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Abstract

This paper describes a novel learning system, named FF99 that
learns fuzzy first-order logic concepts from various kinds of data.
FF99 builds on the ideas from both fuzzy set theory and first-
order logic. Object relationships are described using fuzzy
relations based on which FF99 generates classification rules
expressed in a restricted form of fuzzy first-order logic. This new
system has been applied successfully to several tasks taken from
the machine learning literature. We demonstrate its usefulness in
the applications of data mining through several experiments.

1. Introduction

Conventional inductive learning methods cannot handle fuzzy
information and noisy data. Several algorithms were developed in
recent years to learn concept descriptions to solve this problem.
They use a fuzzy propositional attribute-value language for
describing entities and classification rules. The simplicity of this
formalism allows such systems to deal with large volumes of data;
however, it becomes inefficient when faced with complex objects
and concepts. On the other hand, learning algorithms using first-
order logic accept descriptions of complex, structured entities.
The fuzzy first-order logic combines the advantages of fuzzy
logic and first-order logic, so it is very useful in representing
knowledge in real life applications, in which the data are fuzzy,
noisy and complex in nature. However, there is no learning
algorithm designed using fuzzy first-order yet.

This paper describes a novel learning system, code named FF99,
which learns fuzzy first-order logic concepts from data. The
proposed learning algorithm is based on the FOIL algorithm,
which is notable in learning non-fuzzy first order logical concepts
[1]. FF99 builds on the ideas from both fuzzy set theory and
first-order logic. Object relationships are described using fuzzy
relations based on which FF99 generates classification rules
expressed in a restricted form of fuzzy first-order logic. Like
FOIL, FF99 performs a greedy search on the space of possible
literals and selects a literal to add to the current clause in each
iteration, a new clause is developed when the extension of the
current clause cannot further reduce the cost. The whole
algorithm terminates when the extension of the set of clauses
cannot reduce the cost anymore.

The key to the success of the learning algorithm relies on a
heuristic for assessing the suitability of a literal to be added to the
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current clause. A novel inductive bias, based on the continuous
information measure of an error distribution, is covered in the
paper. In the literal selection process, an error distribution is
estimated quantitatively according to the difference of degrees of
membership between the target and the learned fuzzy concepts.
We have discovered that the shape of the error distribution
reflects the usefulness (fitness) of a literal; in the way that a
‘useful’ literal is likely to produce an error distribution with
distinct peaks, while a ‘useless’ literal produces a randomly
shaped error distribution. Such qualitative observations are
converted into a quantitative measurement by applying Shannon’s
continuous information theory. More specifically, FF99 measures
the continuous entropy, which reflects the randomness of a
continuous function, of the error distribution estimated for each
potential literal to be added; the literal with the smallest
continuous entropy will be selected.

We have tested FF99 using several databases from the UCI
Machine Learning Repository. For instances, in the iris
experiment, FF99 obtains an average accuracy of 97%. It also
achieves classification accuracy of 88% in the Credit Approval
(crx) experiment, which is higher than that obtained from C4. 5.
FF99 also performs adequately in the kinship database relational
databases as it can correctly induce structural concepts.

The following section reviews fuzzy first-order logic, which is
suitable for representing knowledge in real life applications. After
going though the knowledge representation, the learning (data
mining) algorithm is described in Section 3. The next section
discusses the core part of the algorithm, which is the search
heuristics, in detail. Section 5 presents the results obtained by
FF99 on the iris, crx and kinship domain. The final two sections
summarize our work and propose future research directions.

2. Knowledge representation

In this section, we discuss the fuzzy first-order logic. Specially,
the notation of fuzzy Horn-clause will be given, as it is the
knowledge representation used in FF99.

2.1 Fuzzy first-order logic

The classical Boolean logic is weak in the accurate modeling of
real life problems, as it cannot handle imprecision or uncertainty
information. Early in 1920, Lukasiewicz developed the three-
valued propositional calculus [3] and worked on many-valued
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logic. Consequently, many mathematics theories were developed
for the tolerance of imprecision and uncertainty in the past few
decades [3].

The basic idea of many-valued logic has been explored to some
extent by a number of mathematicians since this century, but the
real breakthrough was made by Zadeh [4]. The fuzzy set theory
provides a systematic way to deal with imprecision which arises
when the boundaries of a class of objects are not sharply defined.
Among the very common examples of such classes are natural
language concepts, namely linguistic variables, such as Young
women and Small cars. Membership in such classes, which
were suggestively called as fuzzy sets, is matter of degree rather
than an all or nothing proposition. It measures the confidence that
the member belongs to the normalized fuzzy set as a real number
ranging from 0.0 (absolutely false) to 1.0 (absolutely true). For
example, the fuzzy set Strong can be defined in Table 2.1.

Age 0 20 | 40 60 80
Membership| 0.1 | 0.9 | 0.8 | 0.3 | 0.1
Table 2:1 Fuzzy set defining the fuzzy term Strong

In the example, Age is called the universe of discourse of the
fuzzy set Strong. In general, a fuzzy set is assumed to imbed in
a non-fuzzy universe of discourse, which may be any collection
objects, concepts, or mathematical constructs. For example, a
universe of discourse, U, may be the set of all real numbers, the
set of all students in a class, etc. A fuzzy set A in U, or
equivalently, a fuzzy subset of U, is characterized by a
membership function g, :U —»[0,1] which associates with each
element u of U a number yu,(u) in the interval [0,1].
Furthermore, if the universe of discourse is a continuous quantity,
one can have a continuous membership- function. This is
illustrated in Fig. 2.1.

Membership
1.0
Age
0.0 I 0 80
Fig. 2.1 Fuzzy set Strong

Fuzzy relations: Following the previous example, the fuzzy set
Strong is defined over a one-dimensional universe Age. Now,
if we want to redefine the fuzzy concept Strong over Age and
another universe, say, Weight. We need a multiple-dimensional
fuzzy set rather than the original single-dimensional fuzzy set.
For the management of multiple-dimensional fuzzy concepts,
Zadeh defined the notation of fuzzy relations. If U is the
Cartesian product of n universe of discourse U/,,...,U  then an
n-ary fuzzy relation, R, is a fuzzy subset of U. R may be
expressed as the union of its constituent fuzzy singletons

Pty tpyeeu, ) Uy, uy,.. 0, )y 1-6

R= Moy ttyyee u Yy tyy.ou,) uw, €U, i=1...,n

U XU, x..xU,

where  is the membership function of R.

Fuzzy Predicate: A fuzzy relation is closely related to a fuzzy

predicate. In a fuzzy predicate (first-order predicate) P(X,,...,X,),
P is a predicate symbol, each X; is an individual variable which is
usually defined as independent. If some values c,...c, are
assigned to each of the individual variables, the result of the first-
order predicate is a proposition. When the truth value of a
predicate is in the set {0,1}, it is said to be binary first-order
predicate, but when the truth value of a predicate is in the closed
interval [0,1], it will be said to be fuzzy first-order predicate. The
truth-value of the proposition is evaluated as the degree of
membership of the responding fuzzy relation. Thus, a fuzzy first-
order predicate can be considered as the membership function of
a fuzzy relation over individual variables’ universe of discourse.
Each fuzzy predicate represents a concept, and it is refereed as a
literal in a fuzzy Horn-clause.

Fuzzy Horn-clause: A fuzzy Homn-clause is a fuzzy logical
expression in the form of:

H:-G,G,...,G,

H, G,, G,..., G, are fuzzy predicates. H is called the head of the
clause and (G,, G,,..., G,) is the body of the clause. It means:

IF G, AND G, AND ... AND G, satisfies THEN H

In the inference process, G, G,,..., G, are the terms to ‘prove’
and they are known as the goals. Furthermore, :-G,, G,,..., G, is
called the goal clause.

2.2 Knowledge representation in FF99

Before we start to give the knowledge representation of the
proposing data mining system, the adherence of knowledge-based
method is explained. We claim that other non-knowledge-based
learning methods, such as Neural Network, do not learn by
acquiring sentences in a symbolic language. So, it is difficult to
interpret and maintain the result of data mining. In contrast, the
proposing system aims at using a powerful knowledge
representation of data, so that we can extract more valuable
information in data mining applications.

There are two kinds of information we have to consider. The first
one is inexact information including fuzziness and certainty, both
are natural in human knowledge. The second one is the relational
information or first-order information, which is much more
expressive than zero-order propositions especially when it is
employed for the generalization of knowledge. We found that the
fuzzy first-order logic is the most suitable candidate to represent
knowledge in FF99.

Being more specify, giveh the examples of a set of fuzzy relations
R,R,..,R, and the examples of the target concept (a fuzzy
predicate) C. The duty of the FF99 is to give a generalization
from the training examples to define the target concept in the
form:

C:-L,,L . L, @n
C:-L;,L; . L, )

Jb

Where L, is a literal defined over the fuzzy relation R, with a
particular set of variables. We call C’ be the fuzzy logical
definition of C. Following a similar notation in the FOIL
induction algorithm, each ¢';— L,L, L is called a clause
(fuzzy Horn-clause). In the context of FOIL, each clause covers
part of the positive examples and the whole set of the clauses is
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assumed to cover at least 85% of all positive examples. We
assume that the target concept could be expressed in some logical
combinations of literals. The assumption is sound as it naturally
models the logical combination of human logic.

3. Learning algorithm

This section introduces a learning algorithm called FF99 that is
based on the modification of Quinlan’s FOIL algorithm [1],
which is successful in learning first-order non-fuzzy concepts.
Table 3.1 compares FF99 with the well-known FOIL algorithm.

FOIL FF99
Knowledge |Predicates and Homn-clauses | Fuzzy predicates and fuzzy
representation Hom-clauses
Training Partitioned into positive set No partition
examples and negative set
Learning Greedy search Greedy search
algorithm
Search Generalization and Literal evaluation by
heuristics specification by the quantitative analysis and
guidance of discrete entropy distribution analysis
Speed Very fast Fast, but the distribution
analysis needs much
processing
Accuracy High Very high, as the result is
fuzzy and has no sharp
decision boundaries
Table 3.1 Comparing FOIL and FF99

In order to induce concepts in fuzzy environment, FF99
abandons the generalization and specialization procedures in
classical inductive learning methods, but uses a new searching
heuristics instead. With this modification, FF99 is able to
manipulate fuzzy and relational information naturally.

3.1 Algorithm overview

The task addressed by this system is to find, for one target
concept C at a time, a fuzzy logical definition C’ in terms of
clauses of literals. Each literal is a fuzzy predicate. Here is a
general form of the fuzzy logical definition as given in Eq. 2.1.
FF99 performs a greedy search on the space of literals. Either the
best literal is appended to the right hand side (RHS) of the current
clause, or a new null clause is created as the current clause until
the termination criteria is met. The pseudo code of the algorithm
is given as follows:

Initialize the fuzzy logical definition C’:-NULL
Loop
Backup current C’and the current COST
Select a subset of literals by pruning criteria
For each literal L; in the subset
Append L; to RHS of the last clause in C’
Estimate E(t) and f(e) from C’ and C
Compute MSE and CE
Calculate and save the COST
Restore C’
End For
If the minimum COST < current COST
Append L; to RHS of last clause, update C’
Else - If the last clause is not a new clause
Open a new null clause in C’ ’
Else
Terminate the whole learning loop

End If
End Loop

As described in the pseudo code, the whole algorithm aims at
constructing a fuzzy logical definition that has a minimum COST,
which is the heuristics to guide the selection of literal. The COST
is estimated though two processes: the quantitative analysis and
the distribution analysis. They are described below.

3.2 Quantitative analysis

FF99 uses the greedy search approach to assemble clauses from
literals, since a similar exhaustive search is far too expensive for
the stepwise construction of clauses. By adapting the pruning
techniques from the FOIL algorithm, FF99 becomes a very
efficient system. The heuristics for assessing the usefulness of a
literal is vitally important and should be analyzed carefully.

The error function E(#): In the process of assembling clauses,
FF99 chooses a literal at each step and updates the fuzzy logical
definition C’. All literals (except those are pruned) are tested to
build C; and an error function E(z) is generated for each literal
being tested, where ¢ is a tuple (i.e. a training case) in the target
concept. The definition of E(?) is:

E@)=pc()-pc0), G.D

It compares the membership of each tuple in the target concept
and the learned logical definition. So, it is a function in the space
of the tuples {z} and it is bound by [-1,1].

It is unusual to compare two fuzzy concepts by this tuple-by-tuple
membership subtraction method. Examples of classical fuzzy
comparison methods are the Similarity and Affinity measures
described in [5]. These methods are effective in measuring the
correlation and the similarity of two fuzzy sets. However, we are
not searching for the literal that gives the most “similar” C’
comparing with C. Instead, a literal is considered as the “best” in
the sense that it is most likely to construct the best final fuzzy
logical definition. The formulation of the error function facilities
the measure of the errors tuple by tuple quantitatively. We can
carry out a distribution analysis by generating an error
distribution for the error function (see Section 3.3).

Mean Square Error: The error function E in Eq. 3.1 gives the
difference of membership between the target concept and the
learned logical definition. That is, for each possible variable
binding in the target concept, E always returns a real value
between [-1,1]. We want to characterize the error function by a
numeric quantity, so that we could use this numeric quantity to
assess the usefulness of a literal (a fuzzy predicate) as the next
component of the right-hand side of a clause. A common
approach is to calculate the mean square value of the error
function (MSE):

MSE =Y (E®)*/T| (3.2)
T

where T is the set of tuples and |T] is the number of the set of
tuples of the target concept. MSE is real and bounded by the
limits 0< MSE <1. Normally, we try to minimize the MSE to as
close to zero as possible.

FF99 uses MSE because it is (1) simple, (2) widely accepted, (3)
sign insensitive, and (4) the squaring operation suppresses the
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medium errors. In such cases, the distribution analysis of the error
distribution should contribute more heavily instead of depends on
the MSE quantitative measure solely. '

3.3 Distribution analysis

FF99 assesses the usefulness of a literal as the next component of
the right-hand side of a clause by estimating the MSE and
analyzing the distribution of errors in the error function. We
have observed that:

“A useful literal is likely to produce a nodal
error distribution that has a tall peak around
the zero error position and a few clear peaks
in the positive or negative error range. While
an improper 1literal is 1likely to produce a
randomly shaped error distribution that is peaky
in the entire range of errors”

It is quoted as the nodal characteristics of literals. It involves the
concepts of an error distribution and an estimation of the
Continuous Entropy (CE). We will discuss the distribution
analysis in detail in Section 4.

3.4 Heuristics as a combination of MSE and CE

Both the MSE and the CE measurements have their strengths and
weaknesses. The MSE measurement is simple and direct to
estimate the total amount of errors; however, it has deficiency in
analyzing the shape and nodal characteristics of the error
distribution. The CE measurement remedies the problem and
shoulders the load of distribution analysis. Unfortunately, it is
“blind” to the position of the peaks in the error function
Intuitively, we could combine these two measurements into a
single COST heuristics so that they can compensate each other. In
each step of the assembling of the fuzzy logical definition, FF99
searches for the literal that has the least COST.

We have evaluated several models (functions of MSE and CE) in
detail and we have chosen the best one, which is detailed as
follows.

COST = ~log(MSE®) (3.3)

COST as a function of MSE and CE

Fig. 3.1

The COST surface in Fig 3.1 provides the heuristics to search for
literals in several experiments and the results are satisfactory.

4. Distribution analysis

As mentioned in Section 3, the search heuristics (COST) in FF99

involves the quantitative analysis (MSE) and the distribution
analysis (CE). This section concentrates on the distribution
analysis. It first introduces the concept of error function. Then, it
describes the nodal characteristics of literals and finally the
calculation of the continuous entropy.

4.1 The error distribution f(e)

As defined in Eq. 3.1, the error function E(z) returns a set of
errors {e} on the space of tuple {t}. The frequency distribution of
this set of errors {e} is called the error distribution fle). In
practice, the “actual” error distribution cannot be determined
unless an infinite number of training samples is given. So, we
have to estimate the error distribution from the error function. A
survey of existing density estimation methods is given by [6].
Among these methods, the kernel estimator, which is discussed in
next subsection, is used in FF99 to construct fle) from E(z)
because it is simple, easy to implement and it performs well even
the sample size is small.

4.2 Kernel estimator
A kernel estimator is defined by:

x—X;
A )

1 n
f(x)—EgK(

where h is the window width, n is the sample size and X is a
kernel function which satisfies several conditions [7]. According
to [7], FF99 chooses the biweight kernel function K{(x) and the
window width £ as follows:

- 2
K(X)={1§(1 x%)116

,|x|<1

,otherwise

h=3729%x0xn™"*/3

where ¢ is the standard deviation

Finally, by using the biweight kernel estimator with the window
width defined above, we can estimate the error distribution fle)
from the error function E(t). These two functions provide
information for the quantitative analysis and distribution analysis
of literals.

4.3 Nodal characteristics of f(e)

In subsection 3.3, we mentioned the nodal characteristics of
literals that a useful literal is likely to produce a nodal error
distribution with a clear “zero error peak”. This subsection will
discuss these nodal characteristics. '

The zero error peak: As defined, the error function E() gives
the difference of the membership between each tuple of the target
concept and the learned logical definition. Suppose now for all ¢,
E(t) = 0, the error function f{e) will give a zero error peak as
shown in Fig. 4.1 because it is very probable that for a certain
tuple, the error (the difference of membership between the fuzzy
logical relation C’ and the target concept C) is near zero. )

Error distribution  fle)

B
T P Errore

Fig. 4.1 The zero error peak

Negative error peaks: Suppose that the target concept C should
be described as the fuzzy Horn-clauses:
C:-L,L,

In this case, the membership of each tuple in the target concept
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should be approximately equal to the minimal of the
corresponding membership of L; and L;:

Hc )= min(“g (t)’ ,u,q (t))
Now, suppose we are learning the target concept C and we are in

the moment to search for the 2™ literal to add in the right-hand
side of the clause:
C:-L,? e (C:-L

By the definition of the error function in Eq. 3.1, we have:

E(@t)=pic.(6) — phc (1) = py, (£) — min(e,, (0, 44, (1))
For the covered tuples, E(r)~( and it contributes to the zero
error peak; while E(t)<0 for other tuples. Moreover, we argue
that the uncovered tuples are belonging to a few groups in the
concept represented by L,. So that, E(z) is likely to have some
typical negative values; and each typical negative error value
corresponds to a negative error peak. Fig. 4.2 visualize fle), it
shows the situation that the uncovered literals could be grouped
into two classes in the concept represented by L,.

Error distribution  fle)

Errore

Fig, 4.2 Two negative error peaks

Positive error peaks: Now, suppose that the target concept C
should be described as the set of fuzzy Horn-clauses:

C:-L
C:-L,
In this case, the membership of each tuple in the target concept

should be approximately equal to the maximal of the
corresponding membership of L, and L,:

Hc = max(#l_‘ ®, #Lz ®)
In a similar way, we are now constructing the 2™ clause of C’:
By the definition of the error function in Eq. 3.1, we have:
E(t) = uc' (t)_”c (1) = ul_l (t)—max(#,_‘ (t)! #‘-z (t))
This time, E(z)>0 for the uncovered tuples. By the same argument,
E(z) is likely to have some typical positive values; and each

typical positive error value corresponds to a positive error peak.
Fig. 4.3 show two positive error peaks.

Error distribution  fle)

Errore

Fig. 4.3 Two positive error peaks

4.4 Applying information theory

Shannon introduced the information and the concepts of entropy
[8]. It is defined as a measure of “uncertainty” or “randomness”
of a random phenomenon. The information theory is famous in
the field of inductive learning, e.g. ID3 [2] and FOIL use the
discrete entropy to guide the construction of decision trees and
logical definitions.

However, all knowledge in FF99 is modeled as fuzzy predicate,
of which of the membership function is continuous and not
discrete in nature. Intuitively, the discrete entropy cannot be
applied in FF99; nevertheless, the continuous entropy shows to

be very effective in characterizing the shape of the error
distribution fle). As discussed, CE measures the “randomness” of
a continuous function, which is the error distribution f{e) in FF99.
According to the nodal characteristic of fle), a “suitable” literal
produces a nodal error distribution that f{e) has a tall peak around
the zero error position and a few clear peaks in the positive or
negative error range; in contrast, a “unrelated” literal produces a
random-shaped error distribution that f{e) is not nodal and is
peaky in the whole range of errors. Interesting enough, a nodal f{e)
is less random than a peaky f{e) in shape; such observations
inspired us to apply the information theory as measure the
randomness of f{e). These observations are shown in Fig. 4.4.
Furthermore, experiment results show that CE is a very effective
heuristics in evaluating literals, even it is used solely to be the
COST of a literal.

However, the speed of FF99 is not acceptable in learning
multiple order information as it spends about 30 minutes to obtain
the above solution. Because FF99 is currently implemented by
Matlab scripts and the pruning techniques are not fully used yet.
These pruning techniques mainly involve the selection of
variables (e.g. X, X,, X, in the definition of brother) that are
adopted from the FOIL algorithm.

fle) fle)

(a) (b)
Fig. 4.4 (a) A “suitable” literal gives a nodal fle) and a nodal fle)
gives a small CE. (b) A “unrelated” literal gives a peaky f{e) and a peaky
fle) gives a large CE

Bounds of CE: In order to use the CE as a part of the heuristics,
we must know the upper and lower bounds of it. An impulse
distribution gives the minimum CE =—c, and a uniform
distribution (a white spectrum) gives the maximum CE=log,|R|, R
is the range of the spectrum. These two distributions are shown in
Fig. 4.5.

fle) A fe)

(a) (b)

Fig. 4.5 (a) Impulse fle) gives the smallest CE. (b) White spectrum

gives the largest CE

Theoretically, the range of errors should be limited by [-1,1].
However, the error function fle) is produced by a density
estimation process in FF99; so that the practical range of errors is
R=[-2,2] and |R|=4. Finally, we get the limits of CE as:

-~ <CE<log,4=2

5. Results

This section presents results obtained by FF99 on a variety of
learning tasks reported in the literature in order to show that it is a
powerful and general learning mechanism. The iris experiment
tests the classification accuracy of FF99. The crx experiment
shows that FF99 is useful in real life data mining application and
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FF99 learns relational concept in the kinship experiment.

5.1 Classifying iris plants

The iris plants database contains 3 classes of 50 instances each,
where each class refers to a type of iris plant. The class setosa
is linearly separable while versicolor and virginica are
not linearly separable from each other. Each training instance is
described by four numeric attributes: Sepal Length (SL), Sepal
Width (SW), Petal Length (PL) and Petal Width (PW). Since the
attributes are numeric values, we have to preprocess them by
fuzzification techniques. The percentiles information of data are
used to estimate the parameters of the membership function.

T small_SL j N
s
o
=k
o
15F
10
sk

0
[ 3 4 5
sepal Length (SL}
Fig. 5.1 Fuzzification by incorporation of percentiles information

Three individual sets of experiment are conducted by randomly
selecting 90 instances (60%) for training and 60 instances (40%)
for testing. One fuzzy logical definition is generated for each
class; the memberships of these three logical definitions are
compared and the one with the greatest membership is considered
as the classification result.

Iris class Exp. set
Hit rate (%) |1 0 I
Setosa training 100.0 100.0 100.0

testing 100.0 100.0 100.0
Versicolor |training 94.4 95.6 94.4
testing 96.7 95.0 95.0

Virginica |training 91.1 93.3 96.7
testing 100.0 96.7 91.7

Classify by training 95.6 98.9 95.6

comparing testing 100.0 95.0 96.7

memberships

Average training 96.7

testing 97.2
Overall 96.9
Table 5.1 Results of FF99 on iris domain

The following are the typical results. Note that virginica is
defined by two clauses, i.e. a logical OR of two fuzzy predicates.

setosa :- small_SL, small_PL
versicolor :- medium_PL, medium_PW
virginica :- big_PW

virginica :- big_PL

The classification results obtained from FF99 are excellent, as
they are comprehensive and understandable by human beings.
This property is particularly important in the applications of data
mining, when we want to discover and analyze the underlying
information from raw data. Furthermore, the classification
accuracy is very high when compared with other learning
algorithms. Table 5.2 compares the accuracy of our learning
algorithm with that of [9].

Algorithm FF99 FAQR GVS IVSM
Accuracy (%) 96.9 97 96 95.78
Algorithm NTgrowth| Dasara| C4.5
Accuracy (%)|  94.87 94.67 93.87

Table 5.2 Results of the iris experiments from different algorithms

5.2 Learning credit card approval criteria

The domain for this case study, named crx, concerns approval of
credit facilities using a real dataset provided by a bank. The 690
cases are split 44.5% to 55.5% which represent credit card
“approved” and “rejected” respectively. The 15 attributes include
6 with numeric values and 9 discrete-valued (nominal) attributes.
The preprocessing stage transforms each binary attribute into a
crisp concept. Meanwhile, each non-binary nominal attribute is
linearlized into several crisp concepts. Each crisp concept means
a possible attribute value. And each numeric attribute is fuzzified
into 3 fuzzy concepts: large, medium, and small.

Five individual sets of experiment are conducted by randomly
selecting 582 cases (90%) for training and 65 cases (10%) for
testing. We use 0.5 as the cutting membership of the learned
logical definition to determine whether the credit card is
“approved” or “rejected”. Three of the five experiments give the
same resulting logical definition, while the other two experiments
give another one result.

Exp. Learned logical definition Error %

set Training | Testing | Overall

1 |Approve :- C9 134 12.3 13.3
Approve :- Cdbig

2 |approve :- C9 133 12.3 13.2
Approve :- Cébig
Approve :- C6x, Cl5small

3 |Approve :- C9 13.6 9.2 13.2
Approve :- Cdbig
Approve :- C6x, Cl5small

4 |Approve :- C9 13.8 9.2 133
Approve :- Cdbig

5 |Approve :- C9 ' 13.8 92 133
Approve :- C4big

Average] 13.6 10.4 133

Table 5.3 Results of FF99 on the crx domain

We observed that: (1) Although there are two groups of the
learned logical definition, the orders of assembling the logical
definition in all experiments are the same. That is, C9 is found to
be the first clause and C4big is the second clause in all
experiment sets. It shows that the heuristics of evaluating literals
is consistent and effective. (2) Despite the learned logical
definitions are very brief, it has high predicative power. (3) The
target concept Approve is crisp (non-fuzzy); nevertheless, it
gives the certainty (the membership) of credit card approval. In
general, the certainty is more informative and useful than the
class value only.
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The crx domain was used in Quinlan’s C4 .5 experiments {10].
The results are summarized as:

Knowledge [Average complexity | Average error rate (%)
representation :
Decision tree 9.7 nodes 15.8
Production rule 7.8 rules 16.5
Composition rule 11.0 rules 14.4

Table 5.3 Results of C4. 5 on the erx domain
Obviously, FF99 performs better than C4.5 in the crx
experiments as it has smaller complexity (2-3 rules) and lower
error rate (13.3%). The advantage of FF99 comes from the
knowledge representation, which can describe fuzzy concepts and
define soft boundaries between concepts. The cutting membership
and the parameters of fuzzification could be tuned in order to get
even better results. The successful results show that FF99 is a
powerful and general data mining system.

5.3 Learning kinship relation
The kinship relational database consists of 24 unique people in
two families. The training data is provided in form of non-fuzzy
predicate, e.g. father (Tom, Alex) indicates that “Tom is the
father of Alex”. In our experiment, we try to learn the logical
definition of brother by supplying the training relations in
father, brother and son. The correct logical definition
should be:

brother (X,,X,) : -father (X,;, X;) , son(X,, X;)
FF99 successfully generated the above logical definition of the
brother relation. We see that the knowledge representation of
FF99 is also powerful in handling relational (2™ order) and other
higher order information.

6. Discussion

6.1 Knowledge representation

The fuzzy first-order knowledge representation used in FF99 is
good in handling both inexact and relational data. However, this
knowledge representation also suffers two main problems:

1. It is not expressive enough, as it does not allow the logical
NOT. Moreover, it can only model imprecise information but not
uncertain information. In order to overcome this shorting, we
adopt an extension in which a “clause” may contain negated
literals on its right-hand side. Furthermore, we could attach
certainty factors to each literal and each clause.

2. The validity and the effectiveness of this knowledge
representation strongly rely on the “quality” of the fuzzy relations.
There is no crisp sense of ‘“correct” or “wrong” in the
membership function of a fuzzy relation and the judgement is
normally subjective. This issue is concerned in the fuzzification
of numeric data. From our experiments, we found that the
percentile information is generally effective in guiding the
fuzzification process. However, the preprocessing (i.e.
fuzzification or lineralization of raw data into form of predicates)
is very difficult to be totally automated.

On the other hand, this knowledge representation gives some
comprehensive and understandable results. Given this, FF99 has
high potential in the real applications of data mining. For example,

it may be used in mining customer preferences of supermarket,
extracting fuzzy concept from questionnaire, etc.

6.2 Learning algorithm

FF99 suffers from the greedy search paradigm in the clause
assembly process since it does not explore any alternatives once a
clause is built, i.e. the “best” choice may not be the “correct”
choice at each step. However, a similar exhaustive search is far
too time-consuming for the stepwise construction of clauses. In
FOIL, Quinlan suggested the alternative of beam search, which
retains the best N partial structures at each step, and it increases
search effort by a factor of N compared with that of greedy
search.

The greedy algorithm also depends heavily on the design of the
search heuristics. In FF99, the search heuristics is terminated by
the quantitative analysis and the distribution analysis. Although
we have no formal mathematical proof for the effectiveness of the
heuristics, especially the part of distribution analysis, the
experiment results are satisfactory and they show that the
heuristics provides a good guidance in the construction of fuzzy
logical definition. However, we are now seeking more real
applications to test the heuristics. We are also trying to formulate
the heuristics mathematically.

7. Conclusion

In conclusion, FF99 induces fuzzy concepts that are
comprehensive to human beings. Also, it provides a satisfactory
way to handle fuzzy relational data. The learning algorithm is
robust and efficient. Finally, the experiment results have shown
the novel learning system is suitable for data mining from both
continuous and discrete information, and is also very tolerant to
noisy data. The continuous entropy measure is an effective
heuristics. Our three experiments have shown that FF99 is
capable of generating correct classification in fuzzy concepts to
variety of test data sets.
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