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Abstract

In this paper, we further studied the Least Mean Square Error Reconsiruction (LMSER) principle for
self-organization. When generalized to recurrent networks, some phenomena similar to those in Anii-
Hebbian learning and the Competitive Hebbian Learning can simultaneously emerge. Particularly, when
ezposured to Gaussian environment, the converged connection patiern become feature deteciors. As lateral
interactions widely ezist among real neurons, it is reasonable to believe that the best reconsiruction is a
naturel principle for the self-organization in the brain. Comparing with the Competitive Hebbian Learning
proposed by White, the LMSER algorithm in recurrent networks avoids the crucial problem of empirically
determining weight-limit. Simulations confirmed that our algorithm can catch feature siructures in the
correlations of input vector component, which make it applicable in a number of practical problems. As
an ezample, we demonstrated that the LMSER in recurrent networks can successfully develop a series of
orientation selective masks which can be considered as spatial filters for input information.

1 Introduction

Since the renaissance of artifical neural networks, self-organization has been intensively studied, gen-
erally on the basis of Hebb rule. For example, linear neurons learning under an unsupervised Hebbian
rule can learn to perform a linear statistical analysis of the input data, as was first shown by 0jalll, who
proposed a learning which finds the first principal component of the covariance matrix of input data.
Since then, Oja, Xu, Sanger and many others have devised numerious neural networks which find many
components of this matrix(?hBh4hl A unified principle—Least Mean Square Error Reconstruction
(LMSER) principle was proposed in [3] for a variety of PCA related learnings. Based on the LMSER
principle, many generalizations relevent to PCA type learning especially their nonlinear extensions have
been obtained(?]. -

In this paper, we further studied and developed the LMSER principle in a more broad scenario.
Though the LMSER-based learning can be established for arbitary system, detailed results have not yet
been discovered except for single-layer and multi-layer feedforward networks. As the real neural inputs
and outputs are temporal and the actual neurobiology of visual cortex involves extensive feedback cir-
cuitry, research about the principle and results of self-organization in dynamical feedback (recurrent)
networks is of more significance than in pure feedforward network from biological perspective. From
the engineering viewpoint, it is also significant to investigate the self-organization in recurrent networks
governed under the LMSER principle, because most of practical problems involve temporality. In the lit-
erature, preliminary results had been obtained by applying dynamics to the development of oritentation
selectivity in recurrent networks which represent the first stage of cortical visual processing in mammals.
In this paper, we showed that self-organization in recurrent networks under the LMSER principle can
automatically yield the oritentation selectivity, a result similar to those in some Anti-Hebbian 1ea.rning[6]
and the Competitive Hebbian Learning®l. From an initially random set of weights, the LMSER algo-
rithm in recurrent networks can converge to masks which have salicut structure determined by input
distribution and the output nonlinearity.

*For correspondence, please contact Qin ZHOU, Department of Electronic Engineering, The Chinese University of Hong
Kong, Shatin, N. T., Hong Kong. -




2 LMSER Learning in Recurrent Network

To apply the LMSER principle to the learning in recurrent network, consider a specific network
structure to avoid ambugity, as shown in Fig.1, which consists of a layer of feedforward connection
and a fully-connected recurrent inter-output connection. Such a network structure has been studied by
Foldiak(®), in which Hebb and anti-Hebbian modification rule was respectively applied to the feedforward
weight and feedback inhibitory weight. Anti-Hebbian learning is directly set up on the the intuitive idea
of decorrelating outputs.

Let W,V represent the feedforward and recurrent weight matrix, respectively. The network recurrent
dynamics can be described by

u=—u+ Viu)+ Wix (1)

where u € R" denote the state of output node, f is sigmoidal nonlinear function. Before we derive
LMSER learning in the recurrent network, two issues should be emphasized here. First, the network
dynamics are assumed to be considerably faster than the updating dynamics of the learning algorithm in
the following. Such an assumption is generally taken in studying dynamical recurrent networks. Second,
unlike the symmetrical recurrent connectivity requirement in Foldiak’s network, there is no such a priori
restrictions on V except that we often take zero or negative constant self-connection, i.e., v;; = 0, or
v;; = —k, mainly from the stability consideration.

Under the attainment of steady-state conditions, Eq.(1) can be replaced by following equilibrium
equation:

u* = Vf(u*) + WTx (2)

In the following discussions, we will hold same argument provided in [7]. Specifically, we assume the
following conditions have already satisfied. First, the nonlinear function is a strictly monotonic increas-
ing, differentiable and bounded above and below, i.e., sigmoidal type functions. Second, the elements
of equilibrium points lie in the saturation region of the sigmoidal nonlinearities. This requirement can
be met without difficulty by appropriately design the gain (slope at the origin) of the sigmoid. Third, a
given equilibrium point u* being analyzed is an isolated equilibrium point.

From the LMSER principle, a cost function J(W) for best reconstruction can be written as :
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where X is the reconstruction vector from the stable state of output layer, i.e., * = Wu*. By employing

a gradient descent approach to minimize J, the weight changes should take the form as
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From the equilibrium equation Eq.(2) we can get
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where G = diag[f'(u}), f'(u3), -, F'(uh)), £/(u}) = 2L |, _ . Tt is assumed here that I — V@ is
a nonsingular matrix, which is generally satisfied as the derivative of sigmoidal function is very small.
Then from X = Wu*, Eq.(4) and (5) are directly available.

It is clear that matrix inversion has appeared and this is usually cubersome. Fortunately, following
the same argument as in [7], in recurrent networks, it is often desirable and feasible to design the
equilibrium points in the saturation region of the sigmoidal nonlinear function. From this consideration,
we can appropriately adjust the sigmoidal functions with large gains, thus making the elements of
diagonal matrix G very small. Under this condition, we can simplify the learning algorithm (4),(5) as:

Aw(m) = p(ule+eTw(m)x) (8)
Av(m) = preTw(m)f(u*) (9)
Or writing it in matrix form
AW = py(eu’ + x(eTW)) (10)
AV = ppf(u)(eTW) (11)

It is worthy to mention that the above discussion is based on a reconstruction scheme x = Wu*.
Apparently, another scheme may be considered, that is X = W{(u*). In this case, the above derivation
can be directly extended and following results are obtained

Aw(m) = p(f(up,)e +e"w(m)xf'(ur,)) (12)
Av(m) = preTw(m)f'(u*)f(uz,) (13)

It is easy to find that, as most elements of equilibrium points are forced to locate in the saturation
region of sigmoidal nonlinearity, Eq.(13) and the second term in Eq.(12) will be near zero, therefore its
performance will be quite different. As can be expected, more interesting results should be induced from
(10) and (11) comparing with (12) and (13). From the space limitation consideration, we will mainly
consider (10),(11) in this paper while leave more detailed discussion in other places.

In the simple learning rules (10),(11) , both feedforward connections W and recurrent connections
V are adapted by the reconstruction error e, which is the only available information in the network.
Here no artificially designed anti-Hebb term is necessary for the weight development. As a result of the
competition among the equilibrium points, the network outputs have a tendency to become distinct. In
other words, decorrelation or independency in some sense will be obtained. In our experiment we have
found that under the LMSER principle lateral connections in the recurrent network will be developed
to be inhibitory, or most of them inhibitory. This means that the LMSER learning can force the output
to be decorrelated. When presented with input consisting of 2-dimensional Gaussian signals, the feed-
forward weight in recurrent network learned from LMSER all converged to masks which have salient
structure determined by input distribution and the output nonlinearity, from an initially random set of
weights.

About the self-organization capability in recurrent networks under the LMSER principle, many the-
oretical analysis remain to be taken. The most interesting aspect is the symmetry-breaking phenomena
caused by output nonlinearity. As pointed out in [3], it is the sigmoidal type nonlinearity that makes
the output units selective or sensitive to the features in input data. Instead of theoretical analysis which
seems difficult at the moment, we’ll turn our attention to experiment in the following section.



3 Simulations

As a demonstration of LMSER and DLMSER, we take the problem of learning to respond to randomly
placed Gausian-shaped spots. The data generation scheme and traing was similar to that used by White
in the Competitive Hebbian Learning. In the experiment, there were k? inputs units, treated as a k x k
square array. Each input vector was a random located Gaussian spot, with center at arbitary position
except that they must be two input units away from the nearest edge in the input array. The strength
of each component of an input vector was determined by how far that input unit was from the corre-
sponding spot center. The Gaussian spot for the following demonstrations was given by e“(""'°)z, with
7o being the center location. The first motivation of this test is identical to that in Competitive Hebbian
Learning, i.e., a self-organization principle should learn to respond to the structure present in the set of
input vectors. With random Gaussian spots, the only structure is the two-dimensional structure of the
input array, along with the weakness of the training vectors near the edges of the array. As been experi-
mently confirmed by White, a single Hebbian node can learn just this, an essentially symmetric response
which is strong in the center of the input array, and weak around the edges. For a multi-nodes net-
work, a self-organization rule should learn to share the input space and develop distinct regions of strong
response. Therefore, in the simulations, we are mainly interested in cases of more than one output nodes.

We tested the feature detection problem for the LMSER algorithm in recurrent network. The output
nonlinearity is sigmoidal function f(t) = tanh(ft), 8 = 3. 100 input units with 10 x 10 square array was
tested. The average brightness of 1000 Gaussian spot was calculated beforehand and then substracted
from each random Gaussian spot during training. Initial weights were set to small random values.
When presented with 10 x 10 array with three output nodes, the converged feedforward weight patterns
were displayed in Fig.2(a)~(c). When the output nodes increase to 16, we use 16 x 16 input array
which can be expanded into a vector of 256 components. The random Gaussian spot was generated in
same manner as in previous experiment. With such two dimensional Gaussian input, the converged two
dimensional masks were illustrated in Fig.3~4, corresponding to different sigmoidal nonlinearity 8 = 0.5
and B = 1, respectively. Comparing with the PCA masks studied by many workers, the connection
pattern developed from LMSER in recurrent network is much less ordered. For example, some edge
extraction masks has not appeared. These masks are not much reminiscent of the two dimensional
Gabor filters described by Daugman. Although many features of biological vision may not yet be
well predicated by our experiment results, their highly structured self-organized patterns is still very
interesting, particularly from the viewpoint of feature extraction in pattern recognition.

4 Conclusions

In this paper, we studied the LMSER principle govered weight development in specified recurrent
network. As feedback circuitry is considered to be ubiquitous in the brain, it is of particularly impor-
tance to study self-organization in dynamical recurrent networks from the biological viewpoint. It was
discovered that each output unit in recurrent networks can adapt under LMSER rule to a changing
environment and give useful response to input information, particularly, they can become detectors of
mutually independent features contained in the presented patterns. As receptive fields are probably the
most prominent and important computational mechanism employed by biological information processing
system, these developed features detectors may be considered as an approximation to receptive fields at
some stage in primary visual cortex.
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Fig.1 Fig.2

Fig.1 A recurrent network

Fig.2 Learning result from the LMSER (a)~(c)
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Fig.3 The converged two dimensional masks with /3

Fig.4 The converged two dimensional masks with 5 =1




