
On Signal Tracing for Debugging Speedpath-Related
Electrical Errors in Post-Silicon Validation

Xiao Liu†‡ and Qiang Xu†‡

†CUhk REliable computing laboratory (CURE)
Department of Computer Science & Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
‡Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Email: {xliu,qxu}@cse.cuhk.edu.hk

ABSTRACT
One of the most challenging problems in post-silicon validation is
to identify those errors that cause prohibitive extra delay on speed-
paths in the circuit under debug (CUD) and only expose themselves
in a certain electrical environment. To address this problem, we pro-
pose a trace-based silicon debug solution, which provides real-time
visibility to the speedpaths in the CUD during normal operation.
Since tracing all speedpath-related signals can cause prohibited
design for debug (DfD) overhead, we present an automated trace
signal selection methodology that maximizes error detection prob-
ability under a given constraint. In addition, we develop a novel
trace qualification technique that reduces the storage requirement
in trace buffers. The effectiveness of the proposed methodology is
verified with large benchmark circuits.

1. INTRODUCTION
With the ever-increasing design complexity for today’s integrated

circuit (IC) products, it is increasingly difficult to ensure the design
correctness of the first silicon solely through pre-silicon verification
techniques, such as simulation and formal verification. Post-silicon
validation has thus become an essential step in the design flow of
complex ICs, which has a significant impact on the profitability of
these products because of its associated time-to-market delay and
high re-spin cost [2, 7].

The duty of post-silicon validation is to eliminate various errors
escaped from pre-silicon verification, which can be broadly clas-
sified as functional errors and electrical errors. Functional errors,
being repeatable, are relatively easy to be identified and resolved by
designers [13, 15]. Electrical errors, however, only occur in certain
electrical environment during normal operation and they may take
millions of cycles to expose themselves. Hence, they are extremely
challenging to be repeated and root-caused. For example, conduct-
ing silicon debug in test environment (using automatic test equip-
ment) may simply result in “No Trouble Found (NTF)" because the
CUD’s behavior is quite different in system’s functional environ-
ment. Existing solutions mainly resort to designers’ own experi-
ences to identify such errors (e.g., by analyzing voltage-frequency
shmoo plot [8]), which cannot guarantee the debug quality and effi-
ciency.

To alleviate the limitation of the above manual process, we pro-
pose to monitor and trace those internal signals in the CUD that are
related to its electrical abnormal behavior. Such real-time visibility
facilitates us to identify the root cause of the electrical errors. At the
same time, however, since designers cannot afford very large design
for debug (DfD) overhead used for tracing [4, 10, 14], we can only
tap a small number of signals in the design and trace a subset of
them for a limited amount of cycles in each debug iteration.

Bus

Circuit
Under
Debug

Trigger
Unit

Trace
Buffer

Condition
 Signals

Trace
 Signals

DfD Structure

Configuration
Channel

JTAG
Interface

Trace
Port

Interconnection
Fabric

Figure 1: Trace-Based Debug Infrastructure.

Electrical errors often lead to reduced operational frequency of
the CUD, due to parasitic coupling noises between wires, power
supply noise, and/or insufficient driving strength, etc. In this work,
we first model the behavior of such speedpath-related electrical er-
rors. Accordingly, with given DfD constraint, we propose an au-
tomated trace signal selection methodology to maximize the error
detection probability with a subset of signals relevant to the targeted
speedpaths. Moreover, to reduce the storage requirements for trac-
ing, we develop a novel trace qualification technique that employs
reconfigurable logic to store useful traced data only when the errors
are detected. The proposed technique hence significantly improves
the utilization of the trace buffer. To the best of our knowledge,
this is the first trace-based solution for debugging electrical errors
in general logic circuits in post-silicon validation. With the pro-
posed technique, we can detect speedpath-related electrical errors
at its root-caused site, on the exact error occurrence cycle, without
requiring any supporting “golden vector”, which are often unavail-
able when debugging tricky errors.

The remainder of this paper is organized as follows. Section 2 re-
views related work and motivates this work. Section 3 describes the
speedpath-related electrical error model and equations to obtain cor-
responding visibility. In Sections 4 and 5, we illustrate the proposed
signal selection and data qualification techniques in detail. Exper-
imental results on benchmark circuits are then shown in Section 6.
Finally, Section 7 concludes this work.

2. PRELIMINARIES AND MOTIVATION
Trace-based debug solution facilities designers to observe abnor-

mal behavior of circuits in operational mode and conduct root-cause
analysis, and hence has been widely adopted in the industry (e.g., [1,
3, 5, 16]).

Fig. 1 depicts the general trace-based debug architecture [17]. At
design stage, a number of internal signals are selected to be tapped.
Then, during debug phase, part of the tapped signals are transferred
through interconnection fabric (usually MUX tree) to on-chip trace
buffer or off-chip trace port. To save DfD cost, designers can only
afford to tap a small number of signals. Therefore, it is essential
to select those signals that can provide a better view of the CUD
to help designers root-cause bugs [9, 11, 18]. In addition, to save
trace bandwidth requirement, trace qualification techniques (e.g.,
using trigger unit to control the start/stop of tracing) and trace data
compression methods are often utilized [4, 7].

During post-silicon validation, electrical bugs are the most dif-
ficult to resolve because their occurrences are sensitive to certain
electrical environment. In [12], the authors proposed to locate elec-
trical errors in microprocessor by tracing the footpoint of instruction
flow. However, this method cannot be applied to debugging general
logic circuits. In this paper, we consider those electrical bugs that
cause the performance degradation for general logic circuits. Such
bugs often occur on the critical paths in the circuit that determine
its maximum operational frequency, known as speedpaths. To un-
derstand such electrical bugs and root cause them, it is essential to
make the relevant signals visible during post-silicon validation.

Due to DfD cost considerations, designers can only afford to tap a
subset of the relevant signals to speedpaths and trace some of them
concurrently during each debug run. Consequently, the effective-
ness of this debug strategy highly relies on which signals are se-
lected to trace in the circuit. Existing trace signal selection methods
(e.g., [9, 11]), however, are not applicable because they implicitly
assume the timing correctness of the circuit so that the traced circuit
state can be used to reason a large amount of untraced signals. At
the same time, speedpath-related bugs are activated only when the
corresponding speedpaths are sensitized. Therefore, if we conduct
continuous tracing, the trace buffer can easily become full without
any useful traced data that actually activate bugs.

The above limitations motivate the proposed trace-based debug
solution for speedpath-related electrical bugs, including new trace
signal selection algorithms to maximize the detection probability
for such bugs and novel trace qualification techniques to efficiently
utilize trace bandwidth.

3. OBSERVING SPEEDPATH-RELATED
ELECTRICAL ERRORS

3.1 Speedpath-Related Electrical Error Model
While speedpath-related electrical errors can be caused by vari-

ous reasons (e.g., insufficient driving strength or excessive coupling
noises), they all behave similarly as causing excessive delays on
critical paths. Consider the circuit shown in Fig. 2 as an example.
During one clock cycle in the circuit’s operation, a falling transition
is propagated along the path. That is, the logic value (e.g. ‘0’ in
Fig. 2) should be propagated through the path to the endpoint (i.e.
output or flip-flop) and the value should be latched after the clock
cycle. However, due to electrical bugs in the circuit, this value does
not arrive at the endpoint at the end of the clock cycle, and if we ob-
serve an opposite latched value (e.g., ‘1’ in Fig. 2), we can conclude
that a speedpath-related electrical error occurs.

From this example, the detection of speedpath-related electrical
error requires us to monitor the propagation behavior of the path.
As for this example, to determine the propagation of value ‘0’, to-
gether with the start point signal a_in2, we also need to observe
side-input b_in1 of Gate b on the path. This is because, to determine
the value propagation through each logic gate on the path, when the
to-propagate value is a “controlling” value (as ‘0’ for Gate a, c),
it can definitely propagate through the gate. Otherwise, the event
only happens when all other “side-inputs” (e.g., b_in1) are visible

as “non-controlling” values (they are referred as objective signals
hereafter). Finally, we also need to observe c_out for error detec-
tion. To conclude, observing logic ‘0’, ‘0’, and ‘1’ on signals a_in2,
b_in1 and c_out during the CUD’s normal operation implies the oc-
currence of electrical bugs. In other words, observing the above
three signals is necessary for us to detect the electrical error that
causes slow propagation of logic ‘0’ on this path when it occurs.

Error

a_in2(0)

b_in1(0)

c_out(0)

Figure 2: Modeling Speedpath-Related Electrical Error: An
Example

3.2 Speedpath-Related Electrical Error Detec-
tion Quality

While several evaluation metrics for trace signal selection has
been introduced in [9, 11], those works implicitly assume the timing
correctness of the circuit and hence cannot be used to debug elec-
trical errors. We therefore define a few new metrics in this work
to evaluate the effectiveness of trace signals for electrical errors, as
summarized in Table 1.

To be specific, we denote by SV 1/SV 0 the selective visibility of
the signals, which obviously is ‘1’ for traced signals and ‘0’ for
unselected ones. To note, above probabilities do not represent the
probability that value ‘0’/‘1’ is actually observed on the node (de-
noted as visibility V 1/V 0). For example, suppose the signal remains
‘0’ in most of time, we can barely observe value ‘1’ on it provided it
is traced. Hence, we define visibility with Eq. (1) and Eq. (2), where
P1/P0 is the probability for the signal to be logic ‘1/0’ in functional
mode. In this work, we calculate V 1/V 0 by assuming some control
inputs are pre-set as ‘1’/‘0’ to insure the CUD is working in func-
tional mode, while all other inputs are with the probability 0.5 to be
value ‘1’/‘0’.

V 1 = SV 1×P1 (1)
V 0 = SV 0×P0 (2)

With these notations, we calculate the visibilities of internal sig-
nals with forward propagation based on those observable probabili-
ties of FFs with the following equations. Note that, these equations
are based on the assumption that all inputs are independent for each
logic gate.

For AND gate (a,b–input, c–output)

V 0(c) = V 0(a)+V 0(b)−V 0(a)×V 0(b) (3)

V 1(c) = V 1(a)×V 1(b) (4)
For OR gate (a,b–input, c–output)

V 0(c) = V 0(a)×V 0(b) (5)

V 1(c) = V 1(a)+V 1(b)−V 1(a)×V 1(b) (6)
For XOR gate (a,b–input, c–output)

V 0(c) = V 0(a)×V 0(b)+V 1(a)×V 1(b) (7)

V 1(c) = V 0(a)×V 1(b)+V 1(a)×V 0(b) (8)
With this information, we then introduce a metric to evaluate the

error detection quality. It is important to note that the occurrence
of electrical error is not predictable at design stage, while can be

Selected Visibility (SV 1/SV 0) For selected trace nodes, SV 1 = SV 0 = 1; otherwise SV 1 = SV 0 = 0
Functional Probability (P1/P0) The probability that the node is ‘1’/‘0’ in functional mode

Visibility (V 1/V 0) The probability that the value ‘1’/‘0’ is actually observed on the node
Propagation Visibility (PV 1/PV 0) The probability to detect value(‘1’/‘0’) propagation based on traced signals

Propagation Occurrence Probability (POP1/POP0) The probability that value(‘1’/‘0’) propagation occurs
Detection Quality (DQ1/DQ0) The probability that the value ‘1’/‘0’ propagation is detected when the propagation occurs

Table 1: Terminologies for Visibility Calculation.

detected only when the value propagation behavior is monitored.
We therefore resort to the propagation detection quality to evaluate
the error detection effectiveness. For this purpose, the Propagation
Visibility (PV) is expressed by

PV 0/PV 1 = ∏V (i) i ∈ {start point, objective signals} (9)

Recall the example in Fig. 2. The required visible signals are
start point of the path and the objective signals. In addition, as dis-
cussed earlier the corresponding to-be-visible value of objective sig-
nal should be “non-controlling” one with its relevant gate (e.g., ‘0’
of b_in1 with Gate b). In particular, the required visible of start
point simply depends on the propagation type (‘0’/‘1’). With these
observations, we define the Detection Quality(DQ) as the condi-
tional probability that the value ‘0’/‘1’ propagation is detected un-
der the condition that the propagation happens, namely,

DQ0 =
PV 0

POP0
(10)

DQ1 =
PV 1

POP1
(11)

wherein the probability that ‘0’/‘1’ propagation occurs (POP) is
calculated by assuming all path relevant signals are independent as,

POP0/POP1 = ∏P(i) i ∈ {start point, objective signals} (12)

Clearly, the above value is 100% when all relevant signals in the
driving cone of targeted path are visible.

4. TRACE SIGNAL SELECTION
With the terminologies defined in Section 3, the trace signal se-

lection problem studied in this section is: Given a set of targeted
speedpaths1, how to set SV to be ‘1’ for a constrained number
(NTAP) of tapped signals (FFs and/or input signals), so that the cir-
cuit’s total error detection quality (T DQ = ∑(DQ0+DQ1)) for all
targeted potential speedpaths is maximized.

We solve the above problem progressively as follows. Firstly, we
extract the relation between to-be-selected signals and the objective
signals required to be observed for error detection (e.g., b_in1 in
Fig. 2) to guide the selection procedure (Section 4.1). Based on
this information, we then select a minimum set of signals to guar-
antee each targeted speedpath with non-zero error detection quality
(Section 4.2). Finally, more signals are selected to increase error
detection quality under the tapped signal quantity constraint (Sec-
tion 4.3).

4.1 Relation Cube Extraction
Since the objective signals locate in internal combinational logic,

while the to-be-traced signals are state elements surrounded by them,
1These speedpaths can be designated by designers or automatically ex-
tracted from the design. Considering the inaccurate delay model used in
timing analysis and process variation effects, speedpath identification itself
is a challenging problem, but it is beyond of the scope of this paper. Inter-
ested readers may refer to [6].

it is essential to extract the relationship between these two sets of
signals to guide signal selection. Otherwise, we may blindly choose
trace signals that have little impact on the visibility of objective sig-
nals. One straightforward thought is to conduct symbolic simula-
tion to obtain the exact logic relationship. This method, however, is
not only time-consuming, but more importantly, makes deriving the
sensitization probability with a subset of the relevant signals diffi-
cult. In this work, we propose to use relation cube to represent the
visibility for objective signals in a concise and effective manner.

Each relation cube denotes that when all signals in the cube are
traced, the corresponding value of targeted signal can be visible. An
example is shown in Fig. 3, where the relation cube corresponding
to signal C(1) is {FF1, FF2}. We define three atomic operations
(merge, concatenate and copy) on relation cube for its gate-level
propagation. In our example, since A(1) and B(1) equals C(1), FF1
merges FF2 to be {FF1, FF2} for observing C(1); while either
A(0) or B(0) leads to C(0), {FF1} concatenates {FF2} and we
have two relation cubes {FF1}, {FF2} for observing C(0). As for
copy operation, it is simply used when propagating the cube through
an inverter or a BUFFER gate.

Based on the above, we conduct circuit-level structural analysis to
extract the relation cubes for all objective signals. A pre-processing
step is utilized for finding those candidate trace signals within the
fan-in cones of objective signals. These signals are then initialized
with two cubes corresponding to logic value ‘0’/‘1’, as shown in
Fig. 3. We then propagate the cubes forwardly in the combinational
logic. During the process, we conduct gate-level cube propagation
on every newly reached logic element, until all required objective
signals are processed. To note, in order to reduce the memory
cost which grows exponentially with circuit size, we dynamically
remove the relation cubes when the corresponding gate has fully
propagated its relation cubes to all gates in its fan-out.

B(0) – FF2
B(1) – FF2

A(0) – FF1
A(1) – FF1

FF1

FF2

C(0) – {FF1}, {FF2}
C(1) – {FF1, FF2}

Figure 3: Relation Cube Extraction: An Example.

4.2 Signal Selection for Non-Zero-Probability
Error Detection

After the above process, we have obtained a set of relation cubes
containing candidate trace signals for observing ‘0’/‘1’ on each ob-
jective signal. With this information, this section is concerned with
selecting a minimum set of signals out of all the candidates to guar-
antee every targeted path with non-zero detection quality.

From Eq. (9) and Eq. (10), a speedpath can be monitored only
when the visibilities of all its objective signals are non-zero. In other
words, at least all the signals in one relation cube of each objective
signal should be traced. We propose a heuristic to achieve this ob-
jective with minimum number of selected signals, and its flowchart
is shown in Fig. 4.

To effectively utilize trace signals for monitoring multiple paths
at the same time, those paths within the same sequential level of
the circuit are put into one group to be considered together. Then

for each group, the starting point and ending point of every targeted
speedpath are selected, which is the basic requirement for monitor-
ing errors on the path. Then, we gather all the objective signals and
their corresponding relation cubes. In each trace signal selection
iteration, we first find the set of unselected candidate signals for ev-
ery relation cube, and we record the sets with minimum size from
all cubes of every objective signal. Then among all these recorded
sets, we choose to select the signals in one type set so that most
signals will become visible. We then go back to remove newly vis-
ible objective signals and select another set of signals. The process
terminates when all objective signals are visible.

With the above selection procedure, we are able to guarantee non-
zero detection quality for each targeted speedpath by tracing a small
number of signals. More than that, inherently the detection quality
is high. This is because, we take high priority to utilize small-sized
relation cubes to observe each objective signal. The probability of
such event to occur tends to be high since it depends on the combi-
nation of a small number of signals.

Remove visible signals with current selected signals

End

Record candidate signal sets with minimum size

Select the signals in one set with maximum increase of
visible signal number

Combine targeted paths into groups

All group are solved?
Y

N

All objective signals are visible ?

N

Y

Figure 4: Flow of Signal Selection for Non-Zero-Probability Er-
ror Detection.

4.3 Trace Signal Selection for Error Detection
Quality Enhancement

Suppose more signals are allowed to be traced, we can use them
to further improve the total error detection quality, that is, to max-
imize TDQ. The selection process works in a greedy manner. Be-
cause the objective signals are affected by different sets of candidate
signals, we cannot evaluate the detection quality increment induced
by every candidate signal. Instead, with the relation cubes extracted
previously, we first determine the number of candidate signals Ncs
that can be selected simultaneously for detection quality improve-
ment. In other words, if the selected trace signal count is less than
Ncs, the error detection quality is guaranteed not to increase. We ob-
tain Ncs by parsing all relation cubes of the objective signals to find
out the minimum missing signal number, such that if these “miss-
ing” signals are further selected, relevant relation cubes can be com-
pleted. Sequentially, we parse the cubes again to find out the corre-
sponding missing signal sets and evaluate their impact on the error
detection quality. The signals in the candidate set with the maxi-
mum TDQ increment will be selected. This procedure repeats until
the total selected number reaches the predefined quantity constraint
NTAP.

5. TRACE DATA QUALIFICATION
Speedpaths in the circuit may not be sensitized often. Conse-

quently, if we simply trace their relevant signals continuously, it
is very likely that we end up with the data stored in the trace buffer
without any useful information for error detection. We hence design
a novel trace qualification module to store traced data only when
slow-propagation error is found to occur on speedpaths.

The block diagram of the proposed trace qualification module is
shown in Fig. 5. We buffer the trace signals for two cycles inside this
module. When tracing for a particular speedpath, the two buffered
data for its start point are firstly compared to detect whether a tran-
sition occurs on it. If not, there is no need to store the traced data.
Otherwise, we rely on the slow propagation detection module to de-
tect error, one value propagation module (‘0’/‘1’) decided by the
start point of previous cycle will assert when error is detected (“Er-
ror Assert”=1 in Fig. 5), and a formatter is utilized to temporarily
store the traced signals and align them into trace buffer. Meanwhile,
the timestamp generated from counter is also stored into the buffer
for recording the error occurrence cycle.

Traced Signals
 of Previous Cycle Simplified

Logic Detection
ModuleObjective

Signals

End Point Signal
 of Current Cycle

Propagation
Assert Error

Assert
Expected End
Point Value

Difference
Assert

X-mask Assert

Slow Propagation Detection Module

Figure 6: Block Diagram of Slow Propagation Detection Mod-
ule.

To be specific, Fig. 6 describes the slow propagation detection
module, which contains simplified logic and a detection block. The
simplified logic can be treated as duplicating part of the CUD, while
keeping all paths from traced signals to the objective ones. This is
obtained by simply parsing the circuit twice, with marking prop-
agated logic elements forwardly starting from traced signals and
backwardly from objective ones. Then only relevant logic element
marked by both propagations is kept in the simplified logic to achieve
the above objective, as indicated in Fig. 7.

.

.

.

.

.

.

FF FF

Combinational Logic

Targeted
Path

Figure 7: Circuit Parsing for Generating Simplified Logic.

In addition, due to the unknown side-inputs that may affect the
logic calculation on the kept logic (e.g. or gate in Fig.7), we should
modify the normal logic elements to facilitate “3-valued” logic cal-
culation (e.g., X and 1 = X). To be specific, every 1-bit wire is
replaced with 2-bit one, and logic ‘1’ is encoded as “11”, ‘0’ is en-
coded as “00” and unknown side-input ‘X’ is encoded as “01” or
“10”. By duplicating traced signals to 2-bit width and replacing
normal logic elements with corresponding enhanced ones (designed
as standard module) , we can obtain “3-valued” states on objective
signals. If any one of them is ‘X’, it means the value is invisible
from untraced relevant signals, and the “X-mask” signal asserts as

Slow 0-Propagation

Detection Module

FF
Traced

Signals

Prorogation Start

Detection Module
Error AssertStart Point

Signal of

Previous

Cycle

Timestamp

Generator

Traced Signals

of Previous Cycle

FF

End Point

Signal

Start Point

Signals

Trace

Buffer
Formatter

Start

Assert

Trace Data Qualification Module

Slow 1-Propagation

Detection Module

Figure 5: Block Diagram of Trace Data Qualification Module.

Circuit Total Signal # Relevant Signal # Sel. Signal # Unmon. Pro. # Detected Pro. Event # Occurred Pro. Event # Detection Quality Time (s)
s38584 1464 198 69 1 7718 9519 81.1% 45.5
s38417 1664 394 157 50 630 1216 51.8% 125.3
DMA 3818 1482 99 16 6827 7615 89.6% 150.3
usb 2085 117 59 0 696 696 100% 77.4
des 9341 132 95 46 67097 70145 95.6% 668.3

Table 2: Detection Quality Evaluation of Signal Selection for Non-Zero Visibility on 50 Paths.

‘0’ to denote the path is not monitored. Otherwise, when the ob-
jective signals are all required values (e.g., bin1 = 0 in Fig. 2) that
can determine value propagation, the detection module will output
‘1’ on “propagation assert” signal. Meanwhile if the latched value
of end point in current cycle is different from the expected propa-
gated one (obtained with logic simulation), the module asserts error
signal.

Since it is not possible to trace all the tapped signals to monitor
all targeted speedpaths concurrently during the debug process, we
propose to implement the trace qualification module (as shown in
Fig. 5 and Fig. 6) with reconfigurable logic, which is configured to
detect errors on single targeted speedpath in each debug run. Conse-
quently, the size of the trace qualification module is constrained by
tracing a single speedpath only (the most complex one), hence re-
ducing the associated DfD area cost. In addition, this structure can
be easily extended to monitor multiple speedpaths in each debug
run. Instead of simply duplicating the original module into several
copies for monitoring each path, we can design the simplified logic
shared by multiple targeted paths. This is feasible when several
speedpaths can be grouped to share lots of logic elements in their
fan-in cones. Note that, we might need to pipeline the proposed
fabric to guarantee timing correctness of the monitoring cricuit.

6. EXPERIMENTAL RESULTS
We conduct experiments on several large ISCAS’89 and IWLS’05

benchmark circuits to evaluate the effectiveness of the proposed so-
lution. We consider 50 critical paths in each circuit and we simulate
them for 20,000 clock cycles. These experiments are conducted on
a 2.13 GHz PC with 2GB RAM.

Table 2 presents the result when we select the minimum num-
ber of signals to guarantee every targeted path with non-zero error
detection quality. Column 1 shows the name of circuit; Column 2
is the total number of state elements in the circuit; Column 3 is the
number of signals relevant to targeted speedpaths; Column 4 reports
the number of selected signals with proposed method. We evaluate
the detection quality by simulating both the original circuit and its
internal behavior from the selected trace signals only, which results
in a partial view of the circuit for each cycle. We then calculate the
detection quality (Column 8) as the ratio between the detected prop-
agation events on targeted paths (Column 6) and the total number of
propagations that actually occur (Column 7). There are two differ-
ent propagations on each critical path, that is, the start point can
be ‘0’ or ‘1’. The total number of propagation types that are com-
pletely missed to be monitored by tracing selected signals is shown

in Column 5, referred to as Unmon. Pro. # in the table. Finally,
Column 9 is the CPU time.

Generally speaking, the proposed method is able to achieve sat-
isfactory detection quality with a small portion of speedpath-related
signals. For circuit usb, all propagation events on the targeted paths
are captured with only 59 signals (i.e., 2.83% of the total number
of state elements in the circuit), and hence there is no need to select
more signals for detection quality improvement. For circuit s38584,
tracing 69 signals (34.8% of relevant ones) guarantees all paths are
visible except for one value propagation event. For circuit s38417
and des, 50 and 46 paths are unmonitored, respectively. This is be-
cause the selected signals cover a few relation cubes in objective
signals, while the happened events are caused by other cubes. For
circuit DMA, with only 99 out of 1482 candidate signals, we de-
tect nearly 90% of the propagation events, while 16 value propaga-
tions are not monitored. The selection on the largest circuit des cost
668.3s only, which demonstrates the efficiency of this procedure.

We then conduct further signal selection for detection quality
improvement. The results on detection quality and unmonitored
propagation quantity by incrementally selecting 10 more percent
signals are plotted in Fig. 8 and Fig. 9 respectively. This proce-
dure terminates when 95% detection quality is reached for circuits
s38584, s38417 and DMA. For circuit s38584, the detection qual-
ity approaches 100% with only 30% more signals (i.e., 18 signals).
Meanwhile, the propagation that is not monitored in previous step
becomes visible. For circuit s38417, the detection quality increases
dramatically with 10% more signals (from 51.5% to 70.8%). Also,
the number of unmonitored propagations reduces sharply during
the early stage of further selection. However, the detection qual-
ity grows up to 95% only when a great amount of signals (140%)
are traced. We attribute this phenomenon to the fact that the missed
propagations of targeted paths rely on a large number of signals and
it can only be detected when all of those signals are traced. The sim-
ilar situation happens on circuit DMA, wherein up to 1482 signals
affect the detection of targeted paths. The detection quality does not
increase and the unmonitored propagation number does not decease
significantly even after 200% more signals (297 signals in total) are
traced. Further selection is also conducted on circuit des, although
its detection quality has exceeded 95% beforehand. As indicated in
Fig. 9, 42 out of 46 unmonitored propagations become visible with
10% more signals.

Finally, we evaluate the DfD cost of the reconfigurable data qual-
ification module. Since this module can be utilized to monitor dif-
ferent paths during each debug run, we consider the cost that is big
enough to fit the largest detection logic for the most complex path

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Further Selection Percentage

D
et

ec
tio

n
Q

ua
lit

y

s38584
s38417
DMA
des

Figure 8: Detection Quality Evaluation of Improving Quality
Selection.

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200%
0

5

10

15

20

25

30

35

40

45

50

Further Selection Percentage

U
nm

on
ito

re
d

P
ro

pa
ga

to
n

N
um

er

s38584
s38417
DMA
des

Figure 9: Unmonitored Propagation Number Evaluation of Im-
proving Quality Selection.

among all the targeted ones. This module is generated automati-
cally by parsing the circuit to obtain the simplified logic and in-
serting other sub-modules(e.g., formatter and timestamp generator).
It is then synthesized through a commercial FPGA tool to evalu-
ate the hardware cost. Here we choose the traced signal number to
guarantee detection quality larger than 95% for circuits s38584 and
s38417, while keeping unmonitored propagation number to be 4 for
circuit des. As reported in Table 3, for all cases, the maximum DfD
cost is 439 4-input LUT, which is acceptable. If multiple paths re-
quired to be monitored during one debug run, the cost will not grow
dramatically when these paths can share large part of logic elements
in simplified logic. More importantly, the DfD cost for this module
usually does not increase with the increasing number of targeted
paths, because its size is determined by the path(s) with maximum
requirement instead of all the targeted paths. Therefore, the relative
DfD cost will be lowered when we target more paths in industrial
circuits.

Circuit Trace Signal # 4-Input LUT #
s38584 87 272
s38417 367 241
DMA 108 439
usb 59 179
des 104 324

Table 3: DfD cost of data qualification module.

7. CONCLUSION
In this work, we propose a novel trace-based solution for debug-

ging speedpath-related electrical errors, including a new trace sig-
nal selection technique that maximizes detection quality and a novel

trace qualification module that improves trace buffer utilization. Ex-
perimental results on benchmark circuits show that the proposed
solution are able to detect a high percentage of speedpath-related
electrical errors by tracing a small number of signals with afford-
able DfD cost.

8. ACKNOWLEDGEMENT
This work was supported in part by the General Research Fund

CUHK417807 and CUHK418708 from Hong Kong SAR Research
Grants Council (RGC), in part by National Science Foundation of
China (NSFC) under grant No. 60876029, and in part by a grant
N_CUHK417/08 from the NSFC/RGC Joint Research Scheme.

9. REFERENCES
[1] M. Abramovici. In-System Silicon Validation and Debug. IEEE

Design & Test of Computers, 25(3):216–223, May-June 2008.
[2] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi,

and D. Miller. A Reconfigurable Design-for-Debug Infrastructure for
SoCs. In Proceedings ACM/IEEE Design Automation Conference
(DAC), pages 7–12, July 2006.

[3] Altera Inc. Design Debugging Using the SignalTap II Embedded
Logic Analyzer. http://www.altera.com.

[4] E. Anis and N. Nicolici. On Using Lossless Compresstion of Debug
Data in Embedded Logic Analysis. In Proceedings IEEE
International Test Conference (ITC), pages 1–10, October 2007.

[5] ARM. Embedded Trace Macrocell Architecture Specification.
http://www.arm.com/.

[6] N. Callegari, L. C. Wang, and P. Bastani. Speedpath Analysis Based
on Hypothesis Pruning and Ranking. In Proceedings ACM/IEEE
Design Automation Conference (DAC), pages 346–351, 2009.

[7] A. B. T. Hopkins and K. D. McDonald-Maier. Debug Support for
Complex Systems on-Chip: A Review. IEE Proceedings, Computers
and Digital Techniques, 153(4):197–207, July 2006.

[8] D. Josephson. The Manic Depression of Microprocessor Debug. In
Proceedings IEEE International Test Conference (ITC), pages
657–663, 2002.

[9] H. F. Ko and N. Nicolici. Automated Trace Signals Identification and
State Restoration for Improving Observability in Post-Silicon
Validation. In Proceedings Design, Automation, and Test in Europe
(DATE), pages 1298–1303, 2008.

[10] X. Liu and Q. Xu. Interconnection fabric design for tracing signals in
post-silicon validation. In Proceedings ACM/IEEE Design
Automation Conference (DAC), pages 352–357, 2009.

[11] X. Liu and Q. Xu. Trace signal selection for visibility enhancement in
post-silicon validation. In Proceedings Design, Automation, and Test
in Europe (DATE), pages 1338–1343, 2009.

[12] S. B. Park and S. Mitra. IFRA: Instruction footprint recording and
analysis for post-silicon bug localization in processors. In
Proceedings ACM/IEEE Design Automation Conference (DAC),
pages 373–378, 2008.

[13] G. Rootselaar and B. Vermeulen. Silicon Debug: Scan Chains Alone
Are Not Enough. In Proceedings IEEE International Test Conference
(ITC), pages 892–902, September 1999.

[14] S. Tang and Q. Xu. In-band Cross-trigger Event Transmission for
Transaction-based Debug. In Proceedings Design, Automation, and
Test in Europe (DATE), pages 414–419, 2008.

[15] B. Vermeulen, T. Waayers, and S. Bakker. IEEE 1149.1-Compliant
Access Architecture for Multiple Core Debug on Digital System
Chips. In Proceedings IEEE International Test Conference (ITC),
pages 55–63, Baltimore, MD, Oct. 2002.

[16] Xilinx Inc. Chipscope Pro Software and Cores User Guide.
http://www.xilinx.com.

[17] Q. Xu and X. Liu. On Signal Tracing in Post-Silicon Validation. In
Proceedings IEEE/ACM Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 262–267, 2010.

[18] J. S. Yang and N. A. Touba. Automated Selection of Signals to
Observe for Efficient Silicon Debug. In Proceedings IEEE VLSI Test
Symposium (VTS), pages 79–84, 2009.

