by Sharing Functional
Interconnect and Producers/Consumers

Before proposing a new SOC test architecture, we analyze
the conflicts introduced by light wrappers. In the INTEST
mode, all the P1500-wrapped cores can be tested concurrently
as long as they use different TAM lines (assuming cores on the
same TAM are tested in sequential order). However, because
testing light-wrapped cores is dependent on their producers and
consumers, TAM line conflicts are not the only ones that limit
the test concurrency. Instead, there are five new types of test
conflicts, described as follows.

Producer—CUT Conflict: Producer(s) and the CUT cannot
be tested at the same time. For example, in Fig. 5, if Coreg is
a light-wrapped core, Cores, Cores, and Coreg should not be
tested at the same time as Coreg. This is because the producer
needs to utilize its output WBRs to capture its test responses;
however, at the same time, the CUT needs the producer’s output
WBRs to provide test stimuli. If they are tested concurrently,
the test data will be corrupted.

! To make the drawing clear, the cores are not placed in increasing numerical
order.

1898 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

Core

t
weo

Test stimuli ~ ~ — WPL
- st

Test response

Test stimuli |

: Test response
+ Functional data ___

+ Functional data

it
S WBY

WSO Test control

—_——
! r ! f + Test response

Test control gy === =% WIR |-

+ Test stimuli Light | ESelecthR:
Wrapper L
A
WSC
(a)

|
i‘r e O—'\ Test response

-— —I—,/ (Geun)
e —'\ Test stimuli
WPl_ /

L]

I
Teststimuli = ==Lt A
(GCUT) I ";’ Y

Test response= == N

(Goons) == 9;’ Core

Functional)
data]
r

< L

o — (Gprod)

Functional
data

oW

Test control

WSO Test response

Test control s
+ Test stimuli

Fig. 4. Wrapper architectures for light-wrapped cores and their producer/consumer cores. (a) Light wrapper without WBR. (b) Revised IEEE P1500-compliant
wrapper for producer/consumer cores.

m4953 l
Coreq Coreg
Nge= 23 Ngc =0
T T A
¥
.| Cores | __ » Coreo —> Cores
T o nNee=7 | Nsc=4 o Nse=3
PI A
Z -
Bus
PO
Corey e
Nge=0 il
x

Fig. 5. Example SOC: m4953.

XU AND NICOLICI: MODULAR SOC TESTING WITH REDUCED WRAPPER COUNT

CUT-Consumer Conflict: The CUT and consumer(s) cannot
be tested at the same time. For example, in Fig. 5, if Cores is
a light-wrapped core, Coreg, Corer, Coreg, and Coreg should
not be tested at the same time. This is because the consumer
needs to utilize its input WBRs to deliver test stimuli; however,
at the same time, the CUT needs the consumer’s input WBRs
to capture the test responses. If they are tested concurrently,
the test data will be corrupted.

Shared-Producer Conflict: Two light-wrapped cores that
connect directly (i.e., on a dedicated nonshared set of lines)
to the same producer cannot be tested at the same time. For
example, in Fig. 5, if Core; and Coreg are light-wrapped cores,
they cannot be tested at the same time because both of them
require the output WBRs of Cores to provide the test stimuli.

Shared-Consumer Conflict: Two light-wrapped cores that
connect directly to the same consumer cannot be tested at the
same time. For example, in Fig. 5, if Cores and Coreg are
light-wrapped cores, they cannot be tested at the same time
because both of them need the input WBRs of Cores to capture
the test responses.

Shared-Bus Conflict: If the producer(s) or consumer(s) con-
nects to the light-wrapped CUT through functional buses, they
can imply the previous described test conflicts and hence may
not be tested at the same time. For example, in m4953, if Core;
and Cores are two light-wrapped cores connected to the system
bus, they cannot be tested at the same time because both of them
need the I/O WBRs of Coreg to provide test stimuli or capture
the test response at the same time. However, if we have another
wrapped core connected to the bus, for example, Corey, then
Core; and Cores can be tested together because we can use
Corey as the producer and consumer of Core, and Coreg as
the producer and consumer of Cores. By sharing the bus lines
in consecutive times, there is only one clock cycle test appli-
cation penalty per test pattern (using the same system bus to
transfer test data), which is insignificant for scan-based testing.

B. TAM Division Into Three Groups: Producers,
CUTs, and Consumers

The previous section has outlined the test conflicts that, if not
taken into consideration, may corrupt the test data and render
the test useless. Other types of conflicts may appear if the test
data are transferred using shared TAM lines between producers,
CUT, and consumers. To avoid this type of conflicts, which
may adversely influence the overall TAT of the SOC, dividing
the TAM lines into three groups is proposed, motivated by the
following examples.

Example 1: Consider the SOC m4953 shown in Fig. 5 and
let us assume that Core; and Core, are P1500-wrapped cores
and Coreg is a light-wrapped core, which needs Cores as a
producer. We assume that Core; and Corey share the same
TAM lines (TAM,,1) and Coreg connects to a different TAM
(TAM,,2). Since for testing Coreg we need to use both TAM,,¢
and TAM,,» to transfer test data, loading a test pattern for
Core; is prohibited while loading the stimulus for Coreg. As
a result, there is a test conflict between Core; and Coreg
even though they connect to different TAM lines and have no
functional relationship. This indirect TAM resource conflict

1899

may prohibit the overall test concurrency for light-wrapped
cores in a large SOC, which will ultimately lead to testing all
the light-wrapped cores separately, and thus resulting in very
long testing time.

Sharing TAM lines between producers, CUTs, and con-
sumers may also increase the test control complexity, as illus-
trated in the following example.

Example 2: In the case of m4953 shown in Fig. 5, if Core,
is a light-wrapped core, then after the test stimuli are loaded in
the output WBRs of Core; and Core4, we must apply them at
the same time. We also need to capture the test response in the
input WBRs of Coreg, Corer7, Coreg, and Coreg at the same
time before shifting it out. If the TAM lines are shared between
producers, CUTs, and consumers, all of these operations intro-
duce additional synchronization issues and consequently they
may increase not only the testing time but also the test control
complexity.

If there are only a very small number of light-wrapped cores
in the SOC, then using WSI/WSO to load/unload the test
stimuli/responses may be a neat solution. After testing all the
P1500-compliant cores, we can test these few light-wrapped
cores one by one by putting its producers and consumers into
the EXTEST mode and shift in/out its internal scan chains
to/from WPI/WPO. However, if the number of light-wrapped
cores is large, then the 1-bit TAM provides limited bandwidth
for producers and consumers, and hence it will considerably
increase the overall TAT of the SOC. When the number of
light-wrapped cores is high, we propose a division of the
TAM lines into three groups: Gprod, GouT, and Geons used
to load the producers, CUTs, and consumers, respectively. This
division will remove the additional test conflicts discussed in
Example 1 and test control complexity discussed in Example
2. Using the setup from Example 1, testing Coreg will need
the assistance of Core, to provide the test stimuli. If the output
WBRs of Core, are loaded through Gr0q and, although Core;
and Core, share the same TAM resources in Gy, then Core;
can still be tested at the same time as Coreg.

For the Gcur group, we use a flexible-width test archi-
tecture, as introduced in Section II. For the Gproq and Geons
groups, however, we use the daisy chain architecture [1], i.e.,
long scan chains are constructed over all the producer cores’
output terminals and all the consumer cores’ input terminals,
as depicted in Fig. 6. Producer bypass registers and consumer
bypass registers (PBY and CBY in the figure) are introduced
in order to shorten the loading/unloading time because only
a few cores serve as producers or consumers at a specific test
session. The main reason for using the daisy chain architecture
for Gprod and Geons group is to simplify the control com-
plexity. When a producer (consumer) core is in LOADPROD
(UNLOADCONS) mode, the producer (consumer) TAM lines
go through the core’s wrapper boundary cells, otherwise they
go through the bypass register (note, it is unnecessary to in-
troduce extra bypass instruction for producers and consumers).
As a result, although testing light-wrapped cores involves sev-
eral producers and consumers, they can be controlled by the
LOADPROD and UNLOADCONS instructions independently.
In addition, the daisy chain architecture for Gproa (Geons)
TAM groups can almost always give a near optimal loading

1900

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

SOC

Producer TAM

Core»
(producer)

Scan chain 1 (4 ffs)
Scan chain 2 (5 ifs)

A 4

Consumer TAM

Cores

(CUT) Corey

(consumer)

CUT TAM

Fig. 6. Proposed test architecture for an example SOC containing light-wrapped cores.

(unloading) time for a given TAM width Wyrod4 (Weons). Sup-
pose the number of the outputs of a producer is V,, then its
loading time will be [N,/Wpyroa]|. As long as Wiioa < N,
(which is realistic in most of the cases), there is no waste for
Gprod TAM resources, except the few bypass cycles, which
leads to a near optimal loading time for its producers. The
same holds for Gons unloading. It is essential to note that
the TAT of a light-wrapped core is dependent on all the three
TAM groups’ architectures and the proposed TAM division into
three groups facilitates concurrent testing of P1500-wrapped
and light-wrapped cores, which is exploited by the algorithms
described in the following section.

C. Proposed Algorithms for Wrapper/TAM Cooptimization

The introduction of light-wrapped cores, producers, con-
sumers, and TAM division into three groups requires the de-
velopment of new algorithms for wrapper/TAM cooptimization,
as explained in this section. First we formulate the new problem
to be solved.

Problem Pryyr_opt: Given the test set parameters for each
core (including the number of PIs, POs, bidirectional I/Os, test
patterns and scan chains, and each scan chain length), the total
TAM width Wy for the SOC and the wrapper design con-
straints C, determine the width of each TAM group (Wpyrod,
Wecur, and Weons corresponding to Gprod, Gout, and Geons),

the TAM width and the wrapper design for each core, and
a test schedule for the entire SOC such that 1) the wrapper
design constraints C,, are satisfied; 2) the total number of
light-wrapped cores is maximized; 3) the total number of
TAM lines used at any time does not exceed Wi1; and 4) the
overall SOC TAT is minimized.

There are mainly three types of wrapper design constraints
C. 1) If the critical paths appear between cores, then to avoid
performance penalty some cores must be light wrapped. 2) If
some of the cores are provided with P1500 wrappers and, due
to their location and size, their overhead does not affect the
performance or the cost of the SOC, then there is no reason
to make them light wrapped. 3) If a core is two-pattern tested
(e.g., targeting delay faults or CMOS stuck-open faults) as in
[27], which employs the producers’ WBR cells to apply the
second consecutive pattern, double buffering in the WBRs of
the core and its producers is necessary; hence, in this case,
the CUT and all its producers must be P1500 wrapped. It is
important to note that, if there are UDL blocks in the SOC,
the system integrator has two choices: either make the UDL
blocks P1500 wrapped and then use them as an input to the
algorithms described in this section for problem Pryy1—opt (this
will guarantee that the maximum number of core wrappers
is removed) or treat the UDL blocks as light-wrapped cores,
i.e., they must satisfy the first wrapper design constraint when
solving Prwr_opt. In either case, there is no loss in fault

XU AND NICOLICI: MODULAR SOC TESTING WITH REDUCED WRAPPER COUNT

Algorithm 1 - TAM_Division_And_Schedule

INPUT: Cg, R, Wy, C,, weight
OUTPUT: Wyog, WeuTs Weonss wrapper_type, schedule, TAT

1. wrapper_type = Decide_ Wrapper_Type (Cyey, R, C);
2. TIG = Construct_TIG (wrapper_type, R);
3. For Wyt from Wy — 2 downto 1 {

4. Wprodfplusfcons = W - Wcurs

5. For Wpyoq from 1 10 Wprod_plus_cons = 1 {

6. Weons = Wprodﬁplusﬁcons - Wprod;

7. testing_time = Adapted_TAM_Schedule_Optimizer(
. Coer, TIG, Wprod, Weuts Weons)s

8. localmin = min{all testing_time};

9. Record Wprodflocalmins Wconsflocalmin;

}

10. if (localmin > weight X globalmin) {
11. break; }
12. globalmin = min{all localmin};

/*Prune search space™*/

13. Record med_globalmin» Wcons_globalmin;
-3
14. med = med_globa]minQ
Weons = WcunsfglobalminQ
Weur = W — med— Weonss
TATsoc = globalmins
15. return Wyod, Weuts Weons, wrapper_type, schedule, TAT

Fig. 7. Pseudocode for wrapper/TAM cooptimization for SOC with light-
wrapped cores.

coverage of UDL since, by construction, it is ensured that each
light-wrapped core is controlled by its producers and observed
by its consumers. Therefore, the proposed solution can also
be used as an alternative to EXTEST for concurrently testing
wrapped cores and UDL.

In the rest of this section, we first present the top level
algorithm for solving Prywr_opt and then give details on the
new procedures and concepts specific to our approach.

TAM Division and Test Scheduling: The proposed algorithm
TAM_Division_And_Schedule to solve Prywt—opt is shown in
Fig. 7. The inputs are the set of cores (Cset), TAM width (W),
functional interconnect relationship between cores (R), wrap-
per design constraint (C),), and a weight parameter (weight),
used in pruning the search space. The outputs are the number
of TAM lines allocated to each TAM group, wrapper type
(wrapper_type) and design for each core, SOC test schedule
(schedule), and the overall test application time for the entire
SOC (TATs.). The optimal TAM division, i.e., the combi-
nation of Wyrod4, WouT, and Weons that gives the minimum
TAT of the SOC, is acquired through enumeration. The enu-
merative algorithm begins by determining which cores must be
light wrapped (line 1), according to the functional interconnect
relationship R and predefined wrapper design constraint (C,)
of the SOC. Based on the generated wrapper type (light
wrapped or not) for each core and the test conflicts determined
by the functional interconnect relationship between cores (R),
a test incompatibility graph (TIG) is created (line 2). Next, the
algorithm will enumeratively find the optimal TAM division
and the minimum system TAT TAT,... In the inner loop
(lines 5 to 9), the local minimum TAT localmin for a fixed
total width of W0 + Weons (Wprod_plus_cons) i computed.

1901

In the outer loop (lines 3 to 13), the algorithm searches for
globalmin, among the localmin values, by enumerating Wyt
from the maximum possible value W — 2 to 1. During our
initial experiments, it was observed that localmin is nearly
a convex function with respect to Weyr. That is, it keeps
decreasing until it reaches a local minimum value, at which
point it starts increasing. This convex attribute can be explained
by the fact that when Wyt has a small value, the TAT is
dominated by the time to transfer test data through Gcur
[for justification, see (1) and (2) explained later in this sec-
tion]. Increasing Wy, and hence decreasing Wproqa + Weons,
will finally break this bottleneck. TAT starts to increase when
the time required to load/unload the producer/consumer out-
put/input WBR cells starts to dominate the scan time for Gouyr.
There are some variations around the local minimum value,
which can be justified by the heuristic nature of the dynamic
rectangle packing algorithm (explained later in this section).
Hence, to prune the search space, we enumerate the localmin
values in the opposite direction (i.e., from W — 2 to 1), since
we want to discard the large localmin values. To accommodate
the variations around the minimum value, we use a parameter
weight (a real value slightly greater than 1) (lines 10 and
11). It should be noted that during the enumeration process,
we do not need to do TAM design for the Gproq and Geons
groups, since the implementation of the daisy chain architec-
tures for these two groups is straightforward once W04 and
Weons are determined. To generate a TAM design for Gour,
we adapt an existing generalized rectangle packing algorithm
TAM_Schedule_Optimizer [12]. Due to the usage of the daisy
chain architecture for producers/consumers, a dynamic adap-
tation of this existing algorithm is necessary. We elaborate
on each of the main steps of the top-level algorithm in the
following paragraphs.

The worst case complexity of the algorithm TAM_Division_
And_Schedule is O(W2, x C(ART)), where C(ART) is the
worst case complexity of algorithm Adapted_TAM_Schedule_
Optimizer, which will be detailed at the end of this section.

Decide Wrapper Type: Not all the cores need to be P1500
wrapped in an SOC; however, to provide full controllability
and observability, each light-wrapped core needs to be sur-
rounded by P1500-wrapped cores, i.e., all its producers and
consumers must be wrapped. The pseudocode for deciding the
wrapper type is shown in Fig. 8. The algorithm takes the set
of cores Cset, the functional interconnect relationship R, and
the wrapper design constraints C,, as the inputs, and it outputs
the wrapper type for each core i € Cy. First, the cores that
need to be wrapped by P1500-compliant wrappers according
to the direct functional relationship (i.e., dedicated nonshared
communication lines) are identified (lines 1 to 10). In the first
loop (lines 1 to 6), we initialize the wrapper status and wrap
the cores according to wrapper constraints, if any. For all the
other cores, the wrapper is first set to a light-wrapped type and
a variable called test_dependency is initialized to the sum of
its unwrapped producers and consumers (note, if one core
serves as both a producer and a consumer for another core, it
is not to be counted twice). This variable is used to indicate the
core’s test requirements as a light-wrapped core; if this number
is large, it means that when this core is light wrapped, we need

1902

Algorithm 2 - Decide_Wrapper_Type

INPUT: Cyy, R, Cyy
OUTPUT: wrapper_type

/* According to direct functional interconnects */
1. For each Core i € Cy {
2. if (Cyexist) {

3. Wrap core i according to its constraint
4. }else{
5. Set Is_Light Wrapped; = true;
6. Initialize test_dependency;;
-}
}

7. While (test_dependency; ! = 0 for any core i € Cyy) {

8. Find Core j with the maximum test_dependency;

9. Setls_Light_Wrapped; = false; test_dependency; = 0;

10. Update test_dependency of its producers and consumers;
-

/* According to functional bus interconnects */

11. For each functional bus

12. if (No core on the bus is wrapped)

13. Wrap the core with the least number of 1/Os;

14. return wrapper_type for each core;

Fig. 8. Procedure for deciding the wrapper type of each core.

a large number of P1500-wrapped neighbor cores to test it.
For example, in the case of m4953, Cores has two producers
(Coreq and Corey) and four consumers (Coreg, Corey, Coreg,
and Corey), hence its test_dependency is initialized to 6. If
Coreg is a light-wrapped core, we need to wrap all its six
neighbors. As a result, it is better to wrap Cores with a
P1500-compliant wrapper. Therefore, the algorithm finds the
cores with a large test_dependency and wraps them as P1500-
compliant (lines 8 and 9). Whenever a core is decided to be
wrapped as P1500-compliant, its test_dependency is set to O
because it does not require any other cores to facilitate its
test; the test_dependency of all its light-wrapped producers/
consumers is deducted by 1 (line 10). When functional busses
are used, at least one core on each functional bus must be
wrapped as P1500-compliant to test all the other light-wrapped
cores on the bus (lines 11 to 13). The algorithm will find
a core with the least number of inputs and outputs to wrap
in order to decrease the time required to load/unload the test
stimuli/responses. To illustrate the outcome of the proposed
algorithm, in the case of m4953, Corez, Coreg, Corey, and
Coreg are selected to be light wrapped, as shown by the
shaded boxes in Fig. 5.

Construct the TIG: If there are test conflicts between two
cores (see Section IV-A), then these two core tests cannot be
scheduled at the same time and are denoted as incompat-
ible cores. We construct a TIG by treating each core as
a node and adding an edge between two nodes if they are in-
compatible. This TIG is used in Algorithm 3 (Adapted_TAM_
Schedule_Optimizer). The TIG generated for m4593 is shown
in Fig. 9. As shown in the figure, edges illustrating incom-
patibility can exist only between two light-wrapped cores or
between a light-wrapped core and its producers/consumers.
Two P1500-wrapped cores are always compatible during test

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

Fig. 9. m4953 TIG.

because they do not need each other’s help to test their inter-
nal logic.

Dynamic Rectangle Representation: For a P1500-wrapped
core, if the assigned TAM width in Ggyr is given, the TAT
to apply the entire test set T}, is determined by (1) [17], in
which s;(s,) is the longest wrapper scan-in (scan-out) chain
for the core and p is the number of test patterns. When using
the Design_wrapper algorithm [9] for wrapper optimization to
build balanced WSCs, s;(s,) has a fixed value for a given TAM
width, and hence the core test can be represented as a static
rectangle

T, = (1 + max{s;, so}) x p+ min{s;, s, }.)
However, for a light-wrapped core, its TAT 7; does not
only depend on the time to load/unload its own producers
(Lproa), consumers (Lcons), and internal scan chains (Liy,);
T; also depends on the time necessary to load/unload all the
concurrently tested light-wrapped cores’ producers/consumers.
To keep the control and computational complexity low, we
propose to align test patterns for all the concurrently tested
light-wrapped cores and hence 7 is calculated as

T, = Z (1 + max {Z Liprod,
> Leonssmax{Lin} [) x (b +1) @)

where bypass cycles are ignored.

As aresult, if for a given light-wrapped core the test schedule
changes s times, then for each subset of patterns ps (for the
s distinct divisions of the time allocated to the given core)
the TAT will be computed based on the light-wrapped cores
scheduled in each of these s divisions. The following example
is used to better illustrate the computation of 7;.

Example 3: In the case of m4953, Cores is compatible
with light-wrapped cores Core; and Coreg. Let us assume
Core; and Coreg are selected to be scheduled at the same
test time with Cores, as shown in Fig. 10 (the given number
of test patterns for these three cores has been selected only to
illustrate this example). The time necessary to apply a pattern
for Cores is updated each time the schedule changes. For the
first ten patterns, the shifting time for each pattern of both

XU AND NICOLICI: MODULAR SOC TESTING WITH REDUCED WRAPPER COUNT

Coreg Core,
Core, i
b S S s L e >
N =10 N,=15 N =10

Fig. 10. Test application time for light-wrapped cores.

Coresz and Coreg will be max{Lprod_3 + Lprod_s, Leons_3 +
Leons_s, Lin_3, Lin_s}. However, for the next 15 patterns,
once the test for Coreg has been completed and Core; is
scheduled concurrently with Cores, the shifting time for each
pattem will be maX{Lprod_S + Lprod_77 Lcons_?) + Lcons_77
Liy_3,Lin_7}. The same reasoning is applied for the last
ten patterns when Cores is not concurrent with any other
light-wrapped cores. The shifting time for each pattern will
be max{Lprod_3, Lcons_3, Lin_3}. The variations in the shift-
ing time for each of the three divisions of the schedule for
Coreg can be differentiated using a loadSize = max{} Lyrod,
> Leons, max{ Liy } }, determined by all the concurrently tested
light-wrapped cores.

From the above discussion, we can see that the 7; for a
light-wrapped core changes every time when the schedule is
updated. This dynamic attribute leads to a dynamic rectangle
representation of the light-wrapped core’s test and is caused by
the usage of the daisy chain architecture for producer/consumer
TAM groups.

Adapted Dynamic Rectangle Packing: To concurrently test
the light-wrapped and P1500-wrapped cores, for the CUT
TAM group we use an Adapted_TAM_Schedule_Optimizer
algorithm (the pseudocode is shown in Fig. 11). The algorithm
takes the core list Cyet, TIG, and the TAM division as inputs,
and generates the schedule for each core and the overall TAT
of the SOC. The algorithm is based on a generalized rec-
tangle packing algorithm TAM_Schedule_Optimizer proposed
in [12]. TAM_Schedule_Optimizer first finds out the pareto-
optimal TAM widths for each core. Next, a “preferred TAM
width” for each core is identified from these pareto-optimal
TAM widths such that the core’s TAT is within a small percent-
age of its testing time at a maximum allowable TAM width.
The test for each core is then scheduled using the preferred
width, as long as there are enough TAM lines available. If the
number of available TAM lines is insufficient to schedule any
new tests, the resulting idle time is filled using several heuristics
that insert tests to minimize the idle time. Whenever a currently
running test completes, the number of available TAM lines is
incremented, and the algorithm repeats the scheduling process
for the remaining tests. This is a rather simple description of
the algorithm. The reader is referred to [12] for more details
on terminology. It should be noted that in the following we
only emphasize the specifics of the proposed solution and the
differences with respect to the original algorithm from [12].

As described earlier, for light-wrapped cores, the test can-
not be precomputed and represented as a static rectangle; its
TAT (the width of the rectangle) varies with its schedule,

1903

Algorithm 3 - Adapted_TAM_Schedule_Optimizer

INPUT: Cy, TIG, Wprods Weurs Weons
OUTPUT: schedule, testing_time

1. Compute collection R, of rectangles for P1500-compliant core set Cy;
2. Initialize(Cy. d. p): /*Cy is the P1500-compliant core set™/
3. Set Cunfinished = Csets W_avail = Weyr; this_time = 0; (see[12])
4. While Cunﬁnished 7é 0 {
5. ifw_avail >0 {
Find unscheduled light-wrapped core set Cy;
Compute collection R/, of dynamic rectangles for C);;
Initialize(C}, d, p);
Schedule compatible P1500-wrapped cores that can be assigned
preferred TAM width or compatible light-wrapped cores; (see [12])
10. Schedule compatible P1500-wrapped cores that can use the resulting
. idle TAM wires; (see [12])
11. Update Lprods Leons loadSize;
12. Update test_time for scheduling light-wrapped cores;
13. }else {
14. Update next_time;
15. Find unscheduled light-wrapped cores C”’; with
no internal scan chains;

o 2

16. Compute collection R”; of dynamic rectangles for C”y
17. Initialize(C”y. d, p);
18. Schedule compatible cores in C” not exceeding next_time;

19. Update Lyrods Leons> l0adSize;
20. Update test_time for scheduling light-wrapped cores;
21. Update next_time;
22. Finish the scheduling core test C; with ending time next_time;
23, Update this_time;
24. w_avail + = wym_cj
25. Cunfinished = = {Ci}s
26. Update this_time;
}
}

27. return schedule, testing_time;

Fig. 11. Procedure for test scheduling with given widths of each TAM group.

hence its rectangle representation is computed dynamically
(lines 7 and 16). In addition, since the TAT of the light-wrapped
cores may change dynamically with its schedule, there are
no “preferred TAM widths” for them. In [12], the procedure
Initialize (line 2) was used to compute the preferred width for
each core; the parameters d and p were sometimes manually
selected for SOCs with different available TAM widths to get
a better result; since we need to call this procedure many times
with different Wyt (see Algorithm 1), it is unlikely that a
manual selection will lead to an optimal value. Consequently,
in our implementation, we have fixed the two parameters to
d=2 and p = 1.0 (these two values give a generally good
“preferred TAM width”); this may result in a different schedule
and a slightly longer TAT in some cases when compared to
the result in [12]. Line 3 initializes the cores that have not
finished their schedule C\ypfinished, the currently available TAM
width w_avail, and the current start time for unscheduled
cores this_time, respectively. In line 9, the algorithm tries to
schedule either a P1500-wrapped core with preferred TAM
width or a light-wrapped core with the maximum allowable
test pattern count that is able to fit in the idle rectangle (since
test patterns for concurrently tested light-wrapped cores are
aligned). When scheduling a light-wrapped core, its rectangle

1904

size is determined as the following. The TAM width for this
core (its height) is the minimum value that minimizes load-
Size and the TAT of the core (its width) is calculated using
(2). Once a core is scheduled (lines 9 and 10), the available
CUT TAM width w_avail will be deducted the value of the
assigned CUT TAM width for the core. Whenever a light-
wrapped core is scheduled, Lyr04, Lcons, and loadSize, for the
currently scheduled light-wrapped cores, need to be updated
(lines 11 and 19) and TAT will be recalculated (lines 12 and
20). If a light-wrapped core has no internal scan chains inside
and hence does not need any TAM lines in the Gyt group, we
may be able to schedule it even when the available CUT TAM
width w_avail = 0 in Gyt (lines 15 to 20). This is because
only Gproa and Geons resources are necessary. Once there is
no core able to be tested starting with this_time, the currently
scheduled core with the minimum TAT will be finished (line
24), its TAM resources are released, and this_time advances to
its finishing time; the algorithm try to schedule another core
with these TAM resources. Note, due to test conflicts, we are
only able to select a compatible core to be scheduled at any
time (lines 9, 10, and 18); this is done through checking whether
there is an edge in TIG between the cores currently under test
and the to-be-scheduled core.

The worst case complexity C(ART) of the algorithm
Adapted_TAM_Schedule_Optimizer can be estimated as fol-
lows. The while loop in line 4 of Fig. 11 is executed N,
times, where N, is the number of cores of the SOC. In each
such execution, a linear search in the O(N.) core set is
used to find the next core to be scheduled. In addition, these
cores are also examined O(NN;) to determine whether they are
compatible with the currently scheduled light-wrapped cores
(lines 9, 10, and 15). Moreover, in each such execution, a
collection of O(Weyr) rectangles is generated for O(N;)
light-wrapped cores. The complexity of rectangle generation
using Design_wrapper is O(sclogsc + sc - k), in which sc is
the number of scan chains in the light-wrapped core and k is
the TAM width [9]. As a result, the worst case complexity
C(ART) is O(N2 - N7 - Weur - (sclogse + sc - Waur)).

Summary: In this section, we have presented a new modular
SOC test architecture with reduced wrapper count. We have
described the algorithms used for concurrent test scheduling
of both P1500-wrapped and light-wrapped cores and have
analyzed their computational complexity.

V. EXPERIMENTAL RESULTS

The purpose of our experiments is to find out how much
test area can be saved, without affecting the test quality, and
what are the implications of these savings on testing time. In
addition to the hypothetical SOC m4953, benchmark SOCs
from the ITC’02 SOC test benchmarking initiative ([18]) are
used in our experiments. Since the functional interconnects are
not provided in the original benchmark files, we have randomly
generated them to support the proposed approach, including
the direct connection between cores and functional busses [26].
Through randomization, we wanted to investigate what is the
average impact of the proposed algorithms on the number of
light-wrapped cores and the overall TAT. We have assumed

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

TABLE 1
TEST PARAMETERS OF SOC m4953
“ Nin l Nout l Noi I Nsc l SCIcnglh

Corej 35 50 [28 | 23 | 55555555555555554444444
Corey || 117 84 36 7 221221 221221221200 178
Corey || 144 | 47 | 72 | 4 149 149 149 147
Coregq || 202 | 60 | 20 | O
Cores || 126 | 25 | 40 | 3 300 299 299
Coreg 29 40 6 0
Corey 6 242 | 0 0
Coreg || 136 | 12 | 28 3 160 159 159
Coreg || 194 | 157 6 4 149 149 149 147

6000000

5000000 \
E 4000000 \
=
‘E 3000000

3
8§ 2000000

1000000 \'\’H\ -

0

Weur

Fig. 12. Test application time variation with WcyT.

that the SOCs have N./10 busses and each bus has a random
number p (3 < p < min(N,, 8)) of cores attached to it, where
N, is the total number of cores in the SOC. In addition, all cores
on a bus are assumed to be able to transfer data to and from
the bus. We have also assumed that every core has a random
number of ¢(1 < ¢ < 3) producers, while the consumers for
each CUT are generated from the producer—CUT relationship.
It should be noted that there are no wrapper design con-
straints in our experiments and the proposed algorithm in
Section IV determines the wrapper type of each core, the
optimal TAM division, and the test schedule. We have divided
our experiments into three subsections. First, we discuss the
test schedule for hypothetical SOC m4953, then we analyze
the number of cores that can be light wrapped, and finally
we discuss the testing time implications of using the proposed
TAM design algorithm for testing the light-wrapped cores.

A. Experiment 1: Test Schedule Comparison for SOC m4953

First, we investigate our pruning technique used for rapidly
dividing the available TAM lines into three separate groups:
producer, CUT, and consumer for SOC m4953. The test pa-
rameters for the cores in m4953 are shown in Table I, in which
Nin, Nout, Npi, and Ny denote the number of inputs, outputs,
bidirectionals, and scan chains in the specific core, respectively.
The length of each scan chain is shown in column SClength.

The TAT variation with Wyt for m4953 is depicted in
Fig. 12 (given the total TAM width Wi = 10). Using the
proposed TAM_Division_Schedule algorithm, we obtain the
minimum TAT of 955911 clock cycles for Weyr =7,
Whrod = 2, and Weons = 1. For this particular case, we deal
with a convex function, and the first identified local minimum

XU AND NICOLICI: MODULAR SOC TESTING WITH REDUCED WRAPPER COUNT

Wprod =2

103859

364499 412330 486553

End Time
667859

TAM Width

Fig. 13.
Corer, and Coreg are light wrapped using the new method.

is the only global minimum. If we set weight = 1.1 (see
Algorithm 1), the search for the minimum TAT will start from
Wecut = 8 and stop at Weyr = 6. This will prune the search
space and hence reduce the computational time to a few seconds
even for large SOCs while getting the best possible TAM
division and schedule.

In Fig. 13(a), we present the test schedule obtained for
m4953 when all the cores are P1500-wrapped. When applying
the new Decide_Wrapper_Type, if no wrapper design con-
straints exist, Cores, Coreg, Corer, and Coreg are selected to
be light wrapped, and the test schedule is shown in Fig. 13(b).
We can observe that SOC TAT increases by approximately 45%
due to the following three main reasons.

1) The test conflicts introduced in the light-wrapped SOC
test model cause more idle rectangle areas in the bin. For
example, although Coreg can fit into the rectangle area
above Cores, due to the producer—CUT conflict, Coreg
is incompatible with Corey and hence they cannot be
scheduled at the same time.

The number of TAM lines used to access the P1500-
compliant cores and the internal scan chains of light-
wrapped cores (Gcour) are decreased from 10 to 7. To
support light-wrapped core testing, two TAM lines are
used for loading the producers’ outputs and one TAM
line is used to unload the consumers’ inputs.

When two light-wrapped cores are scheduled at the same
time, the load time for each overlapped pattern may
increase. In this example, light-wrapped Cores and Coreg
are tested concurrently, and the load time of the over-
lapped test patterns is dominated by the loading time of
the producer outputs.

2)

3)

It can be observed in Fig. 13(b) that Corer is scheduled from
the same starting time as Core; even when the available number
of CUT TAM lines Gyt = 0. This is because Core; has no
internal scan chains and test data can be transferred only using
Gprod and Gcons~

B. Experiment 2: Number of Light Wrappers
and Reduction in WBRs

Table IT shows the reduction in the number of light-wrapped
cores and the number of WBRs for the 100 random-generated
interconnects for four benchmark SOCs [18]. N. is the
total number of cores while Nyax 1, Nmin_1» and Naye g

1905

457692 791236

955911

395029

861236

(b)

Test schedule comparison for SOC m4953. (a) Test schedule when all the cores are P1500-wrapped using [12]. (b) Test schedule when Cores, Coreg,

denote the maximum, minimum, and average number of
light-wrapped cores, respectively. Nyp, is the total num-
ber of WBRs and Nrnax_wbr’ Nmin_wbh and Nave_wbr
denote the maximum, minimum, and average number of
WBRs that are removed. The percentage reductions are de-
fined as AN; (%) = (Nave_1/Nc) x 100 and ANyp, (%)
(Nave_wbr/Nwbr) x 100. To provide the same test quality for
core-based SOCs, a high number of cores (approximately
40%) does not need to be wrapped with WBR cells. Based
on functional interconnect topology, there are cases where the
maximum number of light-wrapped cores can be half of the
total number of cores (see column 3 in Table II). More impor-
tantly, the number of WBRs that can be removed varies from
hundreds for smaller benchmarks to thousands for the larger
ones. Given the fact that each WBR can have an equivalent of
10 to 60 logic gates [25] (depending on the number of flip-
flops and the modes used for each cell), we believe that the
proposed solution can yield significant savings in DFT area.
Because these savings do not come at no expense, the implica-
tions on the testing time are discussed next.

C. Experiment 3: Comparison of Test Application Time

To investigate the implications on test application time we
compare the results of the modular SOC architecture from
Section IV against the case when the light-wrapped cores
are tested sequentially using serial EXTEST after the test
of all the wrapped cores. When the light-wrapped cores are
tested sequentially, it is assumed that the entire parallel TAM
bandwidth is allocated to their internal scan chains. It is
very important to note, that the use of the optional parallel
EXTEST feature of P1500 for producer/consumer loading may
improve the scan time if the SOC integrator does not wish
to use the proposed producer-CUT-consumer TAM division.
However, parallel EXTEST is not applicable to the Test Bus
architecture used in this paper, since it requires a TestRail
architecture for the wrapped cores [4]. Unwrapping cores in
a TestRail architecture and exploiting parallel EXTEST fea-
tures for loading producers/consumers, is the topic of a com-
pletely separate investigation, which is currently undertaken by
the authors.

Tables III-VI present test application time results when
varying the total TAM width Wy (note, only results with
optimal TAM divisions are reported). Thve ses Lmax_se, and
Tmin_se denote the average, maximum, and minimum TAT

1906 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

TABLE 1I
NUMBER OF LIGHT-WRAPPED CORES FOR BENCHMARK SOCS

SOC || Ne | Niax_ | Niin_/ | Nave_t | AN/(PGFCCIH) || Nwbr | Nmax_whr | Nmin_whr | Nuve_whr | ANwhr(Pefccnt)

g1023 14 7 4 5.77 41.21 3587 2367 504 1479.11 41.24
p34392 || 19 10 7 8.29 43.63 1884 1436 336 804.22 42.69
p93791 || 32 16 12 13.51 4222 7697 4235 1983 2871.82 37.31
t512505 || 31 16 10 12.62 40.71 8503 5035 1798 3287.67 38.66
TABLE 1II
TEST APPLICATION TIME COMPARISON FOR g1023
SOC g1023
[12] Serial EXTEST for Light-Wrapped Cores Proposed Architecture for Light-Wrapped Cores
W T(cc) Tnax_se(cC) Tnin_se(cC) Tave secc) | ATge(percent)| Tiax_p(cc) Timin_p(cc) Tave_plcc) | AT, (percent)
8 66423 3164423 270004 1089174 +1539.75 362484 87109 188585 +183.92
16 35156 3149277 256732 1072909 +2951.85 180895 42895 91760 +161.01
24 24018 3141727 253263 1066494 +4340.39 120686 28234 63304 +163.57
32 19620 3141727 249221 1064404 +5325.10 93622 21665 49676 +153.19
40 14794 3141727 246090 1063731 +7090.29 75094 19567 42305 +185.96
48 14794 3141727 246090 1063597 +7089.38 64360 19054 37667 +154.61
56 14794 3141727 246090 1063479 +7088.58 58141 19054 34589 +133.80
64 14794 3141727 246090 1063299 +7087.37 52435 18265 31997 +116.28
TABLE 1V
TEST APPLICATION TIME COMPARISON FOR p34392
SOC p34392
[12] Serial EXTEST for Light-Wrapped Cores Proposed Architecture for Light-Wrapped Cores
Wi Tce) Tnax_se (€€) Tin_se (c0) Tave_se (cc) |ATge (percent)| Ty (cC) Tnin_p (c€) Taye_p (cc) |AT, (percent)
8 2198975 21926765 3186491 11207946 +409.69 6174198 2807634 4019375 +82.78
16 1075242 21095812 2369160 10339305 +861.58 3148405 1396602 2049255 +90.59
24 838643 20859213 2183218 10248657 +1122.05 2163488 998371 1477729 +76.20
32 544579 20565149 2133872 10114582 +1757.32 1682451 838643 1208688 +121.95
40 544579 20565149 2133872 10110141 +1756.51 1495912 601822 1064984 +95.56
48 544579 20565149 2133872 10110141 +1756.51 1393674 563150 979985 +79.95
56 544579 20565149 2133872 10110141 +1756.51 1323567 544579 923876 +69.95
64 544579 20565149 2133872 10110141 +1756.51 1286667 544579 895010 +64.35
TABLE V

TEST APPLICATION TIME COMPARISON FOR p93791

SOC p93791
[12] Serial EXTEST for Light-Wrapped Cores Proposed Architecture for Light-Wrapped Cores

Wi T{ce) | Tmax selcC) | Tmin _se(c0) | Tave selce) |ATge(percent) Tmax p(cc) | Tmin p(cO) | Tave pl(cc) |AT) (percent)
8 3642176 | 20864571 5302688 10878060 +198.67 7131063 4566696 5192296 +42.56
16 1901700 19538337 3858733 9513093 +400.24 3577099 2259929 2598762 +36.65
24 1233570 19052632 3306718 9059614 +634.42 2409185 1554572 1827146 +48.12
32 1052919 18943120 3132505 8936536 +748.74 1826561 1159523 1313552 +24.75
40 869430 18849275 3000622 8801580 +912.34 1426151 963158 1132204 +30.22
48 640190 18644076 2842435 8658272 +1252.45 1210150 787964 973060 +52.00
56 598231 18642092 2802460 8636190 +1343.62 1145604 601717 795703 +33.01
64 544052 18587913 2745080 8599643 +1480.67 1006763 583079 680408 +25.06

XU AND NICOLICI: MODULAR SOC TESTING WITH REDUCED WRAPPER COUNT

1907

TABLE VI
TEST APPLICATION TIME COMPARISON FOR t512505

SOC t512505
[12] Serial EXTEST for Light-Wrapped Cores Proposed Architecture for Light-Wrapped Cores
Wi T (cc) Tinax_se(cc) Tnin_se(cc) Tave se(cc) |ATse (percent)| Tiax p(cc) Tinin_p (cc) Tave p(cc) |AT, (percent)
8 23550880 | 28194691 24501542 26024702 +10.50 30181825 29513530 29758333 +26.36
16 11451554 17259395 13291295 14906314 +30.17 13786212 12024617 12836625 +12.10
24 10530995 17256024 13263325 14891063 +41.40 12697603 10453470 11157350 +5.95
32 6740743 13703678 8066245 9816884 +45.64 8528143 6277675 7005682 +3.93
40 5228420 13703678 7960790 9801760 +87.47 7523723 5228420 5961920 +14.03
43 5228420 13703678 7960790 9801760 +87.47 7523723 5228420 5958941 +13.97
56 5228420 13703678 7960790 9801760 +87.47 7523723 5228420 5958844 +13.97
64 5228420 13703678 7960790 9801760 +87.47 7523723 5228420 5958789 +13.97

for the 100 random circuits when serial EXTEST is used
to test the light-wrapped cores. Tive p» Tmax_p> and Tinin_p
denote the average, maximum, and minimum TAT for the 100
random circuits when the proposed producer—CUT-consumer
architecture is used. The percentage changes are calculated
using the formula ATy (%) = ((Tave_se —1)/T") x 100 and
AT, (%) = (Tave_p — T)/T) x 100, where T is the test ap-
plication time result obtained using the algorithm described in
[12]. It should be noted that since we did not manually select
the d and p parameters, 7' is slightly different when compared
to the result reported in [12]. As seen in all the tables, in almost
all the cases, ATy, is much higher than AT}, especially when
the total TAM width Wy, is large. This shows the effectiveness
of the proposed test architecture. We can observe that T,ye e
does not change a lot with the variation of Wy when serial
EXTEST is used for testing light-wrapped cores. This is
because the single-bit loading/unloading time for producers/
consumers dominates the overall TAT of the SOC and the
increase of Wy does not help in shortening it. While for the
proposed producer—CUT—consumer architecture, when Wy is
increased, the algorithm will distribute more TAM lines to the
bottleneck TAM group and leads to decreased TAT. One ex-
ception in the experiments is when Wy = 8 for SOC t512505,
where the serial EXTEST gives a better result. This is because
the number of internal memory elements is much larger than
the number of cores’ I/Os in this SOC. When Wy, is small, test
data transportation into the CUT is the bottleneck. Since the
proposed architecture requires at least one TAM line for G104
and one TAM line for Gcops, only six TAM lines are left in
Gcur to transfer test data to/from the cores’ internal memory
elements, while all eight TAM lines can be used for the same
duty when serial EXTEST is employed.

In can be seen in Tables III-VI that the average increase
in TAT over [12] can vary from about 4% to 186% when the
proposed architecture is used. For g1023, the penalty is higher
than for the other SOCs. This is because, in addition to the
reasons analyzed earlier in Experiment 1, the number of in
ternal scanned flip flops in g1023 is comparable to the num-
ber of the producers’/consumers’ outputs/inputs. Hence, a
large amount of time is necessary to load/unload test stimuli/
responses, which imposes a high number of TAM lines as-

signed to producer/consumer TAMs. This leads to less TAM
lines for CUTs to transport test data to/from the internal scan
chains of all the cores. It can also be observed that the differ-
ence between the maximum and minimum TAT for different
functional interconnect topologies may be very high, which
is due to the unbalanced sizes of the cores inside the SOCs.
For example, there are three large cores in p34392 (Cores,
Corejg, and Core;g). When these large cores are light wrapped
and the functional interconnect topology causes plenty of test
conflicts between them, then the TAT will increase significantly.
However, this penalty in TAT can be greatly improved simply
by wrapping the large cores (which are involved in many test
conflicts) with P1500-compliant wrappers. For SOC p93791,
the sizes of the cores are medium and hence no core dominates
the whole SOC TAT. As a result, although test conflicts exist
between cores, the idle time is not too large (in average the
increase in TAT is about 37%). The TAT overhead for SOC
t512505 is the smallest (in average about 12%) in the four
benchmark SOCs. This is because one large core (Cores;)
dominates the TAT of the entire SOC and the additional time
used to test the other incompatible cores is insignificant.

In summary, removing WBRs to save area will obviously
increase the testing time. However, in this section, we have
demonstrated with experimental data that, when employing
the proposed approach, the increase in testing time can be
held and is significantly lower than using serial EXTEST
for controlling/observing the inputs/outputs of light-wrapped
cores.

VI. CONCLUSION

Unlike in boundary scan-based testing, where chips are man-
ufactured before the board is assembled, in core-based system-
on-a-chip (SOC) testing, the system integrator has the option of
removing wrapper cells without sacrificing controllability and
observability. To exploit this option, this paper has described
a modular SOC testing methodology based on light-wrapped
cores. The proposed approach is scalable and can be equally
applied to both manufacturing test and diagnosis since it ex-
ploits only the functional interconnect topology and does not
rely on the test data at hand. We have proposed a test access

1908

mechanism (TAM) design algorithm based on a division in
three separate groups that facilitate concurrent testing of both
P1500-wrapped and light-wrapped cores. This will limit the
increase in testing time, caused by sharing wrapper cells be-
tween cores and, as long as the test schedule will match the
capacity of the tester buffers, the penalty in the amount of
time the chip spends on the tester will be insignificant. This
makes the proposed solution particularly attractive, since it is
capable to decrease the design for test (DFT) area requirements
in complex SOCs and to reduce the propagation delays between
cores, which may improve the SOC’s performance.

REFERENCES

[1] J. Aerts and E. J. Marinissen, “Scan chain design for test time reduction
in core-based ICs,” in Proc. IEEE Int. Test Conf. (ITC), Washington,
DC, Oct. 1998, pp. 448-457.

[2] L. Chen and S. Dey, “DEFUSE: A deterministic functional self-test
methodology for processors,” in Proc. IEEE VLSI Test Symp. (VTS),
Montreal, QC, Canada, 2000, pp. 255-262.

[3] 1. Ghosh, S. Dey, and N. K. Jha, “A fast and low-cost testing technique
for core-based system-chips,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 19, no. 8, p. 863, Aug. 2000.

[4] S. K. Goel and E. J. Marinissen, “Effective and efficient test architec-
ture design for SOCs,” in Proc. IEEE Int. Test Conf. (ITC), Baltimore,
MD, Oct. 2002, pp. 529-538.

[5] ——, “Control-aware test architecture design for modular SOC test-
ing,” in Proc. IEEE European Test Workshop (ETW), Maastricht, The
Netherlands, May 2003, pp. 57-62.

[6] ——, “Layout-driven SOC test architecture design for test time and wire
length minimization,” in Proc. Design, Automation, and Test Europe
(DATE), Munich, Germany, Mar. 2003, pp. 738-743.

[7] R. K. Gupta and Y. Zorian, “Introducing core-based system design,” IEEE

Des. Test Comput., vol. 14, no. 4, pp. 15-25, Dec. 1997.

Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan,

and S. M. Reddy, “Resource allocation and test scheduling for con-

current test of core-based SOC design,” in Proc. IEEE Asian Test Symp.

(ATS), Kyoto, Japan, Nov. 2001, pp. 265-270.

V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Co-optimization of

test wrapper and test access architecture for embedded cores,” J. Electron.

Test., Theory Appl., vol. 18, no. 2, pp. 213-230, Apr. 2002.

[10] ——, “Efficient wrapper/TAM co-optimization for large SOCs,” in
Proc. Design, Automation, and Test Europe (DATE), Paris, France,
Mar. 2002, pp. 491-498.

[11] ——, “Integrated wrapper/TAM co-optimization, constraint-driven test
scheduling, and tester data volume reduction for SOCs,” in Proc.
ACM/IEEE Design Automation Conf. (DAC), New Orleans, LA,
Jun. 2002, pp. 685-690.

[12] ——, “On using rectangle packing for SOC Wrapper/TAM co-
optimization,” in Proc. IEEE VLSI Test Symp. (VTS), Monterey, CA,
Apr. 2002, pp. 253-258.

[13] V. Iyengar, S. K. Goel, K. Chakrabarty, and E. J. Marinissen, “Test
resource optimization for multi-site testing of SOCs under ATE
memory depth constraints,” in Proc. IEEE Int. Test Conf. (ITC), Balti-
more, MD, Oct. 2002, pp. 1159-1168.

[14] S. Koranne, “Formulating SoC test scheduling as a network transpor-
tation problem,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 21, no. 12, pp. 1517-1525, Dec. 2002.

[15] W.-C. Lai and K.-T. Cheng, “Instruction-level DFT for testing processor
and IP cores in system-on-a-chip,” in Proc. ACM/IEEE Design Auto-
mation Conf. (DAC), Las Vegas, NV, 2001, pp. 59-64.

[16] E. J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg,
and C. Wouters, “A structured and scalable mechanism for test access to
embedded reusable cores,” in Proc. IEEE Int. Test Conf. (ITC), Washing-
ton, DC, Oct. 1998, pp. 284-293.

[17] E. J. Marinissen, S. K. Goel, and M. Lousberg, “Wrapper design for
embedded core test,” in Proc. IEEE Int. Test Conf. (ITC), Atlantic City,
NJ, Oct. 2000, pp. 911-920.

[18] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, ITC’02 SOC Test
Benchmarks Web Site. [Online]. Available: http://www.extra.research.
philips.com/itc02socbenchm/

[19] ——, “A set of benchmarks for modular testing of SOCs,” in Proc.
IEEE Int. Test Conf. (ITC), Baltimore, MD, Oct. 2002, pp. 519-528.

[8

[t}

[9

—

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 12, DECEMBER 2005

[20] E. J. Marinissen, R. Kapur, M. Lousberg, T. Mclaurin, M. Ricchetti, and
Y. Zorian, “On IEEE P1500’s standard for embedded core test,”
J. Electron. Test., Theory Appl., vol. 18, no. 4/5, pp. 365-383, Aug. 2002.

[21] M. Nourani and C. Papachristou, “Structural fault testing of embedded
cores using pipelining,” J. Electron. Test., Theory Appl., vol. 15, no. 1,
p. 129, 1999.

[22] S. Ravi, G. Lakshminarayana, and N. K. Jha, “Testing of core-based
systems-on-a-chip,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 20, no. 3, pp. 426439, Mar. 2001.

[23] N. Touba and B. Pouya, “Using partial isolation rings to test core-based
designs,” IEEE Des. Test Comput., vol. 14, no. 4, pp. 52-59, Dec. 1997.

[24] P. Varma and S. Bhatia, “A structured test re-use methodology for core-
based system chips,” in Proc. IEEE Int. Test Conf. (ITC), Washington,
DC, Oct. 1998, pp. 294-302.

[25] C.-W. Wu, VLSI Testing and Design for Testability Course—Lecture
on Core-Based SOC Testing. [Online]. Available: http://larc.ee.nthu.edu.
tw/~cww/n/625/6251/13SOC0211.pdf

[26] Q. Xu, Updated ITC’02 Benchmark SOCs with Random Functional In-
terconnect Information. [Online]. Available: http://www.ece.mcmaster.
ca/~nicola/cadt.html

[27] Q. Xu and N. Nicolici, “Delay fault testing of core-based systems-
on-a-chip,” in Proc. Design, Automation, and Test in Europe (DATE),
Munich, Germany, Mar. 2003, pp. 744-749.

[28] T. Yoneda and H. Fujiwara, “Design for consecutive testability of
system-on-a-chip with built-in self testable cores,” J. Electron. Test.,
Theory Appl., vol. 18, no. 4/5, pp. 487-501, Aug. 2002.

[29] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing embedded-core-based
system chips,” IEEE Computer, vol. 32, no. 6, pp. 52-60, Jun. 1999.

[30] W. Zou, S. M. Reddy, I. Pomeranz, and Y. Huang, “SOC test schedul-
ing using simulated annealing,” in Proc. IEEE VLSI Test Symp. (VTS),
Napa Valley, CA, Apr. 2003, pp. 325-330.

Qiang Xu (S°03) received the B.E. and MLE. degrees
in telecommunication engineering from the Beijing
University of Posts and Telecommunications, Bei-
jing, China, in 1997 and 2000, respectively, and the
Ph.D. degree in electrical and computer engineering
from McMaster University, Hamilton, ON, Canada,
in 2005.

He is currently an Assistant Professor of Computer
Science and Engineering at the Chinese University of
Hong Kong, Hong Kong. His research interests lie
in the broad area of computer-aided design with
special emphasis on test and debugging of system-on-a-chip integrated circuits.

Dr. Xu received the Best Paper Award for the 2004 IEEE/Association for
Computing Machinery (ACM) Design, Automation and Test in Europe (DATE)
Conference and Exhibition.

Nicola Nicolici (S’00-M’00) received the Dipl.Ing.
degree in computer engineering from the University
of Timisoara, Timisoara, Romania, in 1997, and the
Ph.D. degree in electronics and computer science
from the University of Southampton, Southampton,
U.K., in 2000.

He is an Assistant Professor of Computer En-
gineering at McMaster University, Hamilton, ON,
Canada. His research interests are in the area of
computer-aided design and test. He has authored a
number of papers in this area.

Dr. Nicolici is a Member of the Association for Computing Machinery
Special Interest Group on Design Automation (ACM SIGDA) and the IEEE
Computer and IEEE Circuits and Systems Societies and serves on the Editorial
Board of IEE Proceedings—Computers and Digital Techniques. He received
the IEEE Test Technology Technical Council (TTTC) Beausang Award for the
Best Student Paper at the International Test Conference (ITC 2000) and the
Best Paper Award at the IEEE/ACM Design Automation and Test in Europe
Conference (2004).

