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Abstract

This paper describes a biologically plausible neural network which detects rotational motion in the
frontal-parallel plane (revolving around the Z-axis) produced by a multiple-dots stimulus against a
stationary background. The network consists of multi-layered velocity sensitive sensory cells
organized in a locally connected fashion. The network displays the ability to segment multiple
rotational stimuli in time sequences as well as an object with both rotational and translational
motion by extracting the center and the perimeter trace of the rotational stimulus. Different
simulations have been performed and the results are displayed and discussed.

1. Introduction

Biological visual systems can analyze and interpret intensity changes impinging on our visual field produced by
dynamic stimuli (see Nakayama 1985 for a review). Moreover, motion patterns alone elicit object interpretation
responses without the presence of color, texture, and contour information. From psychophysical examinations,
Wallach & O'Connell's (1953) experiment with the Kinetic Depth Effect (KDE) showed how viewers were able
to infer the 3-D structure from the 2-D orthographic projected shadow of an object behind a translucent screen.
Using dot stimuli, Johansson (1973) demonstrated with light sources attached to the major joints of a human subject
conducting simple types of movement, the pure motion of the dots against a dark background alone elicited the
correct motion interpretation from naive viewers usually within 200 ms, some even at 100 ms. Using a similar
dynamic point-light display, Kozlowski & Cutting (1977) demonstrated the remarkable ability of the viewers (o
distinguish the sex of the walker. Furthermore, Borjesson & Von Hofsten (1975) developed a vector model to
explain how relative motion between the dots and the common motion among the dots in the 2D image plane
induced depth perception of rotation and translation motion in 3D from two-dot and three-dot stimuli. Others have
also found how dot patterns give rise to depth perception (Braunstein 1976). These experiments illustrate how
motion analyzed in isolation is sufficient for the correct interpretation of moving objects.

Aside from these psychophysical findings, physiological examinations have unearthed data substantiating the
existence of neural mechanisms which are tailored o specific visual functions on the analysis and interpretation of
motion in cortical regions. For instance, Hubel and Wiesel (1962, 1968) studied the diversity and the complexity of
different sensory cell types and connections from extraceliular microelectrode recordings in anesthetized cats and
monkeys. The discovery of simple, complex, and hyper-complex cell types demonstrated orientation and velocity
sensitivity characteristics of these units toward stationary and moving stimuli. In the cerebral cortex, Van Essen &
Maunsell (1983) have mapped out a cortical hierarchy and in addition identified specific areas, e. g. V1, middle
temporal (MT), and medial superior temporal (MST) as regions associated with the analysis of motion. These data
are further supported by clinical studies of patients with lesions to the posterior right hemisphere. Vaina (1989)
found deficits in 2D-Form-From-Motion tasks in patients having lesions in the right occipital-temporal (ROT)
region. Hence, Vaina hypothesized MT's role is to conduct correlation and correspondence processes between sets of
elements over time and space which results in more complex visual perception functionalities. Sakata et al. (1985)
found passive visual (PV) neurons in area 7a of rhesus monkeys specifically sensitive to visual rotational stimuli.
Detailed investigations further demonstrated that neurons differentiate between rotation in depth rather than in the
frontoparallel plane, illustrating the complex functionality of these neurons (Saito et al. 1986). Through these
studies, we are challenged to model the various perceptual functionalities using neural networks.
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All the above psychophysical, clinical, and physiological evidence suggests specific neural mechanisms
performing specialized motion perception tasks. Recent interest in neural networks has led researchers to investigate
the potential use of these methodologies in motion detection, motion stereo, velocity estimation, and optical flow
calculation problems (Zhou & Chellappa 1990, Courellis & Marmarelis 1990). The initial successes are
encouraging; however, most models dealt with simple translational motion and left the more complex types of
motion, e. g. rotational motion, unstudied. Therefore, in this paper we present a biologically plausible neural
network model for the detection of rotational stimuli in the frontoparallel plane with a stationary background.

2. Neural Network Architecture

The neural network is constructed in a hierarchical fashion with three levels of abstraction. The basic building
blocks of the network are leaky integrator neuronal units, which better approximate the biological data available than
the commonly used bi-state neurons. The characteristic equation of the leaky integrator is described as,

Tm____dr;zgt) =—m(t) + S, (t)+h m and Snat)= Zwixi(t) M

where m(t) is the membrane potential of the neuron m as a function of time, Sy,(¢) is the sum of all inputs from
other neurons to the neuron m, h,, is the resting potential, and T is the time constant for decay. By using the
leaky integrator model, more complex behaviors of the network can be generated but the difficulty of choosing the
correct parameters also increases. To obtain the firing rate of the neuron, a non-linear function is applied to the
membrane potential of the neuron. Instead of the sigmoid function, we select the RAMP function as shown in )
to threshold the membrane potential x in computing the firing rate of the neuron in our model.

¥, ifx < x

RAMP(x,A,xl,yl,y2)={ )
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The first level of nearons are motion sensitive sensitive neurons (moving edge detectors) modelled after the R3
cells found in frogs and toads (Ewert & Tsui 1987). These units have transient response to leading illumination
changes in the excitatory receptive field without motion direction preference (see Teeters 1989 for a detailed
simulation of R3 cells). The next level of complex cells are the directional selective units using R3 neurons.
Figure 1 illustrates a one dimensional directional selective units modelled after the asymmetrical lateral excitation
and inhibition interactions reported by different investigators (Reichardt 1969; Barlow & Levick 1965). The
combination of both circuitries elicits a response which excites (inhibits) activities in the neighboring cells when the
input is in the preferred (null) direction.

Preferred Direction Null Direction
R3 Cells
A
Delay
Cells
Direction
Selective
Cells
Figure 1. The architecture diagram for Figure 2. The distributed representation of a clockwise
directional selective units. Each neuron rotational stimulus in various layers of directional
excites (inhibits) the neighboring units when selective neuron units. The center grid is the input
stimulus moves in the preferred (null) layer I and the eight remaining layers are the directional
direction. selective layers positioned according the directional

preferences indicated by the arrow connections.

The last level of the neural network detects the rotational stimulus. It is made up of multiple layers of
directional sensitive units. The network consists of N; x N X D directional selective units where N; and N are the
number of rows and columns of each layer of neurons. There are D layers of neurons where each layer corresponds to
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a set of different direction selective cells. All neurons at every point (i, j) in the same layer where 1 <i< Ny and 1
< j €N have the same velocity sensitivity profile. At each layer k where 0 <k < D-1, the preferred orientation Oy

k2n

in radians, of the layer is defined by D - Thus, the parameter D tunes the sampling resolution of the network.

Each layer Ly, receives input from the input layer I and the activity at (i,j) in the k*h layer is characterized as,

m/2 n/2
L (i,j,t+1)=al(i,jt)- Z 21(:‘ i+ =DM (i) )
i’=—m/2f’=-n/2

where o is a scaling factor for the input stimulus, * denotes the convolution operator which convolves the delay
mask, My of size (m, n) in our case, against the input layer I. The mask is excitatory (inhibitory) towards the
preferred (null) direction and is approximated by the following equation,

Mk = Gl( a’xl’yl' O'xl, O'yl) - Gz(ﬂ'xz' yzr O'xzro'yz) (4)

where G1 and Gy are two Gaussian functions, B and y are scaling factors of the excitation and the inhibition weight
respectively, the Gs control the width of the Gaussian windows, the point (x1, y1) gives the preferred direction in
terms of the cartesian coordinate respect to point (x,y), and (x2, y2) = (-x1, -y1)-

As the rotational stimulus moves in the receptive field, an individual layer will respond to the stimulus when
the path it traces matches coarsely to the preferential direction of that layer. Thus we have a very distributed
representation in each layer to represent a rotating stimulus as shown in Figure 2.

There are two output layers. One layer sums up all the distributed activities in all the layers resulting in a
visual memory trace of the rotational motion. The activity in the output layer can be described as,

D-1
Louxl(irjrt+ 1)= Loutl(i’j't)_ ZLk(i )W )
k=0

where Wy is a large mask as illustrated in Figure 3(b). The final output layer which corresponds to the center of a
rotating stimulus is given by,

L (£ 1) = Loy (107 1) W | ©

where Woyug2 is a on-surround and off-center DOG type mask illustrated in Figure 3 (c). It consists of a sharp
inverse peak at the center and a broader but shallower surrounding. The spatial formation of this weight mask sums
up activities in an approximated circular shape but inhibits activities near the center in order to avoid mishaps in
ambiguous regions such as the overlapping areas of two rotational stimuli in our simulation.

@ ®) ©

Figure 3. These are qualitative representations of weight masks for the network. (a) This mask, M in
equation (3), is used in the construction of directional sensitive units by having excitation (inhibition) in
the preferred (null) direction for R3 cells in Figure 1. (b) We employ this type of mask when we sum up
all directional sensitive layers, Wy in equation (5). The area we sum up is very acute (direction specific) as
shown. (c) The inverted-hat, Wyt in equation (6), is utilized to extract the center of the rotational
stimulus from the final layer by summing up the surround and inhibiting the center region.
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2.1. Simulation Results

To facilitate implementation and testing, we have made some assumptions. (1) We have a featureless, uniform,
and stationary background. This also implies no random noises in the input. (2) The © of the rotation should not
exceed the temporal characteristics of the receptive neuron. Hence, the stimuli are moving slowly such that there is
no discontinuity of the motion, i.e., movement falls within the 8 adjacent neighboring pixels, during each
simulation cycle. (3) Lastly, we have used two dots stimuli instead of a single dot stimuli for speedier result. The
dots are offset by phase n. In this case, we achieve a quicker detection of the rotational motion. This is not
surprising since single stimuli give less information of whether it will move in a circle than multiple stimuli;
therefore, when more points are being introduced to the network, the quicker the response would be.

We used NSL, the Neural Simulation Language (Weitzenfeld 1990), to simulate our neural networks
experimentally. The differential equation in (1) is approximated by the Eiiler's method. In the simulation, we
assume the input image plane size of Ny x N = (21 x 21) for every layer. The stimulus on the image would be
represented by an active pixel = 1 and the remaining pixels are set to 0. The rotation stimulus is centered at (x, =
10, yc =10) and the radius has the following relation with respect to the receptive field size, r < MIN(N{/2, N./2).

In our case, we set the radius to be 5 pixels wide. There are D = 8 layers of cells which correspond to 0°, 45°, 90°,
135°, 180°, 225°, 270°, and 315° of directional sensitivity cells.

We have tested the network using several types of stimulus. First, we used a stationary stimulus to test against
our model. We observed some initial activities but they died out quickly since the sensory cells in the network
respond only to changes in intensity. Second, the network was tested using simple linear translation dot stimulus.
Since the output layer collects the sum from many different layers, the sum of activities in only a few layers do not
exceed the threshold of the output layer hence do not invoke any firing in the output. Nevertheless, the layers which
have the approximate velocity preference as the input stimulus will fire to indicate a stimulus moving in the
preferred direction. We then examine the effect of a rotational stimulus centered at (7,10) with a radius of 5 in the
visual field. Figure 4 shows that the curve trace of the stimulus quickly invokes some firing activities in the output
layer. As the rotational stimulus makes a complete rotation a population of neurons firing will result within the
rotational boundary of the stimulus. By applying an On-Surround-Off-Center type Gaussian mask to the first output
layer, we are able to locate the center of this rotation stimulus. The next set of experiments investi gated the network
under the condition when the stimulus possesses both rotational and translational motion. Even though the
tangential velocity of the rotation is much greater than the translational motion, nonetheless, it demonstrates the
ability of the network to track the center of the rotation as having the translational motion but at the same time also
indicating the detection of the rotational motion as shown in Figure 5 (a), (b), and (c).

Aside from a single moving object, we also studied the neural circuit with multiple moving stimuli. Since the
same procedure and weight mask are applied at each location of the output layer, the neural network is capable of
detecting multiple instances of rotational stimulus. We have further divided experiments on multiple rotational
objects into two sub-cases. The more interesting case involves two intersecting rotational dot stimulus objects since
we were uncertain about the effect of disturbances and interferences in regions of intersection in the network. To our
satisfaction, the result proved that the neural network is robust to perceive such overlapping formation by producing
the correct answer as displayed in Figure 6 (a), (b), and (c). However, the time it took to separate overlapping
stimuli is longer than the non-intersecting case. In the case of two non-intersecting rotational objects having the
same @, the network exhibited the ability to extract multiple rotational stimuli by yielding the centers of the stimuli
accurately. The results are demonstrated in Figure 7 (a), (b), and (c).

3. Discussion

There are several shortcomings in the rotational motion detection network. Currently, the direction of the
rotation is indistinguishable. Moreover, the network fails in identifying one rotational stimulus within a larger
rotational stimulus having a different center. Lastly, we would also like to detect a translating rotational object with
greater speed and accuracy.

However, we have presented a perceptual neural network capable of detecting rotational dot-stimulus in this
paper. The network is constructed from locally connected velocity sensitive cells in a multi-layer architecture
composed of directional selectivity neuronal units. The detection of the rotational motion is scale and position
invariant when the mask used is large enough to encompass the curved path trace of the stimulus. Furthermore, our
simulation tests demonstrated the ability of the network to extract the rotational component of a rotational and



translational stimulus, detect multiple rotational objects, and overcome degraded stimulus in overlapping rotational
stimuli.

In the future, we seek to develop a hierarchical structure of motion perception neural circuitries in obtaining
higher visual perception functionalities by assembling different neural mechanisms having various perceptual
capabilities, e.g. the looming detector by Liaw & Arbib (1991), to achieve machine perceptions rivaling that of
biological systems. Our study will consist of (1) mapping out perceptual units through careful anatomical,
physiological, and psychophysical studies and (2) simulating these componential functionalities for visual perception
using neural networks.

ret ret_con

Figure 4. After 50 simulation time
steps, an off-centered 3-dots
stimulus at (7, 10) gives an output
at the center of rotational motion.
- rot is the membrane potential of
rett rot_oont cells in the output layer. rotf is
the firing rate output from a non-
linear transform function, the Ramp
function in equation (2), using rot
as the input. rot_cen is
membrane potential layer indicating
the center of the rotational
stimulus.

~ Figure 5. The
stimuli in these
figures are both
rotating and
translating simu}-
taneously. How-
ever, there is no
correlation be-
tween the speed

rot_coxt rot_cont rot_cont

il ) of angular rota-
tion and the
@ ®) © translation since

translation is
relatively slow in this simulation. Nevertheless, we see that after 30 simulation time steps a rotational
stimulus is detected as shown in (a). The stimulus has now translated across the X axis in (b) after 120 time
steps and (c) after S00 time steps with an uninterrupted detection of the rotational stimulus as it moves across
the receptive field.

Figure 6. This
pem o rete simulation uses
two rotational
stimuli  which
share some inter-
secting areas.
st cont roteemt ’ rotent There are some
ambiguities around
the areas where
both rotational
stimulus intersect
but eventually the
@ ®) © output became

stable and the

center of both rotational stimuli are detected after 150 stimulation steps.
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= - - Figure 7. Dif-
ferent from the
previous figure,
this simulation
run used two
nearby rotational
stimuli in phase
without any in-
tersecting area.
Notice that after
60 time steps,

@ ®) © there is some

interference

caused by the local excitation bias from neighboring cells. Nevertheless, the network settled into a stable
solution after 100 simulation time steps.

0,40
ret_cont rot_cont ret_cent
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