
Performance Analysis of a New Updating Rule for TD(�) Learning

in Feedforward Networks for Position Evaluation in Go Game

Horace Wai-kit Chan Irwin King John C. S. Lui

wkchan@cs.cuhk.edu.hk king@cs.cuhk.edu.hk cslui@cs.cuhk.edu.hk

Department of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

ABSTRACT

In this paper, a new updating rule for applying Temporal Di�erence (TD) learning to multi-

layer feedforward networks is derived. Networks are trained to evaluate Go board positions by

TD(�) learning with di�erent values of �. Performance of each network is estimated by letting it

play against other networks. Results show that non-zero � gives better learning for the network

and statistically, larger � gives better performance.

1. Introduction

In reinforcement learning, there is no teacher available to give the correct output for each training

example. The output produced by the learning agent is fed to the environment and a scalar reinforcement

value (reward) is returned. The learning agent tries to adjust itself to maximize the reward.

It is very often that the actions taken by the learning agent to produce an output will a�ect not only

the immediate reward but also the subsequent ones. In this case, the immediate reward only re
ects partial

information about the action. It is called delayed-reward.

Temporal di�erence (TD) learning is a type of reinforcement learning for solving delayed-reward pre-

diction problems. Unlike supervised learning which measures error between each prediction and target, TD

uses the di�erence of two successive predictions to learn. The advantage of TD learning is that it can update

weights incrementally and converge to a solution faster [5].

Go is a perfect information 2-player zero-summed game with a search space complexity larger than

Chess and other similar board games. Moreover, the Go game is rich in tactics and strategies which makes

it di�cult for computer to play. The current trend in designing computer Go program is to use knowledge

base with a set of rules engineered by human experts. Programs based on this approach are very weak. Our

goal is to have the computers to "learn" from its own experience.

TD learning has been successfully applied in evaluating static position in Backgammon

[6][7]. The program (called TD-gammon) achieves human master level. TD learning has also been used

to evaluate static board position of Go games [2][4]. With specially designed neural network architecture,

the resulting program is able to beat a commercial Go program using a weak playing level. However, only

TD(0) is used in that application. TD(0) degenerates to the same algorithm of supervised learning which is

simpler in design.

In this paper, a new learning rule for applying TD(�) to backpropagation network is derived. A simple

backpropagation network is trained with TD(�) learning to evaluate static positions of Go games. Perform-

ance of networks trained with di�erent values of � is compared.



2. Background : TD(�) Learning

In a delay-reward prediction problem, the observation-outcome sequence has the form

(o(1); o(2); : : : ; o(m); �) where each o(t) is an observation vector available at time t; 1 � t � m and � is

the outcome of the sequence. For each observations, the learning agent makes a prediction of �, forming a

sequence : (P (1); P (2); : : :; P (m)).

Assuming the learning agent is an arti�cial neural network, update for a weight w of the network with

the classical gradient descent update rule for supervised learning is :

�w = ��rwE

= �

mX
t=1

(� � P (t))rwP (t) (1)

where � is the learning rate and rwE is the gradient vector ,@E
@w

, of the mean square error function :

E = �
1

2

mX
t=1

(�� P (t))2

In [5], Sutton derived the incremental updating rule for equation (1):

�w(t) = �(P (t+ 1)� P (t))

tX
k=1

rwP (k) for t = 1; 2; : : :;m where P (m+ 1)
def

= �: (2)

To emphasize more recent predictions, an exponential factor � is multiplied to the gradient term :

�w(t) = �(P (t+ 1)� P (t))

tX
k=1

�t�krwP (k) where 0 � � � 1 (3)

This results in a family of learning rules, TD(�), with di�erent values of �. There are 2 special cases.

First, when � = 1, Eq. (3) falls back to Eq. (2) which produce the same training result as the supervised

learning in Eq. (1). Second, when � = 0, since 00 = 1, Eq. (3) becomes

�w(t) = � (P (t+ 1)� P (t)) rwP (t)

which has a similar form as Eq.(1). So the same training algorithm for supervised learning can be used for

TD(0).

3. TD Learning with Backpropagation Network

3.1. New Generalized Delta Rule

In this section, we are going to derive a new generalized delta rule for TD(�) learning. The classical

generalized delta rule for a multi-layer feedforward network [3] is:

�wl = � yl�1 �
T

l

where wl is a m� n weight matrix connecting layer (l � 1) and l, m is the size of layer l � 1

and n is the size of layer l,

� is the learning rate (a scalar),

yl�1 is a column vector of output in layer l � 1,

�T
l

is transpose of the column vector �l which is the error propagated from layer l to l � 1,

l = 0 for the input layer.



The vector of backpropagated error, �l, is de�ned di�erently for output layer and for hidden layer as :

�l =

(
(T � Z)
 f 0

l
(netl) if l is an output layer

f 0
l
(netl) 
wl+1�l+1 if l is a hidden layer

where f 0
l
(�) is the derivative of transfer function, fl ,in layer l,


 denotes the element-wise vector multiplication,

netl is the weighted sum in layer l,

�l+1 is the delta value backpropagated from the upper layer of layer l,

T is the target vector,

Z is the output vector.

To apply TD learning to the multi-layer feedforward network, we extract the term (T � Z) from the

original �l and obtain a new delta, ��
l
which is de�ned as

��
l
= diag [f 0

l
(netl)]

where diag is the diagonal matrix and l is the output layer. If l is a hidden layer :

��
l
= f 0

l
(netl)�

�

l+1w
T

l+1

With the new delta, equation for change of each weight is rewritten as :

[�wl]ij = � (T � Z)T [��
l
]
j
[yl�1]i (4)

where [��
l
]
j
is the j-th column of vector ��

l
,

[yl�1]i is the i-th element in vector yl�1.

Unlike the original delta which is a vector backpropagated from an upper to a lower layer, the new delta,

��
l
, is now a m � n matrix where m is the size of output layer and n is the size of layer l. The error term

(T � Z) is needed for calculation of every weight increment.

Comparing gradient decent in supervised learning in Eq.(1) and the backpropagation with new delta in

Eq. (4), rwP (t), the gradient term at time t for weight w0 is

rw0P (t) = [��
l
(t)]

j
[yl�1(t)]i

where w0 = [wl(t)]ij is the ij-th element in the weight matrix wl at the time t.

By substituting this result to the formula of TD(�) learning in Eq. (3), we get

[�wl(t)]ij = �(P (t+ 1)� P (t))T
tX

k=1

�t�k [��
l
(k)]

j
[yl�1(k)]i (5)

where �wl(t) is the matrix of increment of weight connecting layer l and l�1 for prediction P (t). The term

inside summation is called the history vector, denoted by [hl(t)]ij
We now obtain updating rules of TD learning by backpropagation. The weight update is performed by

Eq. (5) with the new delta.

3.2. Training Procedure

Compared to the original backpropagation algorithm, the new procedures for TD(�) learning requires

some more storage for keeping the following values :

1. The previous output vector, P (t� 1), at time t, which is used in computing every weight change.

2. The history vector, hl(t; i; j) =
P

t

k=1
�t�k [��

l
(k)]

j
[yl�1(k)]i for each weight connecting i-th node in

layer l� 1 to j-th node in layer l. It has the same size as the output vector. Each weight shall have its

own history vector.



The training procedure involves 3 stages (at time t):

1. Feedforward : calculation of new prediction P (t).

2. Weight update : calculation of weight increments by Eq. (5) using the history terms at time t� 1.

3. Backprop : calculation of the new deltas at time t + 1, ��
l(t+1)

, for each layer l, starting from the

output layer. The history term is updated by :

hl(t; i; j) = [��
l
(t + 1)]

j
[yl�1(t+ 1)]

i
+ �hl(t� 1; i; j)

4. TD Learning in Position Evaluation

An important advantage of applying TD(�) learning in the Go game is that network can be trained

by self-playing. There is no need to handcraft many training examples as in supervised learning. The

self-training strategy is used in TD-gammon [6].

4.1. Experimental Designs

We performed experiments using di�erent values of � to train networks of the same architecture and

analyze the network performance by letting them play against one another.

Network Architecture Feedforward network with 1 hidden layer is used. To reduce the network com-

plexity and training time, we use small Go board of size 7�7. The architecture of the network is 51-30-1. The

input vector consists of information of all 49 points on the board, color of next player and relative number

of captured stones (called prisoner). The di�erence of number of prisoners of each color is important in

position evaluation. It is represented by one value which is proportional to (number of prisoner captured by

black - number of prisoner captured by white).

Issues in Training The network is used to evaluate board positions in a game. Before training, the weights

are initialized randomly by values between �1:0 and 1:0. During self-playing, it is used to evaluate all valid

moves of a board position and a move is chosen according to the scores. The same initial con�guration is

used in 4 networks which are trained with di�erent values of � : 0; 0:25; 0:5 and 0:75. Totally 100,000 games

are trained for each network. The same set of experiments is repeated four times to check the consistency

of performance.

Unlike Backgammon, playing Go does not have the element of chance. If the moves with highest score

given by the neural network evaluator is always played, training will be trapped in local minima easily. In

that situation, the same game will be played repeatedly. To avoid this, the move is selected stochastically

using Gibbs sampling according to the score in evaluation [4]. The probability for a valid move being selected

is :

P (mi) =
1

Z
exp

�
score(mi)

T

�
(6)

where Z is a normalizing factor equals to
P

i
exp(

score(mi)

T
),

score(mi) is the output of the network for board position mi,

T is the temperature determining the degree of randomness.

The temperature T is set to a high value (1:0) in the beginning and in the course of training it is reduced by

a factor � : Tk+1 = �Tk; 0 < � < 1. In the experiments, � is set to be 0:92 and is decreased after every 20

games. Finally, it becomes a very small value in which the "best" move will be played in most of the time.

Testing Method and Results Instead of playing against existing programs, the trained network are

made to play against each other. The move is selected stochastically according to Eq.(6) with a very low

temperature. This is to make the testing games non-deterministic to compare performance of the networks

under many di�erent board positions. If prediction made by a network is accurate, its playing strength

should be high. Results of the testing games are summarized below.



Networks Average Winning Percentage with Opponents :

� = � = 0:00 � = 0:25 � = 0:50 � = 0:75 relative score

0.00 | 46.11% 43.58% 37.38% 127.06

0.25 53.89% | 48.26% 43.41% 145.56

0.50 56.43% 51.74% | 46.19% 154.35

0.75 62.63% 56.59% 53.81% | 183.03

Table 1. Results showing performance of networks trained by di�erent TD(�)

4.2. Discussion

Each of the row entry represents the winning percentage out of 2,000 simulated games against each of the

column entry, e.g. network trained by TD(0) wins 46.11% against the one trained by TD(0:25). We obtain

the relative score of each network by summing up all the winning percentages in each row. From the scores,

we can observe that performance of TD(0) is not as good as non-zero � value. Performance is statistically

better with larger �.

Among the results in 4 replications, performance is not always consistent with others. It shows that

�nal performance depends on the initial weights. However, in all cases, TD(�), where � > 0, out-performs

TD(0). This shows that static board evaluation of Go game will be more accurate when supplied with the

information of past states.

5. Conclusion

TD(�) learning can be applied to train multi-layer feedforward networks using the new generalized delta

rule derived in Eq. (5). More storage is needed in TD(�) than in supervised learning but we can have

incremental learning and faster convergence. [5].

TD(�) learning is used in training neural networks to evaluate board positions in Go games. Di�erent

values of � are tested. We �nd that TD(�) with non-zero � performs better than TD(0). Furthermore, the

performance gets better with larger �.

In the future, we plan to use TD learning to train networks to analyze some game speci�c properties of

Go such as territory and shape.

References

[1] J.A.Bate, A Beginner's Introduction to GO Manuscript available by Internet anonymous FTP from

bsdserver.ucsf.edu, �le /Go/RULES.PS.Z.

[2] W.K.Chan and I.King, "Temporal Di�erence Learning and Its Application in Go," Computer Strategy

Game Programming Workshop, The Chinese University of Hong Kong, May 1995.

[3] D.E.Rumelhart, G.E.Hinton, and R.J.Williams, "Learning Internal Representations by Error Propaga-

tion," Parallel Distributed Processing (PDP): Exploration in Microstructure of Recognition (Vol. 1),

Chapter 8, MIT Press, Cambridge, Massachusetts, 1986.

[4] N.N.Schraudolph, P.Dayan, and T.J.Sejnowski, "Temporal Di�erence Learning of Position Evaluation

in the Game of Go," Advances in Neural Information Processing 6, 1994.

[5] R.S.Sutton, "Learning to Predict by the Methods of Temporal Di�erences," Machine Learning, 3: 9-44,

1988.

[6] G.Tesauro, "Practical Issues in Temporal Di�erence Learning," Machine Learning, 8: 257-278, 1992.

[7] G.Tesauro, "Temporal Di�erence Learning and TD-Gammon," Communications of ACM, Vol.38, No.3,

March 1995.


