EMERGING STRATEGIES FOR RESOURCE-CONSTRAINED TESTING OF SYSTEM

CHIPS

Resource-constrained system-on-a-chip test: a survey

Q. Xu and N. Nicolici

Abstract: Manufacturing test is a key step in the implementation flow of modern integrated
electronic products. It certifies the product quality, accelerates yield learning and influences the
final cost of the device. With the ongoing shift towards the core-based system-on-a-chip (SOC)
design paradigm, unique test challenges, such as test access and test reuse, are confronted. In
addition, when addressing these new challenges, the SOC designers must consciously use the
resources at hand, while keeping the testing time and volume of test data under control.
Consequently, numerous test strategies and algorithms in test architecture design and optimisation,
test scheduling and test resource partitioning have emerged to tackle the resource-constrained core-
based SOC test. This paper presents a survey of the recent advances in this field.

1 Introduction

The continuous advancement in the semiconductor manu-
facturing technology facilitates the integration of tens or
even hundreds of millions of transistors onto a silicon die
[1]. In order to meet the shrinking product development
schedules and leverage the existing design expertise, SOC
development is based on the design reuse philosophy, where
two parties are involved: core providers and system
integrators. Core providers create libraries of pre-designed
and pre-verified building blocks, known as embedded cores,
virtual components, macros or intellectual-property (IP)
blocks. System integrators put the SOC together by
combining the available cores and their custom user-defined
logic (UDL) [2]. Examples of cores include embedded
processors, digital signal processors, network controllers,
memories and peripherals. Cores can be soft, hard or firm.
A soft core comes in the form of synthesizable hardware
description language code and has the advantage of
being able to be easily re-targeted to different technologies.
The trade-off for this flexibility and portability is unpredic-
tability in area, performance and power. Hard cores, on the
contrary, come with physical layout information and hence
are technology-dependent. Despite the lack of flexibility,
they are optimised for timing or power and have well-
known performance parameters. Firm cores provide a trade-
off between soft and hard cores. They are gate-level netlists
and hence they are more predictable than soft cores,
although, their size, aspect ratio and pin location can be
tuned according to the system integrator’s needs.

Although the functionality of cores can be made “plug-
and-play” similar to the traditional printed circuit board

© IEE, 2005

IEE Proceedings online no. 20045019

doi: 10.1049/ip-cdt:20045019

Paper first received 3rd May and in revised form 13th December 2004

The authors are with Computer-Aided Design and Test Research Group,
Department of Electrical and Computer Engineering, McMaster University,
1280 Main St. W., Hamilton, ON L8S 4K1, Canada

E-mail: nicola@ece.mcmaster.ca

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

(PCB) design, the SOC paradigm brings forth unique test
challenges. Unlike the case of PCB design, where each chip
is tested before the board production, and hence can be
assumed fault-free to the system integrator, the cores
integrated in a SOC need to be tested after the manufactur-
ing process of the device [3]. As a result, SOC test is far
more complex than the conventional board test, especially
when the core’s implementation is treated as a black box.
The SOC test can be divided into three parts: tests for each
individual core, tests for the UDL and tests for interconnect
logic and wiring. This “divide and conquer” test strategy fits
well into the SOC implementation paradigm. In addition,
according to the analysis given by Kapur and Williams [4],
a higher test quality for each core is required to achieve
acceptable overall quality of the SOC, when compared to
the case that the core itself is a chip.

There are mainly two approaches for testing embedded
cores: built-in self-test (BIST) and applying and observing
pre-computed test sets to and from the core terminals. The
use of BIST-ed cores simplifies the integration of test plans.
By setting the core in the BIST mode during test, the system
integrator does not need to worry about the test access and
test data translation problems. The on-chip BIST engine
automatically generates test stimuli, usually through a linear
feedback shift register (LFSR), and observes the test
responses, typically using a multiple input signature register
(MISR) [5]. However, although BIST eases the test tasks for
system integrators, there are several limitations: (i) most of
the cores are not BIST-ready, i.e. they contain random
pattern resistant faults; (i) for large cores it requires a
significant design effort to achieve an acceptable fault
coverage (even with the deterministic BIST [6]); and (iii) it
generally leads to more area and performance overhead
when compared to other design for test (DFT) techniques.

The more common scenario is that core providers supply
their cores with a set of pre-computed test vectors that need
to be applied and observed via the cores’ terminals. These
test sets may contain scan vectors, functional vectors or
ordered test sequences for non-scanned sequential circuits.
Some test vectors may be generated manually (e.g. reuse of
functional simulation patterns) while some may be gener-
ated by automatic test pattern generation (ATPG) tools.
Since the core test sets are created under the assumption that

67

all core terminals are directly accessible, the system
integrator must ensure that the logic surrounding the core
allows the core tests to be applied. Therefore, test access is a
major concern that needs to be addressed by the system
integrator. In addition, although for the UDL and inter-
connects the system integrator has full knowledge of the
internal structure, because the tests are applied in the
presence of other cores, test access is also a major concern.
Since the number of cores used in an SOC may increase at a
rate higher than the growth in the number of 1/0O pins, it is
essential to develop test access architectures that are
modular and scalable and cognizant of the limitations in
the resources at hand. More specifically, the resource
constraints are mainly determined by the number of chip’s
I/0 pins, the number of tester channels and the depth of the
tester buffers, the on-chip routing area necessary for
transferring test data and the on-chip DFT area required
for test-related logic. All of the above will influence the cost
of the manufacturing test.

Recently a vast body of research has endeavoured to
provide a better understanding of this research area.
Numerous test strategies and algorithms in SOC test
architecture design and optimisation, test scheduling and
test resource partitioning have been proposed in the
literature in order to reduce test cost of the SOC. Most of
these endeavours focus on individual problems, and clearly,
a comprehensive survey of the recent advances in this area
is necessary. Iyengar et al. [7] presented an overview of
modular SOC test planning techniques that address the
problems of test architecture design and optimisation and
constrained test scheduling algorithms. Test resource
partitioning, which may significantly affect the cost of the
resource-constrained SOC test, however, was not covered.
In addition, many advanced methods have been proposed
afterwards. In this paper, we present a more comprehensive
review of the research in this domain. We first review
different test access methods in Section 2. Then in Section 3
we overview the relevant solutions available for the design
and optimisation of resource-constrained test architectures.
Section 4 surveys the various test resource partitioning
techniques. Finally we point out the potential research
directions in Section 5.

2 SOC test access

Zorian et al. [3] proposed a conceptual infrastructure for
SOC test, as illustrated in Fig. 1. The basic elements of this
SOC test infrastructure are:

e Test source and sink. The test source generates test
stimuli and the test sink compares the actual test responses
to the expected responses. The test source and sink can be
off-chip automatic test equipment (ATE), on-chip BIST

Peripheral

SRAM Interface

DSP

Wrapper
.—TAM in—! ﬂ —TAM out-».

uDL
DRAM

MPEG

SOC

Fig. 1 Conceptual infrastructure for SOC testing [3]

68

hardware, or even an embedded microprocessor [8]. It is
possible to have several test sources and sinks at the same
time. It is also possible that the source and the sink are not of
the same type. For example, an embedded core’s test source
can be ATE, while its test sink is a MISR located on-chip.
o Test access mechanism (TAM) facilitates the transport of
test stimuli from the source to the core-under-test (CUT)
and of the test responses from the CUT to the sink.

e Core test wrapper connects the core terminals to the rest
of the chip and to the TAM, which isolates the embedded
core from its environment during test. It facilitates modular
testing at the cost of an additional area and potential
performance overhead.

One of the major challenges for resource-constrained SOC
testing is to design an efficient TAM to link the test sources
and sinks to the CUT [9]. There are a number of solutions
for accessing the embedded cores from chip’s I/O pins [10]:
(i) direct parallel access via pin muxing; (if) serial access
and core isolation through a boundary scan-like architecture
(also called isolation ring access mechanism); (iii) func-
tional access through functional busses or transparency of
embedded cores; and (iv) access through a combination of
core wrappers and dedicated test busses. In this Section, we
review the above test access strategies and compare their
advantages and disadvantages from the cost standpoint.

2.1 Direct access

The simplest approach to test a core is to multiplex the core
terminals to the chip level pins so that test patterns can be
applied and observed directly [11]. The CUT can be tested
as if it is the chip itself and hence the test sets/program can
be reused almost without modification. It is also unnecess-
ary to isolate the CUT using core test wrapper. While this
approach apparently solves the TAM problem, due to the
large number of cores and high number of core terminals, it
introduces a large routing overhead. Furthermore, this
approach does not scale well when the number of core
terminals exceeds the number of SOC pins. In addition,
since this approach does not provide access for the shadow
logic of the CUT, it also results in degraded fault coverage.

Bhatia et al. [12] proposed a grid-based CoreTest
methodology that uses a test-point matrix. Three types of
test point (TP) were introduced: storage elements,
embedded cells and observation test points. Direct parallel
test access is provided through the “soft” netlist to these test
points via the SOC 1/0O pins. The basic idea is to place bi-
directional test points at the input and output of the
embedded core and matrix accessible storage elements
and observation test points in the UDL to provide sufficient
fault coverage. This methodology allows the test logic and
wiring used for testing UDL to be shared for testing cores
and hence it reduces DFT area. However, new library cells
for the proposed test points are required and global routing
of the test grid is also necessary. In addition, test point
selection and test matrix assignment require an additional
development effort.

2.2 Isolation ring access

IEEE 1149.1 test architecture is a widely-used DFT
technique to simplify the application of test patterns
for testing interconnects at the board or system level [5].
A serial scan chain is built around every chip which allows
indirect yet full access to all the I/O pins. In core-based
SOC testing, system testability can be obtained in a similar
way, by isolating each core using boundary scan and serially
controlling and observing the 1/Os of the core. This ring
access mechanism can be implemented either internally

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

by the core provider or externally by the system integrator.
In [13], Whetsel presented a test access architecture, which
utilises the 1149.1 test access port (TAP) for core-level DFT
and a novel TAP Linking Module for the overall SOC test
control.

When compared to the direct access scheme, the isolation
ring access has a significant lower routing overhead and
supports testing cores with more ports than chip pins.
Another important advantage lies in the effective core
isolation from its surrounding logic, which not only protects
the inputs of the CUT from external interference and
the inputs of its superseding blocks from undesired values
(e.g. bus conflicts), but it also facilitates the test of the
surrounding logic by putting the core into the external test
mode. However, the main shortcoming of this technique is
the long test application time (TAT) due to the limited
bandwidth caused by serial scan access. To decrease the
hardware cost and performance overhead (i.e. a multiplexer
delay for every path to and from the core) associated with
full isolation ring, Touba and Pouya [14] described a
method for designing partial isolation rings. This method
avoids adding logic on critical paths, without affecting the
fault coverage, by justifying a part of the test vectors
through the surrounding UDL. Later in [15], the same
authors proposed to modify the output space of the UDL and
completely eliminate the need for an isolation ring for
certain cores. Instead of scanning core test vectors into an
isolation ring, the core test vectors are justified by
controlling the inputs of the UDL. Despite avoiding the
high number of multiplexers, the main limitation of the
solution presented in [14, 15] lies in its computational
complexity. This is because prior to deciding which
input/output ring elements need to be inserted or removed,
an analysis needs to be performed to check whether each
test vector can be functionally justified. Therefore, the
extensive usage of ATPG for this analysis reduces
the reusability of the core tests and the scalability of the
methodology.

2.3 Functional access

Functional access involves justifying and propagating test
vectors through the available mission logic. Making use of
the existing functional paths as test paths may significantly
reduce the hardware cost. For a bus-based design, a large
number of embedded cores are connected to the on-chip bus.
Harrod [16] described a test strategy employed by ARM that
enables test access through reusing the 32-bits functional
bus. Test harness is introduced to isolate the AMBA-
compliant core and communicate with the functional bus
during test. In the test mode, the AMBA test interface
controller becomes the AMBA bus master and is respon-
sible for applying the test stimuli and capturing the test
responses. The proposed approach is best suited for cores
that are functionally tested and have a small number of non-
bus I/Os. In addition, only one core is allowed to be tested at
a time in this methodology, which may lead to long testing
time.

Beenker et al. [17, 18] introduced a rather different test
strategy, utilising the module transparency (e.g. existing
functional paths) for test data transfer. Although this
Macro Test was developed originally to improve test quality
by testing “macros” with different circuit architectures
(e.g. logic, memories, PLAs and register files) using
different test strategies, later Marinissen and Lousberg
[19] showed that the approach is also useful for testing core-
based SOCs. The techniques described in Macro Test for
introducing transparency, however, are rather ad hoc.

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

Ghosh et al. [20] assumed that every core has a transparent
mode in which data can be propagated from inputs to
outputs in a fixed number of cycles. Their approach is based
on the concept of finding functional test paths (F-paths) [21]
through test control/data flow extraction. Although the
proposed method successfully lowered the test area and
delay overheads, it requires functional description of each
core to make it transparent, which in most cases is not
available or it is hard to extract. In addition, because test
data cannot be pipelined through a core in this method, the
potentially large transparency latency of each core (number
of cycles needed to propagate test data from inputs to
outputs of the core) may incur a relatively large test
application time. To address the above issues, in [22] the
same authors extended their approach by describing a
trade-off between the silicon area consumed by the
design-for-transparency hardware and propagation latency.
They suggested that the core providers offer a catalogue of
area/latency versions for their cores, from which the system
integrator can select one in order to meet the test access
needs of its neighboring cores. By associating a user-defined
cost function with the transparent test paths in the core
connectivity graph, the system integrator is able to select the
version of cores that achieve an optimised test solution at
the system level. This approach, however, requires a large
design effort at the core provider side. Another limitation of
[20, 22] stems from the difficulty in handling other popular
DFT schemes, such as scan or BIST, in the SOC.

Solutions from [20, 22] require that all the I/Os of a core
be simultaneously, though indirectly, controllable/
observable. Ravi et al. [23] showed that this complete
controllability and observability is unnecessary and pro-
posed to provide them on an “as needed basis”. Their
approach allows for complex core transparency modes and
is able to transfer test data to and from the CUT in a more
aggressive and effective manner. For example, if the
behaviour of a core is such that input data at times ¢#; and
t; combine to generate output data at time #, [23] can
achieve the transparency objective without additional DFT
cost, which is unlike [20, 22] that have to resort to the use of
test multiplexers. This is achieved through transparency
analysis using non-deterministic finite-state automata and
transparency enhancement via symbolic justification and
propagation based on a regular expression framework. Since
integrated system synthesis with testability consideration is
able to output a more efficient architecture compared to
performing test modifications post-synthesis, later in [24]
Ravi and Jha combined the synthesis flow of MOCSYN [25]
with the symbolic testability analysis in [23] so that
testability costs are considered along with other design
parameters during synthesis.

The ability to apply an arbitrary test sequence to a core’s
inputs and observe its response sequence from the core’s
outputs consecutively at the speed of the system clock is
important for non-scanned sequential circuits. It also
facilitates an increase in the coverage of non-modelled
and performance-related defects. Yoneda and Fujiwara [26]
introduced the concept of consecutive transparency of cores,
which guarantees consecutive propagation of arbitrary test
stimuli/responses sequences from the core’s inputs to the
core’s outputs with a propagation latency. An earlier
synthesis-for-transparency approach presented by Chakra-
barty et al. [27] had tackled the same problem, i.e. it made
cores single-cycle transparent by embedding multiplexers.
When compared to [27], the area overhead for making cores
consecutively transparent with some latency instead of
single-cycle transparent is generally lower [26]. In order to
further decrease the hardware cost, the same authors [28]

69

proposed an integer linear programming (ILP) technique to
make soft cores consecutively transparent with as few
bypass multiplexers as possible. This is achieved by
efficiently exploiting the data path description. Later, in
[29], an area and time co-optimisation methodology for the
TAM design problem was given using an ILP technique.
In [30], Nourani and Papachristou presented a similar
technique to core transparency, in which cores are equipped
with a bypass mode using multiplexers and registers. They
modelled the system as a directed weighted graph, in which
the accessibility of the core input and output ports is solved
as a shortest path problem. While this approach eases the
problem of finding paths from the SOC inputs to the CUT, it
requires packetisation of test data (to match the bit width
of input and output ports), and the help of serialisation/
de-serialisation bit-matching circuits.

2.4 Dedicated bus-based access

Since time-to-market is the overriding goal of core-based
design, the ease with which cores can be designed and tested
is crucial. As a result, the increased size of the logic and
routing resources consumed by dedicated test infrastructure
is acceptable for large SOC designs.

Aerts and Marinissen [31] described three basic scan-
based test access architectures for core-based SOCs, as
shown in Fig. 2:

e Multiplexing architecture: All cores connect to all the
TAM input pins and get assigned full TAM width.
A multiplexer is added to select which core is actually
connected to the TAM output pins, as shown in Fig. 2a.
Only one core can be accessed at a time, and hence the total
test application time is the sum of all the individual core test
application times. Since core external testing needs to
access two or more cores at the same time, it is hard to test
circuits and interconnects between cores using this archi-
tecture (e.g. special wrapper design as described in [32] is
required).

e Daisychain architecture: Long TAMs are constructed
over all the cores from the TAM input pins to the TAM
output pins. Bypasses are introduced to shorten the access
paths to individual cores, as shown in Fig. 2b. Cores can be
tested either simultaneously or sequentially in this archi-
tecture, however, concurrent testing increases test power
with almost no test application time reduction. Due to the
bypass mechanism, external testing can be done efficiently
using this architecture.

e Distribution architecture: The total TAM width is
distributed to all the cores, and each core gets assigned its

private TAM lines, as shown in Fig. 2c. Hence the total
TAM width has to be at least as large as the number of cores.
Cores are tested concurrently in this architecture, and the
test application time of the SOC is the maximum of
individual core test application times. In order to minimise
the SOC testing time, the width of an individual TAM
should be proportional to the amount of test data that needs
to be transported to and from a core connected to the TAM.

Based on the above basic architectures, two more popular
test architectures, which support more flexible test sche-
dules, were proposed. The Test Bus architecture proposed
by Varma and Bhatia [33] can be seen as a combination of
the Multiplexing and Distribution architectures, as shown in
Fig. 3a. A single Test Bus is in essence the same as the
Multiplexing architecture. Multiple Test Buses on an SOC
operate independently (as in the Distribution architecture)
and hence allow for concurrent testing, however, cores
connected to the same Test Bus can only be tested
sequentially. Cores connect the test bus through a proposed
test wrapper called ‘test collar’ in order to facilitate test
access and test isolation. However, the test collar does not
support test width adaptation and external testing of its
surrounding logic. It should be noted that the width of the
input and output test busses can be different in the original
Test Bus architecture [33], although most of the later
approaches consider them equal.

Marinissen et al. [34] proposed the TestRail architecture,
which can be seen as a combination of the Daisychain and
Distribution architectures, depicted in Fig. 3b. A single
TestRail is in essence the same as the Daisychain
architecture. Multiple TestRails on an SOC operate
independently (as in the Distribution architecture). Cores
on each TestRail can be tested sequentially as well as
concurrently. A test wrapper called TestShell is proposed to
connect each core to the TestRail. TestShell has four
mandatory modes: function mode, IP test mode, intercon-
nect test mode and bypass mode. A core specific test mode
can be introduced, in addition to the four mandatory modes,
if required. An advantage of the TestRail architecture over
the Test Bus architecture is that it allows access to multiple
or all wrappers simultaneously, which facilitates core
external testing [35].

2.5 Test cost analysis

ITRS [1] anticipates that, if the current trends are
maintained, the cost of testing a transistor will approach
and may even exceed the cost of manufacturing it. Research
in semiconductor testing in essence is the quest to find

8
2
E
S

control

5.
=

\
—— e = -

T

\
L_\
- Ay __.
N
s U

\
\
[UN W

| =
&
)
\
(]

out

SOC

(%2}
Q
(@]

(a) Multiplexing architecture
Fig. 2 Three basic test architectures [31]

70

(b) Daisychain architecture

(c) Distribution architecture

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

SOC

i out
‘I/_?]-_)lw m m L‘Z

SOC

(a) Test bus architecture

Fig. 3 Test bus and TestRail test architectures

reliable yet low cost test strategies. In this Section we briefly
discuss the cost of SOC test.

Nag et al. [36] pointed out that the cost of test (C,,,,) can

be computed as follows Ci. = Cprep + Coree + Ciiticon
Cualiry- In the above formula C,,,, stands for the fixed costs
of test generation, tester program creation or any design
effort for incorporating test-related features. C,,,., which is
the cost of test execution, is mainly dependent on automatic
test equipment (ATE) and Cy,.,,, stands for the cost required
to incorporate DFT features on-chip. Finally, Cpui
accounts for the profit loss caused by performance
degradation, test escapes and overkill.
To reduce C,,,,, the test architecture must be optimised
automatically in a short time, even for SOCs with a large
number of cores. In addition, the translation of core-level
tests to system-level tests should also be easily automated.
Ciiicon 1s mainly dependent on the test access strategy and
the amount of added test-related resources. To reduce
Cuaiiry» System integrator should try to decrease the
performance overhead brought by DFT features and also
balance fault coverage with yield loss. In particular, the
system integrator must provide an efficient testing strategy
for UDL and interconnects. To reduce C,.., system
integrators should avoid using high-end ATE and also
minimise test application time by efficient test architecture
optimisation and test scheduling techniques.

A generic comparison of the test cost for different test
access strategies is shown in Table 1. The direct access
scheme has the advantage of making core test translation
unnecessary (low Cprep)s however, it introduces a large
routing overhead (high Cyy.,,) and has difficulty with
testing UDL and interconnects (high C,qiry). The main
disadvantage of the ring access scheme is its long test
application time (high C,,..). Although functional access
through core transparency introduces the least DFT
routing /area and performance overhead (low Ciy;.,, and
Cuaiiry)» it is very difficult to design the system-level test
access scheme (high C,,,,,). The modular test architecture
using bus-based test access mechanism, being flexible and
scalable, appears to be the most promising and cost-
effective, especially for SOCs with a large number of cores.
Its cost-effectiveness stems also from the fact that using
design space exploration frameworks, the system integrator
can trade-off different test cost parameter (e.g. C,,,. against

Table 1: Test cost comparison for different access
strategies

Access strategy Cprep Cexec Csilicon Cqua/iry
Direct access Low Medium High High
Isolation ring access Medium High Medium Medium
Transparency-based High Medium Low Low

access

Bus-based access Medium Medium Medium Medium

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

(b) TestRail architecture

Ciilicon)- For bus-based TAMs, an acceptable Cpyppy 18
guaranteed by providing test access to all the blocks in the
SOC with the help of core test wrappers and the dedicated
test busses. Within a satisfactory test development time
(Cprep)» the main source of SOC test cost reduction lies in the
reduction of C,,. and Cgy.,,. The two most important
factors in C,,,. are the volume of ATE test data and the test
application time. Test data volume affects both the number
of scan clock cycles and the test data management on the
ATE. For example, if test data volume exceeds the ATE
buffer size, buffer reload is necessary, which takes longer
than test application and hence dramatically increases the
overall testing time. In addition, the test application time
also depends on the test data bandwidth (the product of
number of ATE channels and transfer rate), and more
importantly the TAM distribution to cores and the test
schedule. Therefore, the reduction in C,,,. can be achieved
through efficient test architecture optimisation and test
scheduling techniques, which also affect the routing cost
and the amount of DFT hardware, and hence C;.,,-

Most of the relevant research on resource-constrained
SOC testing has been focused on dedicated test bus access
(due to its modularity, scalability and flexibility in trading-
off different cost factors) and it was concentrated in two
main directions:

o Test scheduling and test architecture optimisation: Given
the number of TAM wires or test pins, efficient test
architectures and test schedules are determined in a short
development time, under constraints such as test power and
physical layout. Numerous algorithms have been proposed
on this topic and they are surveyed in Section 3.

e Test resource partitioning: By moving some test
resources from ATE to the SOC, both the volume of test
data that needs to be stored in the ATE buffers and the SOC
testing time can be reduced. We overview the relevant work
in this direction in Section 4.

3 Test scheduling and test architecture
optimisation

The optimisation of modular test architectures (e.g. Test Bus
and TestRail) and test scheduling have been subject to
extensive research. For an SOC with specified parameters
for its cores, a test architecture and a test schedule are
designed to minimise the test cost, which must account for
the test application time and the amount of DFT on-chip
resources (both logic and routing).

Various constraints need to be considered during test
scheduling, which is the process that determines the start and
end test times for all the cores. For example, testing more
cores in parallel usually can decrease the TAT, however it
will also increase the test power, which may lead to
destructive testing [37]. In addition, concurrency constraints
may exist due to sharing of test resources (e.g. a wrapped
core cannot be tested at the same time with its surrounding
unwrapped UDL because both of them use the wrapper

71

boundary cells during test). Furthermore, in certain cases a
user-defined partial ordering, called precedence constraints,
is helpful in test scheduling. For instance, the core tests
which are more likely to fail can be scheduled in front of the
core tests that are less likely to fail. This helps to reduce the
average test application time when an “abort-at-first-fail”
strategy is used [38]. Because test architecture optimisation
and test scheduling are strongly interrelated, next we
formulate the integrated test architecture optimisation and
test scheduling problem (P,,,,) as follows:

Problem P,,,,: Given the number of available test pins N,
for the SOC, the peak test power constraint P, the user-
defined precedence constraint U, the test set parameters
for each core, including the number of input terminals ., the
number of output terminals o., the number of test patterns
P, the number of scan chains s, and for each scan chain k
the length of it /., (for cores with fixed-length internal scan
chains) or the total number of scan flip-flops f. (for cores
with flexible-length internal scan chains), determine the
wrapper design for each core, the TAM resources assigned
to each core and a test schedule for the entire SOC such that:
(i) the sum of the TAM width used at any time and the test
control pin count does not exceed N,; (ii) power,
concurrency and precedence constraints are met; and
(iii) the SOC test cost C,py = - T + (1 —) - A is mini-
mised, in which 7'is the SOC testing time, A is the DFT cost
of the test architecture and o is a parameter specified by the
system integrator in optimisation.

Problem P, is strong NP-hard. This is because, when
o = 1 and there are no power, concurrency and precedence
constraints, problem P, is reduced to problem Pyp,syw in
[39], which was proven to be NP-hard. Because of its
complexity, only a part of P,,,, was addressed in individual
prior works. We start by reviewing various test scheduling
techniques with fixed DFT hardware, then we continue with
wrapper design methods and we conclude with the
integrated wrapper/TAM co-optimisation and test schedul-
ing approaches.

3.1 Test scheduling

Test scheduling is the process that allocates test resources
(i.e. TAM wires) to cores at different time in order to
minimise the overall test application time, while at the same
time satisfying the given constraints. As shown in Fig. 4,
test scheduling techniques can be divided into [40, 41]:

e Session-based testing

e Sessionless testing with run to completion.

e Preemptive testing, in which a core’s test can be
interrupted and resumed later.

Early session-based test scheduling techniques such as
[37, 42] result in long test application time. This is because
the division of the schedule into test sessions leads to large
idle times, as shown in Fig. 4a. Hence, most of the proposed
approaches for SOC testing fall into the other two
sessionless test schemes. Preemptive testing (e.g. [43, 44])

can decrease test application time. It is useful in particular in
constraint-driven test scheduling where there is more idle
blocks in the schedule (due to additional constraints) and an
entire core test is frequently not able to fit in these idle
blocks. It should be noted, however, not all core test (e.g.
memory BIST) can be preempted. In addition, the system
integrator must consider the added overhead caused by the
use of test preemption, i.e. the extra control and time to stop
and resume the preemptive core tests.

Several techniques for SOC test scheduling, independent
of TAM optimisation, have been proposed in the literature.
Sugihara et al. [45] addressed the problem of selecting a test
set for each core from a set of test sets provided by the core
vendors, and then schedule the test sets in order to minimise
the test application time. The problem was formulated as a
combinatorial optimisation problem and solved using a
heuristic method. It is assumed that each core has its own
BIST logic and external test can only be carried out for one
core at a time. Chakrabarty [46] generalised the problem
and assumed the existence of a test bus. He formulated the
problem as an m-processor open shop scheduling problem
and solved it using a mixed-linear integer programming
(MILP) technique. Marinissen [47] addressed test schedul-
ing problem from the test protocol expansion point of view.
A test protocol is defined at the terminals of a core and
describes the necessary and sufficient conditions to test the
core. He modelled the test scheduling problem as a No-Wait
Job Shop scheduling problem and solved it using a heuristic.

Power-constrained test scheduling is essential in order to
avoid destructive testing. Zorian [37] presented a power-
constrained BIST scheduling process by introducing a
distributed BIST controller. In [42], Chou et al. proposed a
method based on approximate vertex cover of a resource-
constrained test compatibility graph. Muresan et al. [48]
modelled the power-constrained scheduling problem as job
scheduling problem under the constraint some jobs must be
executed exclusively. Then left-edge algorithm, list sche-
duling and force-directed scheduling are proposed to solve
the problem. Larsson and Peng [49] tried to reorganise scan
chains to trade-off scan time against power consumption.
Ravikumar et al. [50] proposed a polynomial-time algor-
ithm for finding an optimum power-constrained schedule
which minimises the testing time. Later in [51], the authors
considered SOCs composed of soft and/or firm cores, and
presented an algorithm for simultaneous core selection and
test scheduling. In both papers, they assumed that BIST is
the only methodology for testing individual cores. Zhao and
Upadhyaya [52] considered the test resources (e.g. test
buses and BIST engines) as queues and the core tests to be
scheduled as the job entering corresponding queue. The
power-constrained test scheduling problem was then
formulated as the single-pair shortest path problem by
representing vertices as core tests, directed edges between
vertices as a segment of a schedule sequence, and the edge
weight as the core testing time at the end of the segment. An
efficient heuristic was proposed to solve this problem.

idl
Test, Test,
Test, Tests
Test,,
Test4 Tests
Test, Testy Test4 Tests
Session 1 Session 2H|

a Session-based schedule

Fig. 4 Test scheduling technique categorisation

72

b Sessionless schedule

¢ Preemptive schedule

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

3.2 Werapper design and optimisation

To facilitate modular test development, the IEEE P1500
standard for embedded core test (SECT) [53] focuses on
standardising the core test knowledge transfer and the test
access to embedded cores [54]. The IEEE P1500 wrapper, as
shown in Fig. 5, is a thin shell around a core that allows the
core and its environment to be tested independently. The
wrapper has three main modes [54, 55]: (i) functional
operation, in which the wrapper is transparent; (ii) inward-
facing test modes, in which test access is provided to the
core itself; and (iii) outward facing test modes, in which test
access is provided to the circuitry outside the core. The
wrapper has a mandatory one-bit input/output pair, wrapper
serial input (WSI) and wrapper serial output (WSO), and
optionally one or more multi-bit input/output pairs,
wrapper parallel input (WPI) and wrapper parallel output
(WPO). The wrapper also comprises a wrapper boundary
register (WBR) to provide controllability and observability
for the core terminals and a wrapper bypass register (WBY)
to serve as a bypass for the test data access mechanism. In
addition, the wrapper has a wrapper serial control (WSC)
port and an internal wrapper instruction register (WIR),
used to control the different modes of the wrapper. It is
important to note that IEEE P1500 SECT standardises only
the wrapper interface. Hence, the internal structure of the
wrapper can be adapted to the specific SOC requirements.
Core wrapper design mainly involves the construction of
wrapper scan chains (called Wrapper SCs). A wrapper SC
usually comprises a number of wrapper boundary cells
and/or core internal scan chains. The number of wrapper
SCs is equal in number to the TAM width. Since the test
application time of a core is dependent on the maximum
wrapper SC length, the main objective in wrapper
optimisation is to build balanced wrapper SCs. For soft
cores or firm cores, in which the internal scan chain design is
not decided yet or can still be changed, balanced wrapper
SCs are guaranteed to be constructed (lock-up latches may
need to be inserted when wrapper SCs contain memory
elements from multiple clock domains). For hard cores, in
which the implementation of the internal scan chains is
fixed, wrapper SCs are constructed by concatenating the set
of core internal scan chains and wrapper boundary cells.
Marinissen et al. [56] first addressed the wrapper
optimisation problem of designing balanced wrapper SCs
for hard cores. Two polynomial-time heuristics were
proposed. The LPT (Largest Processing Time) heuristic,
originally used for the Multi-Processor Scheduling problem,
was adapted to solve the wrapper optimisation problem in a
very short computational time. Since the number of internal
scan chains and core I/Os are typically small, the
computational complexity of the LPT heuristic is quite
small. The authors proposed another COMBINE heuristic
which obtained better results by using LPT as a starting

Test = -\ Test
stimuli - —'/ response

Functional
data

Functional
data

Test control
+ Test response

Test control WSO

+ Test stimuli

WSI
SelectWIR

Wrapper

1
WSC

Fig. 5 IEEE P1500 wrapper architecture [54]

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

solution, followed by a linear search over the wrapper SC
length with the First Fit Decrease heuristic. Iyengar et al. [39]
proposed the Design_wrapper algorithm based on the Best
Fit Decreasing heuristic for Bin Packing problem, which tries
to minimise core test application time and required TAM
width at the same time. They also showed an important
feature of wrapper optimisation for hard cores, i.e. the test
application time varies with TAM width as a “staircase”
function. According to this feature, only a few TAM widths
between 1 and W,,,,, the maximum number of TAM width,
are relevant when assigning TAM resources to hard cores and
these discrete widths are called Pareto-optimal points.

Koranne [57, 58] described a design of reconfigurable
core wrapper which allows a dynamic change in the TAM
width while executing the core test. This is achieved by
placing extra multiplexers at the input and output of each
reconfigurable scan chain. He also presented a procedure for
the automatic derivation of these multiplexers using a graph
representation of core wrappers. Instead of connecting the
outputs of each scan chain to multiplexers, Larsson and
Peng [44] presented a reconfigurable power-conscious core
wrapper by connecting the inputs of each scan chain to
multiplexers. This approach combines the reconfigurable
wrapper [57, 58] with the scan chain clock gating [59]
concepts. The reconfigurable core wrapper is useful for
cores with multiple tests, where each of the tests has
different TAM width requirements. For example, a core
might have three tests: a BIST test for internal memory, a
scan test for stuck-at faults, and a functional test for some
un-modelled detects. The scan test needs a higher test
bandwidth than the BIST test, while the requirement of the
functional test is in the middle.

In [60], Vermaak and Kerkhoff presented a P1500-
compatible wrapper design for delay fault testing, based on
the digital oscillation test method. To be able to use this
method, they introduced extra multiplexers and a cell
address register to each wrapper cell. This approach for
delay testing is only suitable for combinational cores,
because only paths between the core’s inputs and outputs
are tested. Xu and Nicolici [61] proposed a novel core
wrapper that addressed the testability problems raised by
embedded cores with multiple clock domains. By partition-
ing core I/Os and scan cells from different clock domains
into different virtual cores, they proposed to build wrapper
SCs within virtual cores to solve the clock skew problem
during the shift phase. To avoid clock skew during the
capture phase, a capture window design technique similar to
[62] was proposed that supports multi-frequency at-speed
testing. The authors also described a wrapper optimisation
algorithm that can tradeoff between the number of tester
channels, test application time, area overhead and power
dissipation. In [32], Goel described a wrapper architecture
for hierarchical cores, which allows for parallel testing of
the parent and child cores, at the cost of an expensive
wrapper cell design.

Since wrapper design, TAM optimisation and test
scheduling all have direct impacts on the SOC test cost,
they should be considered in conjunction to achieve the best
result. Consequently, the next Section will review the state-
of-the-art techniques for the integrated problem.

3.3 Integrated wrapper/ TAM co-optimisation
and test scheduling

The bus-based TAM architecture can be categorized into
two types [63]:

o Fixed-width test bus architecture, in which the total
TAM width is partitioned among several test buses with

73

Corey Corez Cores

” ” Cores Cores
I | TAM2

I I I Corex

Core,

d__lnr-s
C
Core, s
Py >

Merge
b Flexible-width TAM bus

Core,|

Fig. 6 TAM bus categorisation

fixed-width, as shown in Fig. 6a. It operates at the
granularity of TAM buses and each core in the SOC is
assigned to exactly one of them.

o Flexible-width test bus architecture, in which TAM wires
are allowed to fork and merge instead of just partitioning, as
shown in Fig. 6b. It operates at the granularity of TAM
wires and each core in the SOC can get assigned any TAM
width as needed.

A number of approaches have been proposed for optimizing
both architectures. Iyengar et al. [64] advocated the flexible-
width architecture to be more effective because it improves
the TAM wire utilisation. They argued that cores are
frequently not assigned with a Pareto-optimal TAM width
for fixed-width architecture, which wastes part of the test
resources. Another reason is that test scheduling is usually
more tightly integrated with TAM design in flexible-width
architecture design, while in fixed-width architecture design
it is often performed after TAM design by shifting tests back
and forth to satisfy the given constraints. However, due to
the complexity of the SOC test problem it cannot be
generalised that the test cost of the flexible-width archi-
tecture is lower than the cost of the fixed-width architecture.
This is because of the following reasons. Firstly, the Pareto-
optimal TAM width only exists in hard cores for which the
internal scan chain design is fixed. For soft or firm cores,
there is no waste of test resources when assigning them to
any fixed-width TAM bus. Secondly, because of the strong
NP-hard attribute of P,,,, the size of the solution space for
this problem is enormous, even with the fixed-width TAM
constraint. Hence, the effectiveness of an approach is to a
large extent dependent on the effectiveness of the search
algorithm embedded in the approach instead of the
architecture. Thirdly, and most importantly, because cores
on the same TAM bus can share the same scan enable signal
in fixed-width architecture, the test control pin requirement
is usually lower for the fixed-width architecture than for the
flexible-width architecture. These test control pins will
reduce the available TAM width for test data transfer [65],
which will impact significantly the SOCs with a large
number of cores.

3.3.1 Fixed-width test bus architecture opti-
misation: The main optimisation techniques for
fixed-width test bus architecture include integer linear
programming (ILP), graph-based heuristics, and merge-and-
distribution heuristics.

74

Iyengar et al. [39] first formulated the integrated
wrapper/TAM co-optimisation problem and broke it down
into a progression of four incremental problems in order of
increasing complexity. For the fixed-width architecture,
core assignment to a TAM bus can be represented as a
binary value, and the width of each TAM partition is an
integer value between 1 and W, where W, is the
maximum TAM width. They can be treated as variables in
an ILP model. The main drawback of the ILP method is that
the computation time increases exponentially because of the
intractability of the problem and hence the method is not
suitable for SOCs with a large number of cores and/or TAM
partitions. To decrease the CPU running time, the same
authors proposed to combine efficient heuristics and ILP
methods [66]. By pruning the solution space the compu-
tation time is significantly reduced. However, the proposed
approach returned in longer test application time than ILP in
most cases. In [67], Sehgal et al. presented another
optimisation method based on Lagrange multipliers and
achieved better results.

Instead of optimising the finish time of the last core test,
Koranne [68] proposed to optimise the average completion
time of all the TAM partitions. Then he reduced this revised
problem to the minimum weight perfect bipartite graph
matching problem (not NP-hard) and proposed a polynomial
time method to solve it. He also considered the TAM
partitioning problem within the search space of his method,
by projecting the ratio of the bitwidth [Note 1] requirement
for each core to the total bitwidth of the SOC (i.e. the sum of
all cores’ bitwidths). However, this projection method
introduces the restriction that the overall TAM width of the
SOC must exceed the total number of cores. By modelling
the test source/sink as source/sink in a network, TAMs
as channels with capacity proportional to their width, and
each core under test as a node in the network, Koranne [69]
formulated the test scheduling problem as a network
transportation problem. The overall test application time
of the SOC is thought of as the time taken to transport the
test data between cores and the test source/sink, assuming
the capture time is negligible as compared to the scan
shifting time. A 2-approximation algorithm was proposed to
solve this problem by using the results of single source
unsplittable flow problem.

While the above approaches concentrate on Test Bus
architecture, Goel and Marinissen [70] addressed the same
problem for fixed-width TestRail architecture with the
constraint that the total TAM width must exceed the number
of embedded cores inside the SOC. This constraint is
removed in [71] and a new efficient heuristic TR — Architect
is presented, which works for both cores having fixed-length
and cores having flexible-length scan chains. Next, the same
authors extended TR — Architect in [35] to support both
Test Bus and TestRail architectures. They also presented the
lower bounds of SOC test application time in this work.
TR — Architect has four main steps. The basic idea is to
divide the total TAM width over multiple cores based on
their test data volume. The algorithm first creates an initial
test architecture by assigning value 1 to each core’s TAM
width. Since the overall test application time of the SOC
T,,. equals the bottleneck TAM with the longest test
application time, in the second and the third steps, the
algorithm iteratively optimises T,,. through merging
TAMs and distributing freed TAM resources. Either two

Note 1: Bitwidth is the minimum TAM width value beyond which there is
no decrease in the testing time for a given core.

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

non-bottleneck TAMs are merged with less TAM width to
release freed TAM resources to the bottleneck TAM, or the
bottleneck TAMs is merged with another TAM to decrease
Tpc- In the last step the algorithm tries to further minimise
T,,. by placing one of the cores assigned to the bottleneck
TAM to another TAM.

In [72], Goel and Marinissen extended their TR —
Architet algorithm to minimise both testing time and wire
length. For a given TAM division, based on a proposed
simple yet effective wire length cost model, they described
a heuristic to determine the ordering of the cores on each
TAM bus so that the overall TAM wire length is
minimised. By including the wire length cost into the
optimisation procedure of TR — Architect, a test architec-
ture that can co-optimise the time and routing overhead
was obtained. Later in [65], the same authors discussed the
influence of test control on test architecture optimisation.
Given the more practical test pin constraint N, instead of
total TAM width constraint W,,,,, the TR — Architect is
extended again to a control pin-constrained version.
Finally, Krundel er al. [73] described a Test Architecture
Specification language, in which the user can express
various test constraints. They then modified TR — Architect
to incorporate the ability to satisfy these user constraints,
by providing them as inputs to the tool.

3.3.2 Flexible-width test bus architecture
optimisation: For flexible-width test bus architectures,
several core test representations and their corresponding
optimisation techniques are summarized next.

Huang et al. [74] mapped the TAM architecture design to
the well-known two-dimensional bin packing problem.
Each core was modelled as a rectangle, in which its height
corresponds to the test application time, its width corre-
sponds to the TAM width assigned to the core, and its
weight corresponds to the power consumption during test.
The objective is to pack these rectangles into a bin of fixed
width (SOC pins), such that the bin height (total test
application time) is minimised, while not exceeding the
power constraint. A heuristic method based on the Best Fit
algorithm was then proposed to solve the problem. Later in
[75], the authors described a new heuristic which gives
better results. Another advantage of this method is that it
supports multiple tests for each core. Iyengar et al. [63]
described another heuristic for the rectangle packing
problem without considering power constraints. Cores
with fixed-length scan chains are assumed in this work.
By exploiting the feature of Pareto-optimal TAM widths for
these cores and through a series of optimisation steps, their
method was shown to be more effective. Next in [76], they
extended their algorithm to incorporate precedence and
power constraints, while allowing a group of tests to be
preemptable. They also discussed the relationship between
TAM width and tester data volume in this work, so that the
system integrator can identify an effective total TAM width
for the SOC. Later in [77], the same authors considered
minimising the ATE buffer reloads and multi-site testing,
again by extending their rectangle packing algorithm. Since
idle time on a TAM wire between useful bits appears as idle
bits on the corresponding ATE channel, they tried to move
these idle time to the end of the TAM as suggested also in
[78], so that these bits do not need to be stored in the ATE.
Although the test application time might be increased for a
single chip, the total test data volume is reduced and hence
the average testing time can be decreased when multi-site
testing is employed. In [79], Zou et al. used sequence pairs
to represent the placement of the rectangles, borrowed from

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

the place-and-route literature [80]. They then employed the
simulated annealing optimisation technique to find a
satisfactory test schedule by altering an initial sequence
pair and rectangle transformation. Their approach is shown
to be more effective in terms of test application time than
earlier methods, although, constraint-driven scheduling was
not considered.

To include the peak power constraint into their optimis-
ation procedure, Huang et al. [81] proposed to model the
core as a 3-D cube, where the TAM width, peak power and
core testing time represent the three dimensions. They then
formulated the integrated wrapper /TAM co-optimisation
and test scheduling problem under power constraints as a
restricted 3-D bin-packing problem and proposed a heuristic
to solve it. Following this idea, when additional constraints
exist, the problem formulation can be extended as a bin-
packing problem with appropriate number of dimensions.

Koranne and Iyengar [82] proposed a p-admissible
representation of SOC test schedules based on the use of
k-tuples. Compared with rectangle and 3-D cube represen-
tations, p-admissible representation has the benefits to be
readily amenable to several optimisation techniques, such as
tabu-search, simulated annealing, two-exchange, and gen-
etic algorithms. A greedy random search algorithm was
presented to find an optimal test schedule.

By utilizing the reconfigurable wrapper concepts [57, 58],
Koranne modelled the core test schedule as a malleable job
rather than a static job [83]. A new polynomial time
algorithm was then presented using a combination of a
network flow algorithm [69] and a malleable job scheduling
algorithm. In [44, 84], Larsson et al. showed the test
scheduling problem is equivalent to independent job
scheduling on identical machines, when a reconfigurable
wrapper and preemptive scheduling are used. Consequently,
a linear time heuristic, which is able to produce a close-to
lower bound solution, was proposed.

In [85], Larsson and Peng presented an integrated test
framework by analysing test scheduling under power and
test resource constraints along with TAM design. They
formulated the test architecture optimisation problem as a
set of equations and proposed a polynomial-time algorithm
to solve them. Later in [86], a simulated annealing algorithm
was proposed to reduce the CPU run time for large SOCs.
The authors are one of the first researchers who considered
almost all aspects of core-based SOC testing in an unified
approach. However, the problem is over simplified by the
assumption of linear dependence of testing time and power
on scan chain subdivision.

Zhao and Upadhyaya [87] addressed the power-con-
strained test scheduling problem based on a graph-theoretic
formulation. They constructed the power-constrained con-
current core tests and use the test compatibility information
to settle the preferred TAM width for the tests. Dynamic test
partitioning techniques are proposed to dynamically assign
the TAM width and reduce the explicit idle time. In [88], Su
and Wu proposed another graph-based approach to solve the
same problem. First the test compatibility graph (TCG) is
built based on given test resource conflicts. TCG is a
complete graph if no predetermined test resource conflicts
exist. The authors proved that the problem can be reduced to
finding a partial graph G of the TCG that satisfies: (1) G is
an interval graph, (2) each maximum clique of G satisfies
the power constraint, and (3) the overall test application
time is minimised. To reduce the computation time of
searching the solution space, a tabu search based heuristic is
used for rapid exploration. In [89], instead of optimizing test
schedule, Huang et al. proposed to use the test scheduling
information as a constraint to optimise the total number of

75

SOC test pins. The authors formulated this constraint-driven
pin mapping problem as a chromatic number problem in
graph theory and as a dependency matrix partitioning
problem used in pseudo-exhaustive testing. A heuristic
algorithm based on clique partitioning was proposed to
solve the NP-hard problem. Larsson and Fujiwara [90]
presented a test resource partitioning and optimisation
technique that produces a test resource specification, which
can serve as an input to the test automation tool. The routing
overhead was considered in the cost model, by using a
single point to represent each core, and calculating the
length of a TAM wire with a Manhattan distance function.
The authors proposed a technique for the iterative
improvement of a test specification by using Gantt charts.
When the SOC contains a large number of cores and test
resources, however, the search for an optimal solution will
become computationally expensive.

Xu and Nicolici [91] addressed the problem of reducing
the area and performance overhead introduced by wrapper

boundary cells. They proposed a test architecture for SOCs
with unwrapped cores, by dividing the total TAM into CUT,
producer and consumer TAM groups that are used to scan
in/out the internal scan chain, the primary inputs and the
primary outputs, respectively. The authors also presented a
heuristic to solve the test scheduling problem, by adapting the
rectangle packing algorithm in [63]. Because of the reduction
in DFT area, the method introduces additional test resource
conflicts, which leads to an increased testing time.

3.4 Comparison of test architecture
optimisation techniques

In this Section, we compare eight recently-proposed test
architecture optimisation techniques in terms of the TAT on
five benchmark SOCs from the ITC’02 SOC Test Bench-
marks [92]: d695 and g1023 are hypothetical SOCs built
from ISCAS benchmark circuits, while p22810, p34392 and
p93791 are industrial SOCs. As shown in Table 2, the eight
approaches include four fixed-width test bus architecture

Table 2: Comparison of eight test architecture optimisation techniques

Fixed-width Flexible-width
LBy ILP/enum Par_eval = TR-Architect Lagrange GRP 3-D Packing Tabu SA_2
SOoC Wpax [35] [39] [66] [35] [79] [63] [81] [88] [79]
d695 16 40951 42568 42644 44307 - 44545 42716 41905 41899
24 27305 28292 30032 28576 - 31569 28639 28231 28165
32 20482 21566 22268 21518 - 23306 21389 21467 21258
40 16388 17901 18448 17617 - 18837 17366 17308 17101
48 13659 16975 15300 14608 - 16984 15142 14643 14310
56 11709 13207 12941 12462 - 14974 13208 12493 12134
64 10247 12941 12941 11033 - 11984 11279 11036 10760
g1023 16 30161 - - 34459 - - 31444 32602 31398
24 20112 - - 22821 - - 21409 22005 21365
32 15088 - - 16855 - - 16489 17422 16067
40 14794 - - 14794 - - 14794 14794 14794
48 14794 - - 14794 - - 14794 14794 14794
56 14794 - - 14794 - - 14794 14794 14794
64 14794 - - 14794 - - 14794 14794 14794
p22810 16 419466 462210 468011 458068 434922 489192 446684 465162 438619
24 279644 361571 313607 299718 313607 330016 300723 317761 293019
32 209734 312659 246332 222471 245622 245718 223462 236796 219923
40 167787 278359 232049 190995 194193 199558 184951 193696 180004
48 139823 278359 232049 160221 164755 173705 167858 174491 151886
56 119848 268472 153990 145417 145417 157159 145087 155730 132812
64 104868 260638 153990 133405 133628 142342 128512 145417 112515
p34392 16 932790 998733 1033210 1010821 1021510 1053491 1016640 995739 965252
24 621093 720858 882182 680411 729864 759427 681745 690425 657561
32 544579 591027 663193 551778 630934 544579 553713 544579 544579
40 544579 544579 544579 544579 544579 544579 544579 544579 544579
48 544579 544579 544579 544579 544579 544579 544579 544579 544579
56 544579 544579 544579 544579 544579 544579 544579 544579 544579
64 544579 544579 544579 544579 544579 544579 544579 544579 544579
p93791 16 1746657 1771720 1786200 1791638 1775586 1932331 1791860 1767248 1765797
24 1164442 1187990 1209420 1185434 1198110 1310841 1200157 1178776 1178397
32 873334 887751 894342 912233 936081 988039 900798 906153 893892
40 698670 698583 741965 718005 734085 794027 719880 737624 718005
48 582227 599373 599373 601450 599373 669196 607955 608285 597182
56 499053 514688 514688 528925 514688 568436 521168 539800 510516
64 436673 460328 473997 455738 472388 517958 459233 485031 451472

76 IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

optimisation methods: (1) the Test Bus Architecture
optimisation method based on ILP and exhaustive enumer-
ation in [39], (2) the heuristic Test Bus Architecture
optimisation method Par_eval in [66], (3) the merge-and-
distribution heuristic TR-Architect in [35], and (4) the
Lagrange-based method in [67]; and four flexible-width test
bus architecture optimisation methods: (5) the generalised
rectangle-packing-based optimisation (GRP) in [63], (6) the
3-D packing heuristic in [81], (7) the graph-based tabu
search method in [88] and (8) the simulated annealing
algorithm in [79]. Goel and Marinissen [35] presented an
architecture-independent lower bound on the SOC TAT, as
shown in the LB; column of Table 2. When the embedded
cores come with fixed-length scan chains, the lower bound
stops decreasing for large enough W, (e.g. W,,,, > 40 for
21023 and W,,,. > 32 for p34392). If this happens, it means
that there is at least one core that forms the bottleneck and
for which increasing its TAM width does not decrease the
SOC TAT any more.

From Table 2, we can observe that several optimisation
techniques generate close-to lower bound results. Although
[79] gives better results in most cases, there are no
significant improvements over the other approaches. In
addition, the reported results are provided under several
simplifying assumptions: (i) TAM width constraint W,,,,,,
instead of the more practical constraint N, (the number of
available test pins), is specified; (ii) there are no power,
concurrency and precedence constraints; (iii) off-chip ATE
is the only test source/sink; (iv) all scan-tested cores are
equipped with fixed-length scan chains; (v) even though
some of these SOCs originally contain multiple levels of
design hierarchy, they are assumed to be flattened in test
architecture design. When one or more of these assumptions
are removed, some approaches can still be used effectively
without changes or can be easily extended, whereas others
may lead to undesirable results after adaptation. For
example, [35] can be easily extended to a control-aware
version as shown in [65]. Therefore, since we cannot safely
draw a conclusion on which approach of the above is the
best, the system integrators should select an approach based
on their specific test requirements.

In terms of DFT, the above approaches used dedicated
test busses and the standard core test wrappers. Better
results can be achieved when additional DFT hardware is
introduced. For example, when reconfigurable wrapper and
preemptive scheduling are used, the results given in [44] are
almost the same as the lower bound value. When decoder
and compactor are implemented on-chip to compress test
sets, not only the test data stored in the ATE can be
significantly reduced, but the SOC testing time may also be
dramatically lower than the lower bound presented in [33]
(since the lower bound is obtained without using the DFT
logic for test data compression). Therefore, the SOC test
resource partitioning is discussed in the following section.

4 SOC test resource partitioning

As discussed in Section 1, BIST generates test stimuli and
compares test responses on-chip. It is an alternative
approach to ATE-based external testing, although, due to
the limited fault coverage of pseudo-random techniques the
use of external test resources is required. This leads to the
new test resource partitioning approaches [93], where on-
chip embedded test resources interact with the external test
equipment.

Full scan is the mainstream DFT technique employed by
most of the chip designers and embedded core providers.
For full-scanned embedded cores, the test cubes generated

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

Peripheral
DSP Inteface

o -@

DRAM

MPEG

SOC

Fig. 7 Conceptual infrastructure for SOC testing with test data
compression

by ATPG tools feature a large number of unspecified (“don’t-
care” or X) bits which can be assigned arbitrary values, even
after static and/or dynamic compaction. Various test data
compression (TDC) techniques significantly reduce the test
data volume stored in ATE by exploiting these don’t care
bits. TDC mainly involves two parts: test stimuli com-
pression and test response compaction. A conceptual
architecture is illustrated in Fig. 7, in which the decoder is
used to decompress the compressed test vectors sent from
ATE and the compactor is used to compress the test
responses. It should be noted that TDC only reduces the
test data volume that needs to be transferred between ATE
and the chip. It does not reduce the number of test patterns
applied to the chip, which is different with traditional test set
compaction techniques [5] and has the advantage of being
able to detect un-modelled defects.

4.1 Test stimuli compression

LFSR-reseeding, was first proposed by Koenemann in [6].
Instead of storing the fully specified test patterns on ATE, he
proposed to store the LFSR seeds, whose size is only
slightly higher than the number of the maximum care bits in
the test cubes. As a follow up to this work, many approaches
were proposed to improve the encoding efficiency and/or
reduce the possibility of a phenomenon called “test pattern
lockout” caused by the linear dependencies in the LFSR
sequences. Since the encoding capability depends on the
LFSR size, a large LFSR may be necessary for circuits with
very large number of scan cells. In addition, when the LFSR
is cycling to completely fill the scan chains (expansion in
time domain), the ATE sits idle for a long period of time
which leads to inefficient ATE usage. As a consequence,
continuous-flow TDC techniques [94—96] were proposed
and they expand the test stimuli in the spatial domain (i.e.
from a low ATE channel width to a higher chip scan channel
width) and hence make full use of the ATE resources.
A relatively small mapping structure, e.g. XOR-based
network in [94], SISR/MISR-like finite state machine and
XOR-based network in [95], or ring generator and phase
shifter in [96], were introduced. These decompression
structures relate the inputs and outputs using a set of linear
equations. Compressed test sets can be easily generated by
solving the sets of equations generated using the test cube
information. Instead of introducing the additional mapping
logic, Dorsch et al. [97] proposed to make use of the scan
chains from the cores in the SOC to compress the test sets
for the CUT. The above techniques are embedded in the
ATPG flow or exploit the core’s structural information
which may not be suitable for the IP-protected core-based
design flow.

An effective TDC approach suitable for SOC testing is
based on data compression using coding techniques, which
exploit the following features.

77

e The “don’t care” bits in test cubes can be filled with
arbitrary values to form a long run of 0’s or 1’s.

e There is a lot of similarity between test vectors because of
the structural relationship among faults in the circuit. By
carefully ordering the test sets, successive test vectors will
differ in only a small number of bits. Then, the information
about how the vectors differ, instead of the original vectors,
can be encoded to reduce test data volume.

These techniques compress test data without requiring the
structural information from the core provider (which is
necessary for integrated compression, ATPG and fault
simulation) and therefore they fit well in the core-based
design flow.

To achieve compressed SOC test, data is first decom-
posed into either fixed-length or variable-length blocks and
a code word, also of either fixed or variable length, is
assigned to each block. The basic idea is to assign frequent
blocks to a comparably smaller code word. Iyengar et al.
[98] proposed a BIST approach for testing non-scanned
circuits based on statistical coding. Jas et al. [99] presented
a compression technique for scanned circuits by dividing the
test vectors into fixed-length blocks and using the Huffman
coding technique. In [100], Jas and Touba described another
TDC scheme using run-length coding. By exploiting the
capabilities of present ATEs to assign groups of inputs to
ports and to perform vector repeat per port, Vranken et al.
[101] implemented a similar run-length coding scheme,
although the decompression is achieved off-chip on the ATE
instead of on-chip.

The above coding techniques are based on “variable-to-
fixed-length” codes. Chandra and Chakrabarty [102] first
proposed a ‘“variable-to-variable-length” test data coding
scheme, based on Golomb coding [103]. When using
Golomb-coding the savings in scan-in power are trade-off
against improvement in compression ratio. Rosinger et al.
described a minimum transition count (MTC) coding
scheme, which can simultaneously reduce test data and
test power. Frequency-directed run-length (FDR) coding
[104], another variable-to-variable-length coding technique
proposed by Chandra and Chakrabarty, further increased the
compression ratio. It is designed based on the observation
that the frequency of runs decreases with the increase of
their length. While the original FDR coding was based on
encoding runs of 0’s, EI-Maleh and Al-Abaji [105] extended
it with EFDR coding, by encoding both runs of 0’s and 1’s.
Gonciari et al. [106] analysed the three main test data
compression environment parameters: compression ratio,
decoder area overhead and test application time, and
introduced a variable-length input Huffman (VIHC) coding
scheme to efficiently trade them off. Finally, Tehranipour
et al. [107] presented a 9C coding scheme that supports
mapping “don’t-care” bits to random values instead of
dedicated long runs of 0’s and 1’s, which is able to detect
more non-modelled defects.

Several dictionary-based TDC techniques have also been
presented recently. While the above statistical coding
schemes use a statistical model of the test data and encode
blocks according to their frequencies of occurrence,
dictionary-based methods select strings of the blocks to
establish a dictionary, and then encode them into equal-size
tokens [103]. The dictionary may be either static or dynamic
(adaptive). The static dictionary is permanent, whereas the
dynamic dictionary permits additions and deletions of
strings as new input is processed. Wolff and Papachristou
[108] described a method that employs the well-known
LZ77 algorithm, which uses a dynamic dictionary. Knieser
et al. [109] presented another TDC technique based on LZW

78

algorithm. Li and Chakrabarty [110] proposed a TDC
approach using dictionaries with fixed-length indices. One
advantage of this method is the elimination of the
synchronisation problem between the ATE and the SOC,
because it does not require multiple clock cycles to
determine the end of a compressed data packet.

Unlike the above TDC techniques that require an on-chip
hardware decoders, Jas and Touba [111] proposed a
software decompression approach for SOCs with embedded
processors. The basic idea is to load a program along with
the compressed test sets into the processor’s on-chip
memory. The processor then executes the program to
decompress the test data and applies it to the CUT. The
authors also described techniques to avoid the potential
problem of “memory overflow”, at the cost of lower
compression ratio or longer test application time. Although
it saves DFT area, the embedded processors may have
access only to a small number of cores and hence the
approach lacks generality.

4.2 Test response compaction

Test response compaction is the process that reduces the
volume of test responses sent from the CUT to the ATE.
Unlike the lossless compression techniques used for test
stimuli, test response compaction techniques are typically
lossy, i.e. some faults that can be detected by the original
test response may be masked by the compactor. This
phenomenon is referred to as aliasing. An additional
problem lies in the fact that many designs produce unknown
states (also called X states) in test responses. Sources of
these unknown states include bus contention, interactions
between multiple clock domains or uninitialised memory
elements. Although inserting test points helps to eliminate
unknown states in test responses, this intrusive DFT
technique is not preferable for core-based design. Further,
the test response compactor should have also support for
reliable diagnosis, in addition to very low aliasing and the
ability to handle responses with unknown states.

Based on their structures, test response compactors can be
categorized into three types [112]: infinite memory
compactors (also called time compactors or sequential
compactors), memoryless compactors (also called space
compactors or combinational compactors) and finite
memory compactors.

Infinite memory compactors, such as MISRs or cellular
automata, have been widely used in BIST environments [5].
By inserting an MISR between the scan chain outputs and
bi-directional scan pins, Barnhart et al. [113] presented a
method to compact scan data during the scan-out operation.
A characteristic feature of the above compactor is the
infinite impulse response property, which allows the
compaction ratios to be a huge number from 10° to 10®
with a very small aliasing possibility. If the test responses
contain unknown states, these unknown states will need to
be masked to avoid the corruption of the response signature.

Memoryless compactors are combinational circuits. They
compact a large number of scan outputs, m, to a much
smaller number, k, through a compaction circuitry (usually
XOR networks). Various linear and nonlinear compactors
have been proposed in the literature. Mitra and Kim [114]
proposed X-Compact technique that uses parity check
matrices where all the columns have the same weight (the
weight of a column is the number of 1s in it). Their
approach can reach very high compaction ratio (for
memoryless compactors), and at the same time handle
simultaneous errors and unknown values. I-compact [115] is
based on coding theory of error detection in the presence of

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

erasures. The approach uses parity check matrices of a linear
block code (e.g. Hamming codes) to achieve compaction of
test response data with many unknowns. Memoryless
compactors can handle unknown states in test responses
without circuit modification. However, the compaction ratio
is much smaller when compared with the infinite memory
compactors.

Finite memory compactors contain memory elements,
however they have a finite impulse response. In [112],
Rajski et al. first introduced this type of compactor: the
convolutional compactor. The finite memory compactors
can achieve compression ratios in between that of
memoryless and infinite memory compactors. They also
can handle unknown states and support diagnosis, at the cost
of a slightly higher DFT area.

5 Ongoing and future research

Although various techniques have been proposed to tackle
the resource-constrained SOC test problem, with the
growing complexity of SOC designs and the aggressive
shrinking of semiconductor technologies, new method-
ologies are still required to be developed to address the
emerging challenges.

Most of the prior research on TAM optimisation and test
scheduling assumes that the ATE operates at the same
frequency (f,,.) as the internal cores’ scan chain frequencies
(fiam)- This assumption has been shown to be inefficient
when there is a mismatch between the ATE capability and
the internal scan chain speed. In [116] Khoche proposed the
Bandwidth Matching technique to tackle the mismatch
between high-end ATEs and low-speed scan chain designs.
Bandwidth is defined as the product of the width and the
frequency of a scan architecture. Using serialisation/
deserialisation methods, a high bandwidth source/sink
(e.g. ATE) can be connected to multiple low bandwidth
sinks/sources (e.g. TAM), as long as the bandwidth
matches. There are also cases where low-speed ATEs are
used to feed high-speed scan chains, as emphasized in [117].
The TAM frequency has direct impact on test application
time, TAM wire length and test power of the SOC.
Therefore, the system integrator will have to search a larger
solution space to explore the trade-off between these
important factors by including the TAM frequency into
the test architecture optimisation. Sehgal er al. have
proposed virtual TAM design using a framework based on
Lagrange multipliers [67] to fully exploit the high
bandwidth capacity of the ATE. The approach is based on
a given frequency ratio between the ATE channels and the
internal scan frequency. However, the frequency was not
considered as an integrated optimisation component. There-
fore, multi-frequency TAM design, in which both the TAM
width and the TAM running frequency assigned to a core are
co-optimised, is necessary to further reduce the SOC test
cost.

Both test architecture optimisation and TDC techniques
affect the test application time of the SOC. Therefore, to
further reduce the cost of SOC testing, these two tasks
should be considered simultaneously. For example, a higher
compression ratio of a core test will require less TAM
bandwidth. If test architecture optimisation is applied to the
uncompressed test sets, the core will be given a higher TAM
width than needed and hence an inefficient test architecture
will be derived. In [118], Iyengar and Chandra considered
both techniques by first designing the TAM architecture
using the rectangle packing algorithm [63] for the original
test sets, and then applying the FDR coding [104] to cores
for test compression purpose. Although both techniques are

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

applied, they are not considered in a unified manner and
results show that large idle times exist in the test schedule.
There can be three methods to combine decompression
logic (i.e. decoder) with TAM design: decoder-per-SOC,
decoder-per-TAM and decoder-per-core, in which decoder-
per-TAM is only applicable for fixed-width test bus
architectures. The system integrator needs to trade-off the
DFT area and test application time within these three
scenarios. Since different core tests typically have different
test compression ratios, decoder-per-core strategy will
achieve the best overall test data reduction, although, at
the cost of the largest DFT overhead. Decoder-per-SOC, on
the contrary, will have the least DFT area overhead but the
larger test data volume. Decoder-per-TAM is in the middle
of the above two strategies. Despite the intuitive analysis,
how to efficiently combine the test architecture optimisation
with any of the three scenarios is still an open issue and
needs further investigation.

More defects in deep sub-micron technologies manifest
themselves through unexpected increases or decreases in
propagation delays, known as delay faults [119]. To detect
these timing-related defects, at least two controlled patterns
in consecutive clock cycles are necessary: the first initialises
the circuit’s nodes and the second captures the transitions on
the sensitized paths. When applying these two consecutive
patterns, the faulty propagation paths will not be detected
unless the outputs are sampled at a high enough speed
(preferably rated-speed). Most of the research work on bus-
based test architectures is applicable only to one-pattern
tests, which is not suitable for delay tests. In [120], Xu and
Nicolici proposed to reuse the functional interconnects for
applying the second pattern to the primary inputs of the
CUT, with a penalty in testing time. This approach,
however, need to be extended for at-speed application of
the second test pattern. Therefore, new techniques are
needed to address the increasing demand for high-quality
delay test. In addition, future challenges include hierarchical
TAM design, test architecture optimisation with multiple
test sources and/or test sinks, and test architecture
optimisation for network-on-a-chip designs.

6 References

—_

International SEMATECH, ‘The international technology roadmap for

semiconductors (ITRS)’, 2001 Edition, http://public.itrs.net/Files/

2001ITRS/Home.htm

2 Gupta, R.K., and Zorian, Y.: ‘Introducing core-based system design’,
IEEE Des. Test Comput., 1997, 14, (4), pp. 15-25

3 Zorian, Y., Marinissen, E.J., and Dey, S.: ‘Testing embedded-core-
based system chips’, Computer, 1999, 32, (6), pp. 52—60

4 Kapur, R., and Williams, T.W.: ‘Manufacturing test of SoCs’. ATS,
2002, pp. 317-319

5 Abramovici, M., Breuer, M., and Friedman, A.: ‘Digital systems testing
and testable design’ (IEEE Press, 1990)

6 Koenemann, B.: ‘LFSR-coded test patterns for scan designs’. ETC,
1991, pp. 237-242

7 lyengar, V., Chakrabarty, K., and Marinissen, E.J.: ‘Recent advances in
test planning for modular testing of core-based SOCs’. ATS, 2002,
pp. 320-325

8 Rajsuman, R.: ‘Testing a system-on-a-chip with embedded micro-
processor’. ITC 1999, pp. 499-508

9 Zorian, Y.: ‘Test requirements for embedded core-based systems and
IEEE P1500°. ITC 1997, pp. 191-199

10 Zorian, Y., Marinissen, E.J., and Dey, S.: ‘Testing embedded-core
based system chips’. ITC 1998, pp. 130—143

11 Immaneni, V., and Raman, S.: ‘Direct access test scheme - design of
block and core cells for embedded ASICs’. ITC 1990, pp. 488—492

12 Bhatia, S., Gheewala, T., and Varma, P.: ‘A unifying methodology
for intellectual property and custom logic testing’. ITC, 1996,
pp. 639-648

13 Whetsel, L.: ‘An IEEE 1149.1 Based test access architecture for ICs
with embedded cores’. ITC 1997, pp. 69-78

14 Touba, N., and Pouya, B.: ‘Using partial isolation rings to test core-
based designs’, IEEE Des. Test Comput., 1997, 14, (4), pp. 52-59

15 Pouya, B., and Touba, N.: ‘Modifying user-defined logic for test access

to embedded cores’. ITC, 1997, pp. 60-68

79

2

—_

22

23

24
25
26

27

28
29

30

31
32
33
34

35
36

37

38

39

40

4

42

43

44

45

46

47

48

49

50

80

Harrod, P.: ‘Testing reusable IP - a case study’. ITC, 1999, pp. 493
498

Beenker, F., van Eerdewijk, K., Gerritsen, R., Peacock, F., and van der
Star, M.: “Macro testing: unifying IC and board test’, /[EEE Des. Test
Comput., 1986, 3, (4), pp. 26-32

Bouwman, F., Oostdijk, S., Stans, R., Bennetts, B., and Beenker, F.:
‘Macro testability; the results of production device applications’. ITC,
1992, pp. 232-241

Marinissen, E.J., and Lousberg, M.: ‘Macro test: A liberal test approach
for embedded reusable cores’. TECS, 1997, pp. 1.2—1-9

Ghosh, 1., Jha, N.K., and Dey, S.: ‘Low overhead design
for testability and test generation technique for core-based
systems-on-a-chip’, IEEE Trans. Comput.-Aided Des., 1999,
18, (11), p. 1661

Freeman, S.: ‘Test generation for data-path logic: the F-path method’,
IEEE J. Solid-State Circuits, 1988, 23, pp. 421-427

Ghosh, I, Dey, S., and Jha, N.K.: ‘A fast and low cost testing technique
for core-based system-chips’, IEEE Trans. Comput.-Aided Des.,
2000, 19, (8), pp. 863-876

Ravi, S., Lakshminarayana, G., and Jha, N.K.: ‘Testing of core-based
systems-on-a-chip’, IEEE Trans. Comput.-Aided Des., 2001, 20, (3),
pp. 426—439

Ravi, S., and Jha, N.K.: ‘“Test synthesis of system-on-a-chip’, IEEE
Trans. Comput.-Aided Des., 2002, 21, (10), pp. 1211-1217

Dick, R.P., and Jha, N.K.: ‘MOCSYN: multiobjective core-based
single-chip system synthesis’. DATE, 1999, 263-270

Yoneda, T., and Fujiwara, H.: ‘Design for consecutive testability of
system-on-a-chip with built-In self testable cores’, J. Electron. Test.,
Theory Appl., 2002, 18, (4/5), pp. 487-501

Chakrabarty, K., Mukherjee, R., and Exnicios, A.S.: ‘Synthesis of
transparent circuits for hierarchical and system-on-a-chip test’. ICVD,
2001, pp. 431-436

Yoneda, T, and Fujiwara, H.: ‘Design for consecutive transparency of
cores in system-on-a-chip’. VTS, 2003, pp. 287-292

Yoneda, T, Uchiyama, T., and Fujiwara, H.: ‘Area and time
co-optimization for system-on-a-chip based on consecutive testability’.
ITC, 2003, Charlotte, NC, Sept. 2003, pp. 415-422

Nourani, M., and Papachristou, C.: ‘Structural fault testing of embedded
cores using pipelining’, J. Electron. Test., Theory Appl., 1999, 15, (1),
p. 129

Aerts, J., and Marinissen, E.J.: ‘Scan chain design for test time
reduction in core-based ICs’. ITC, 1998, pp. 448—457

Goel, S.K.: ‘An improved wrapper architecture for parallel testing of
hierarchical cores’. ETS, 2004, pp. 147-152

Varma, P., and Bhatia, S.: ‘A structured test re-use methodology for
core-based system chips’. ITC, 1998, pp. 294-302

Marinissen, E.J., Arendsen, R., Bos, G., Dingemanse, H., Lousberg, M.,
and Wouters, C.: ‘A structured and scalable mechanism for test access
to embedded reusable cores’. ITC, 1998, pp. 284-293

Goel, S.K., and Marinissen, E.J.: ‘Effective and efficient test
architecture design for SOCs’. ITC, 2002, pp. 529-538

Nag, P., Gattiker, A., Wei, S., Blanton, R., and Maly, W.: ‘Modeling the
economics of testing: a DFT perspective’, IEEE Des. Test Comput.,
2002, 19, pp. 29-41

Zorian, Y.: ‘A distributed BIST control scheme for complex VLSI
devices’. VTS, 1993, pp. 611

Jiang, W., and Vinnakota, B.: ‘Defect-oriented test scheduling’. VTS,
1999, pp. 433-438

Iyengar, V., Chakrabarty, K., and Marinissen, E.J.: ‘Co-
optimization of test wrapper and test access architecture for
embedded cores’, J. Electron. Test., Theory Appl., 2002, 18, (2),
pp. 213-230

Flottes, M.-L., Pouget, J., and Rouzeyre, B.: ‘Sessionless test scheme:
power-constrained test scheduling for system-on-a-chip’. VLSI-SOC
2001, pp. 105-110

Larsson, E., and Fujiwara, H.: ‘Power constrained preemptive TAM
scheduling’. ETW, 2002, pp. 119-126

Chou, R.M., Saluja, K.K., and Agrawal, V.D.: ‘Scheduling tests for
VLSI systems under power constraints’, I[EEE Trans. VLSI Syst., 1997,
5,(2), pp. 175-184

Iyengar, V., and Chakrabarty, K.: ‘Precedence-based, preemptive, and
power-constrained test scheduling for system-on-a-chip’. VTS, 2001,
pp. 368-374

Larsson, E., and Peng, Z.: ‘A reconfigurable power-conscious
core wrapper and its application to SOC test scheduling’. ITC, 2003,
pp. 1135-1144

Sugihara, M., Date, H., and Yasuura, H.: ‘A novel test methodology for
core-based system LSIs and a ddddtesting time minimization problem’.
ITC, 1998, pp. 465-472

Chakrabarty, K.: ‘Test scheduling for core-based systems using mixed-
integer linear programming’, [EEE Trans. Comput.-Aided Des.,
2000, 19, (10), pp. 1163-1174

Marinissen, E.J.: “The role of test protocols in automated test generation
for embedded-core-based system ICs’, J. Electron. Test., Theory Appl.,
2002, 18, (4/5), pp. 435-454

Muresan, V., Wang, X., Muresan, V., and Vladutiu, M.: ‘A comparison
of classical scheduling approaches in power-constrained block-test
scheduling’. ITC, 2000, pp. 882-891

Larsson, E., and Peng, Z.: ‘Test scheduling and scan-chain division
under power constraint’. ATS, 2001, pp. 259-264

Ravikumar, C.P., Verma, A., and Chandra, G.: ‘A polynomial-time
algorithm for power constrained testing of core based systems’. ATS,
1999, 1999, pp. 107-112

51

52

53
54

55
56
57

58
59

60

61
62

63

64

65

66
67

68
69

70
71

72

73

74

75

76

77

78

79
80

81

82
83
84
85

Ravikumar, C.P., Chandra, G., and Verma, A.: ‘Simultaneous module
selection and scheduling for power-constrained testing of core based
systems’. VLSID, 2000, pp. 462—-467

Zhao, D., and Upadhyaya, S.: ‘A generic resource distribution and test
scheduling scheme for embedded core-based SoCs’, IEEE Trans.
Instrum. Meas., 2004, 53, (2), pp. 318-329

Hales, A., and Marinissen, E.J.: IEEE P1500 Web Site, http://grouper.
ieee.org/groups/1500/

Marinissen, E.J., Kapur, R., Lousberg, M., Mclaurin, T., Ricchetti, M.,
and Zorian, Y.: ‘On IEEE P1500’s standard for embedded core test’,
J. Electron. Test., Theory Appl., 2002, 18, (4/5), pp. 365-383
Marinissen, E.J., Kapur, R., and Zorian, Y.: ‘On using IEEE P1500
SECT for test plug-n-play’. ITC, 2000, pp. 770-777

Marinissen, E.J., Goel, S.K., and Lousberg, M.: “Wrapper design for
embedded core test’. ITC, 2000, pp. 911-920

Koranne, S.: ‘A novel reconfigurable wrapper for testing of embedded
core-based SOCs and its associated scheduling algorithm’, J. Electron
Test., Theory Appl., 2002, 18, (4/5), pp. 415-434

Koranne, S.: ‘Design of reconfigurable access wrappers for embedded
core based SoC test’, [EEE Trans. VLSI Syst., 2003, 11, (5), pp. 955-960
Nicolici, N., and Al-Hashimi, B.M.: ‘Multiple scan chains for power
minimization during test application in sequential circuits’, IEEE
Trans. Comput., 2002, 51, (6), pp. 721-734

Vermaak, H., and Kerkhoff, H.G.: ‘Enhanced P1500 compliant wrapper
suitable for delay fault testing of embedded cores’. ETW, 2003,
pp. 257-262

Xu, Q., and Nicolici, N.: “Wrapper design for testing IP cores with
multiple clock domains’. DATE, 2004, pp. 416-421

Hetherington, G., Fryars, T., Tamarapalli, N., Kassab, M., Hassan, A.,
and Rajski, J.: ‘Logic BIST for large industrial designs: real issues and
case studies’. ITC, 1999, pp. 358-367

Iyengar, V., Chakrabarty, K., and Marinissen, E.J.: ‘On Using rectangle
packing for SOC wrapper/TAM co-Optimization’. VTS, 2002, pp.
253-258

Iyengar, V., Chakrabarty, K., and Marinissen, E.J.: ‘Test access
mechanism optimization, test scheduling, and tester data volume
reduction for system-on-chip’, IEEE Trans. Comput., 2003, 52, (12),
pp. 1619-1632

Goel, S.K., and Marinissen, E.J.: ‘Controla-aware test architecture
design for modular SOC testing’. ETW, 2003, pp. 57-62

Iyengar, V., Chakrabarty, K., and Marinissen, E.J.: ‘Efficient wrap-
per/TAM co-optimization for large SOCs’. DATE, 2002, pp. 491-498
Sehgal, A., Iyengar, V., Krasniewski, M.D., and Chakrabarty, K.: “Test
cost reduction for SOCs using virtual TAMs and lagrange multipliers’.
DAC, 2003, pp. 738-743

Koranne, S.: ‘On test scheduling for core-based SOCs’. VLSID, 2002,
pp. 505-510

Koranne, S.: ‘Formulating SoC test scheduling as a network
transportation problem’, IEEE Trans. Comput.-Aided Des., 2002, 21,
(12), pp. 1517-1525

Goel, S.K., and Marinissen, E.J.: ‘Cluster-based test architecture design
for system-on-chip’. VTS, 2002. pp. 259-264

Goel, S.K., and Marinissen, E.J.: ‘A novel test time reduction algorithm
for test architecture design for core-based system chips’. ETW, 2002,
pp. 7-12

Goel, S.K., and Marinissen, E.J.: ‘Layout-driven SOC test architecture
design for test time and wire length minimization’. DATE, 2003,
pp. 738743

Krundel, L., Goel, S.K., Marinissen, E.J., Flottes, M.-L., and
Rouzeyre, B.: ‘User-constrained test architecture design for modular
SOC testing’. ETS, 2004, May 2004, pp. 80—85

Huang, Y., Cheng, W.-T., Tsai, C.-C., Mukherjee, N., Samman, O.,
Zaidan, Y., and Reddy, S.M.: ‘Resource allocation and test scheduling
for concurrent test of core-based SOC design’. ATS, 2001, pp. 265-270
Huang, Y., Cheng, W.-T., Tsai, C.-C., Mukherjee, N., and Reddy, S.M.:
‘Static pin mapping and SOC test scheduling for cores with multiple test
sets’. ISQED, 2003, pp. 99-104

Iyengar, V., Chakrabarty, K., and Marinissen, E.J.: ‘Integrated
wrapper/TAM co-optimization, constraint-driven test scheduling, and
tester data volume reduction for SOCs’. DAC, 2002, pp. 685-690
Iyengar, V, Goel, S.K., Chakrabarty, K., and Marinissen, E.J.: ‘Test
resource optimization for multi-site testing of SOCs under ATE
memory depth constraints’. ITC, 2002, pp. 1159-1168

Gonciari, P.T., Al-Hashimi, B.M., and Nicolici, N.: ‘Useless memory
allocation in system-on-a-chip test: problems and solutions’. VTS,
2002, pp. 423-429

Zou, W., Reddy, S.M., Pomeranz, 1., and Huang, Y.: ‘SOC test
scheduling using simulated annealing’. VTS, 2003, pp. 325-330
Murata, H., Fujiyoshi, K., Nakatake, S., and Kajitani, Y.: ‘“VLSI module
placement based on rectangle-packing by the sequence-pair’, IEEE
Trans. Comput.-Aided Des., 1996, 15, (12), pp. 1518—1524

Huang, Y., Reddy, S.M., Cheng, W.-T., Reuter, P., Mukherjee, N., Tsai,
C.-C., Samman, O., and Zaidan, Y.: ‘Optimal core wrapper width
selection and SOC test scheduling based on 3-D bin packing algorithm’.
ITC, 2002, pp. 74-82

Koranne, S., and Iyengar, V.: ‘On the Use of k-tuples for SoC Test
schedule representation’. ITC, 2002, pp. 539-548

Koranne, S.: ‘Solving the SoC test scheduling problem using network
flow and reconfigurable wrappers’. ISQED, 2003, pp. 93-98

Larsson, E., and Fujiwara, H.: ‘Optimal system-on-chip test schedul-
ing’. ATS, 2003, pp. 306-311

Larsson, E., and Peng, Z.: ‘An Integrated system-on-chip test frame-
work’. DATE, 2001, pp. 138-144

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

86
87
88

89

90
91
92
93
94

95

96

97
98

99

100

101

102

103

Larsson, E., Peng, Z., and Carlsson, G.: ‘The design and optimization
of SOC test solutions’. ICCAD, 2001, pp. 523-530

Zhao, D., and Upadhyaya, S.: ‘Power constrained test scheduling with
dynamically varied TAM’. VTS, 2003, pp. 273-278

Su, C.P., and Wu, C.-W.: ‘A graph-based approach to power-
constrained SOC test scheduling’, J. Electron. Test., Theory Appl.,
2004, 20, (1), pp. 45-60

Huang, Y., Mukherjee, N., Tsai, C.-C., Samman, O., Zaidan, Y.,
Zhang, Y., Cheng, W.-T., and Reddy, S.M.: ‘Constraint-driven pin
mapping for concurrent SOC testing’. ASP-DAC, 2002

Larsson, E., and Fujiwara, H.: ‘Test resource partitioning and
optimization for SOC designs’. VTS, 2003, pp. 319-324

Xu, Q., and Nicolici, N.: ‘On reducing wrapper boundary register cells
in modular SOC testing’, ITC, 2003, pp. 622—631

Marinissen, E.J., Iyengar, V., and Chakrabarty, K.: ‘ITC’02 SOC test
benchmarks’, http://www.extra.research.philips.com/itc02socbenchm/
Chandra, A., and Chakrabarty, K.: ‘Test resource partitioning for
SOCs’, IEEE Des. Test Comput., 2001, pp. 80-91

Bayraktaroglu, I., and Orailoglu, A.: ‘Test volume and application
time reduction through scan chain concealment’. DAC, 2001, pp. 151—
155

Koenemann, B., Barnhart, C., Keller, B., Farnsworth, O., and
Wheater, D.: ‘A smartBIST variant with guaranteed encoding’.
ATS, 2001, pp. 325-330

Rajski, J., Kassab, M., Mukherjee, N., Tamarapalli, N., Tyszer, J., and
Qian, J.: ‘Embedded deterministic test for low-cost manufacturing’,
IEEE Des. Test Comput., 2003, pp. 58—66

Dorsch, R., and Wunderlich, H.: ‘Tailoring ATPG for embedded
testing’. ITC, 2001, pp. 530-537

Iyengar, V., Chakrabarty, K., and Murray, B.T.: ‘Built-in self testing
of sequential circuits using precomputed test sets’. VTS, 1998,
pp. 418-423

Jas, A., Ghosh-Dastidar, J., and Touba, N.A.: ‘Scan vector
compression/decompression using statistical coding’. VTS, 1999,
pp. 114-120

Jas, A., and Touba, N.: ‘Test vector decompression via cyclical scan
chains and its application to testing core-based designs’. ITC, 1998,
pp. 458-464

Vranken, H., Hapke, H., Rogge, S., Chindamo, D., and Volkerink, E.:
‘Atpg padding and ATE vector repeat per port for reducing test data
volume’. ITC, 2003, pp. 1069-1078

Chandra, A., and Chakrabarty, K.: ‘System-on-a-chip test data
compression and decompression architectures based on golomb
codes’, IEEE Trans. Comput.-Aided Des., 2001, 30, (3),
pp- 355-368

Salomon, D.: ‘Data compression: The complete reference’ (Springer-
Verlag, New York, 2000)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 1, January 2005

104

105

106

107

108

109

110
111
112

113

114

115

116

117

118

119
120

Chandra, A., and Chakrabarty, K.: ‘Frequency-directed run-length
(FDR) codes with application to system-on-a-chip test data com-
pression’. VTS, 2001, pp. 114—121

El-Maleh, A.H., and Al-Abaji, R.H.: ‘Extended frequency-directed
run-length code with improved application to system-on-a-chip test
data compression’. ICECS, 2001, pp. 530-537

Gonciari, P.T., Al-Hashimi, B.M., and Nicolici, N.: ‘Improving
compression ratio, area overhead, and test application time for system-
on-a-chip test data compression/decompression’. DATE, 2002, pp.
604-611

Tehranipour, M., Nourani, M., and Chakrabarty, K.: ‘Nine-coded
compression technique with application to reduced pin-
count testing and flexible on-chip decompression’. DATE, 2004,
pp. 1284-1289

Wolff, F.G., and Papachristou, C.: ‘Multiscan-based test compression
and hardware decompression using LZ77°, ITC, 2002, pp. 331-339
Knieser, M.J., Wolff, F.G., Papachristou, C.A., Weyer, D.J., and
Mclntyre, D.R.: ‘A technique for high ratio LZW compression’.
DATE, 2003, pp. 116121

Li, L., and Chakrabarty, K.: ‘Test data compression using dictionaries
with fixed-length indices’. VTS, 2003, pp. 219-224

Jas, A., and Touba, N.: ‘Using an embedded processor for efficient
deterministic testing of systems-on-a-chip’. ICCD, 1999

Rajski, J., Tyszer, J., Wang, C., and Reddy, S.M.: ‘Convolutional
compaction of test responses’. ITC, 2003, pp. 745-754

Barnhart, C., Brunkhorst, V., Distler, F., Farnsworth, O., Keller, B.,
and Koenemann, B.: ‘OPMISR: the foundation for compressed ATPG
vectors’. ITC, 2001, pp. 748-757

Mitra, S., and Kim, K.S.: ‘X-compact: An efficient response
compaction technique for test cost reduction’. ITC, 2002, pp. 311-320
Patel, J.H., Lumetta, S.S., and Reddy, S.M.: ‘Application of saluja-
karpovsky compactors to test responses with many unknowns’. VTS,
2003, pp. 107-112

Khoche, A.: “Test resource partitioning for scan architectures using
bandwidth matching’. Digest of Int. Workshop Test Resource
Partition, 2002, pp. 1.4.1-1.4.8

Heidel, D., Dhong, S. Hofstee, P., Immediato, M., Nowka, K.,
Silberman, J., and Stawiasz, K.: ‘High speed serializing/
de-serializing design-for-test method for evaluating a 1 GHz
microprocessor’. VTS, 1998, pp. 234-238

Iyengar, V., and Chandra, A.: ‘A unified SOC test approach based on
test data compression and TAM design’. DFT, 2003, pp. 511-518
Krstic, A., and Cheng, K.-T.: ‘Delay fault testing for VLSI circuits’
(Kluwer Academic Publishers, 1998)

Xu, Q., and Nicolici, N.: ‘Delay fault testing of core-based systems-
on-a-chip’. DATE, 2003, pp. 744—749

81

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

