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Abstract- Contrary to current approaches which
generally treat the video data as a random collection
of static images, content-based video retrieval requires
methods for video sequence-to-sequence matching
incorporating the temporal order inherent in video
data. In this paper, we formulate the problem of video
Sequence-to-sequence matching as a pattern matching
problem. New string edit operations required for the
special characteristics of video sequences and the
unique features of the vstring representation are
introduced. Based on the edit operations, the vstring
edit distance is proposed as a new similarity measure
for video sequence matching.
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1. Introduction

The temporal constraints that accompany most
multimedia data types (such as video, audio and
animation) are one of the unique characteristics of
multimedia information. The inherent temporal
ordering of the data and the computational burden due
to the huge data volumes however pose major problems
for content-based retrieval. Current methods avoid the
problem by performing the retrieval based on some
surrogate of the original sequence (such as compact
representations [Sawhney96], or key frames). They
generally consider the surrogates as an image, and then
use image matching methods to compare the scenes
[Flickner95, Pentland96]. The problem with this simple
image-based approach is the loss of the temporal
information inherent in a video sequence: though the
surrogates could be generated based on some motion
and temporal information in the video, typically, such
information are lost during the generation process. The
deficiencies of simple image-based methods have been
recognised, and recently other approaches have been
proposed [Chang97, Dimitrova95, loka94, Zhang97].

The importance of the temporal constraints have led
to recent efforts to incorporate them in video retrieval,
by treating the video data in its natural form — as an
ordered sequence of frames [Adjeroh98, Yazdani96].
Adjeroh, King, and Lee [Adjeroh98] have described
the general problems in video sequence similarity
matching, and proposed the vsiring (video string) as an
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appropriate representation for the video sequence,
when the objective is similarity matching. In this work,
we use the vstring representation as a basis, and
develop an edit distance based similarity measure for
video sequence matching. Video retrieval techniques
involving the temporal order in the video data will
equally be of interest in other application areas, such as
music and audio retrieval [Wold96], TV broadcasting,
medical imaging, biomedical monitoring[Wendling96],
crime investigation (copyright infringement), etc.

2 The Video Sequence Matching Problem

The video sequence similarity matching problem can
be stated as follows: given two video sequences,
determine how similar the two sequences are. Formally,
given two video sequences: V;, V,, and some possible
variation in the frames making up the sequences, we
wish to find some function that will take V; and V, as
its input, and return some (possibly quantitative)
indicator of their similarity. Then we can compare the
similarity indicator with a pre-stated (possibly user-
defined) threshold of similarity, and declare V, and V,
similar if they pass the threshold.

Unlike in the case of exact matching, since we are
interested only in similarity between the sequences, the
V; and V, need not be of the same length, and the size
of the frames in each sequence need not be the same.
Conceptually, V, can represent the entire database,
while V; is just a short query sequence. Here, we would
be interested in knowing if there exists any
subsequence of V, that is similar to V,. In video
sequence matching, three basic types of matching can
be identified: (i) scene-to-scene: check if two scenes
are similar; (ii) scene-to-sequence: check if a scene
similar to the query scene occurs in the database
sequence; (ili) sequence-to-sequence: check if a
sequence similar to a query sequence occurs in the
database sequence. The query can contain more than
one scene. To handle the trivial case of sequence-to-
scene matching, we simply assume that the database
sequence is the longer of the two sequences, though
this has no effect on the actual matching process. We
observe that (ii) is a generalisation of (i), and will make
use of methods for (i). Similarly, (iit) is a generalisation
of (ii) and its solution will depend on solutions to (ii).
The basic problem thus is finding solutions to (i): the
scene-to-scene matching problem.



3 Pattern Matching and Edit Distances

Our approach is motivated primarily by techniques
used for approximate (string) pattern matching. Given a
database string A, and a query string (the pattern) B, the
string pattern matching problem is to find the first
occurence (or all occurences) of B in A. A variant of
the pattern matching problem is approximate pattern
matching in which k-mismatches can be allowed in the
match. That 1s, a symbol can be in A but not in B, or a
symbol can be in B but not in A, and A and B can differ
in certain positions, but the number of positions where
they differ should not exceed k. The distance between
two strings is calculated using the string edit distance.
Given two strings A:aja,..a,and B:bb,..b,, over
an alphabet %, and a set of allowed edit operations, the
edit distance between A and B is the minimum number
of edit operations needed to transform A into B.

3.1 Edit Operation

An edit operation, usually written as (x—y), is a pair
(x,y) # (€,€), of strings where lx < 1 and Iyl < 1. When
we apply the edit operation (x —> y) on an input string

S, to obtain an output string S, , we say that S, has
been transformed into S,, via the edit operation

(x—> y). That is, there exist some strings S, and S,,
such that S; =S,xS, and S, =§,yS,. Three basic
types of edit operations are used: ins- insertion of a
symbol, (e—a); del - deletion of a symbol, (a—€); and
subs - substitution of one symbol with another (a—b);
(€ represents. the zero-length empty symbol, and x—y
indicates that x is transformed into y). To any given
edit operation (x — y), a cost ¢(x = y)is attached.
The value of the cost is determined by use of a
weighting function.

3.2 Edit Sequences and Edit Distance

An edit sequence is simply an ordered set of edit
operations that transforms one string into another. To
transform a string A into another string B, one will
typically need to apply different edit operations:
Sg =5,5,...5;, where 5; € {ins, del, subs}. The cost of
a given edit sequence is determined by the cost of the
individual edit operations making up the sequence:

c(Sg)= 2;1 c(s;) , s;€lins,del,subs}

Given two strings, A and B, there may be more than
one edit sequence that transforms string A into string B.
Let S,_,p represent the set of all edit sequences that
transform A into B. The edit distance D(A,B) is given
by the edit sequence with the minimum cost, that is:

D(A,B) =min{c(S;) 1Sz € S, p)
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We can constrain the cost for each edit operation
c(x—)) to be a distance metric: c(x—y) 2 0 - non-
negative; c(x—y) = 0 - reflectivity; c(x—y) = c(y—x) -
symmetry; c(x—y)S$ c(x—2)+ c(z—y) - triangular
inequality. With such as constraint, and since the edit
distance will always select the path with the minimum
cost, it is easy to prove the following theorem:

Theorem-1: [f c(x — y) is a metric, the edit
distance D(A,B) between strings A and B is also a
metric: D(A,B) 20, D(A,A)=0; D(A,B)=D(B,A);
D(A,B) < D(A,C)+ D(C,B)

The requirement for a metric is only for convenience,
but not a necessity. For instance, with symmetric costs,
we will not need to worry about which string is used as
the query string or the database string. On the other
hand, the criteria for triangular inequality is often not
met in most multimedia retrieval environments, and the
cost need not be symmetric. Also, as will be seen later,
depending on the method used to form the symbols in
the string, the cost of an edit operation may also
depend on the specific symbols involved.

The edit distance between A:aqa,..q,
B:bb,..b,is
recurrence equations [Sellers80, Wagner74]:

initialisations

doo =0

dio=d;_1 0+ (a;)ido ;= do jy + 0 (by);

and

usually determined using some

main recurrence
d

d; j =mingd, y ;o y + O (@, by,

i1 T g lag)

dijy 0B

where &,,,; , and o, are the respective cost
of deletion, insertion, and substitution: edit operations.
The example below shows the edit distance between

two strings, for two different cost functions.

Exaple-1: Edit distance between two sets of strings, using
the cost function: & = [@y,; @, O, 1= [11 1] With o= [1
1 2], the edit distance will be 6 and 5 respectively for the two
string pairs.
A=[1,2,1,2,2,2], B=[2,1,2,1,1,1];
a=[111]; DA,B) =4

B
Dji g 2 1 2 1 1 1
el 0 1 2 3 4 5 6
1 1 1 1 2 3 4 5
212 1 2 1 2 3 4
A 1 321 2 1 2 3
21 4 3 2 1 2 2 3
215 4 3 2 2 3 3
2] 6 5 4 3 3 3 4




A=([23,1,2], B=[1,2,3,1,3,1,3];
a=[111};D(AB)=4
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With the edit distance, approximate pattern matching
is performed by checking if there exists a substring A,
of A, such that the edit distance between A, and B is
less than k. Different algorithms have been proposed
for the string edit distance problem, primarily based on
dynamic programming [Seller80, Wagner74]. This
typically requires an O(mn) computational time, and
various improvements have been proposed. See
[Chang92] for a review on fast pattern matching.

4 The vString Distance

The vstring representation was proposed in
fAdjeroh98] as an appropriate representation for video
sequences, when the objective is similarity matching.
After transcribing the sequence data into an appropriate
representation, the actual matching using the selected
representation will still have to be performed. W first
describe the vstring representation which is the basis
for the proposed vstring distance.

4.1 The vString Representation

One method with which the information in a video
sequence can be captured is the string representation,
Here, the video sequence as described by the sequence
of feature values is transformed into a sequence of
symbols, with the symbols in the string drawn from a
defined alphabet. For a given feature, this will involve
the initial transformation of the real-valued feature
values into some discrete classes. Each symbol in the
string represents a class, and the set of all symbols form
the alphabet. Thus, the total number of symbols will
depend on the number of classes used. We call such a
representation of the video sequence a video string, or
vstring for short. For multiple features, we may have
different classifications, leading to multiple alphabets,
with possibly different cardinality. Thus, in such a case,
we will have multidimensional video strings, with the
strings from each feature forming a dimension. Yazdani
and Ozsoyoglu [Yazdani96] used the string approach to
match image sequences, using sequence lengths and
their moments as features. The longest common
subsequence was used as a measure of the similarity
between the sequences.

Usually, symbols in traditional text strings are taken
as presence/absence symbols — that is, the symbols
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either appear in the string or they do not appear, and
two different symbols are assumed not to have much in
common. For instance, the symbols “a”, and “b” in the
English alphabet are assumed not to have much in
common. For the vstring, when the symbols are taken
from an alphabet obtained from the classification of
real valued features, we assume that nearby classes are
related. That 1s, a feature value that belongs to the first
class is nearer to another feature value that belongs to
the second class, than to one that belongs to the last
class (assuming more than two classes). This implies
that the symbols in the video string will be multi-valued
symbols. This modification is needed to improve the
accuracy of the similarity measurement using vstrings,
and will have some important implications in defining
distances between video strings. For other types of
classification (e.g. semantic classification of the
sequences), the symbols can be treated as the
traditional presence/absence symbols.

More importantly, the video string representation
provides an intuitive method to model various
characteristics and phenomena observed in the video
sequences — such as repetitions. reverse, fast forward,
video scene breaks, etc. Details of the wvstring
representation and examples of how the basic video
scene transitions such as fast forward, slow motion,
reverse, and partial reverse can be modelled by the
vstring are given in [Adjeroh98].

4.2 Video String Edit Distance

Motivated by the traditional methods used in the
video editing process - assemble and insert editing, and
the edit distance based process of string pattern
matching, we propose a method for matching video
sequences. The technique we propose is suitable for
both frame by frame sequence representation and
comparison, and for shot-by-shot comparisons, and
accounts for the special features and edit operations
needed for the video sequence. We call the resulting
similarity indicator the vstring edit distance, since it is
based on the vstring representation

The vstring edit distance is based on an intuitive
idea. Given two video sequences (now represented by
their vstrings), we assume that at some initial state, the
two sequences were the same (with no difference), and
that the current state of the sequences is as a result of
zero or more video editing operations. Here, by video
editing, we refer to the process of arranging individual
frames, shots or sequences into an appropriate order
[Compesi97]. In addition to the possible temporal re-
arrangements, our notion of video editing also includes
possible changes in the actual content of the frames
making up the shots or sequences.

It is then obvious that traditional string edit distances
will be inadequate to cope with video strings. For
instance, the above content requirement implies that the



symbols involved in video strings will have some
meaning, (rather than traditional presence/absence
symbols used in text or DNA strings). This further
implies that video string edit distances will have to
contend with the values attached to each symbol in the
alphabet. The value will typically depend on the
classification method adopted and the particular
features from which the vstring is derived. We will
therefore need to make appropriate considerations with
respect to the special nature of vstrings, the unique
characteristics of video sequences, and the different
types of transitions that may occur in such sequences.

4.3 New vString Edit Operations

On account of the special video edit operations (such
as those used to effect special effect transitions), or
special  video  functionalities (such as  fast
forward/reverse), or the differences that may arise from
other video operations (such as frame skipping), new
edit operations are required in computing the edit
distance between two video sequences. For the vstring
distance, we need to make a slight modification to the
definition of an edit operation. We relax the constraint
(Ixl £ 1, Iyl £ 1) on the length of the strings involved in
the edit operation.  Here a vstring edit operation,
written as (x—Y), is a pair (x,y)#(€,€), of strings where
ix} 2 0 and Iyl 2 0. This implies that, rather than mere
single symbols, x, y could be strings with more than
one symbol. This modification becomes important
when we consider some new edit operations required
for video strings, especially those that act on blocks of
symbols, such as the fusion operator.

For the case of video strings, we extend the
traditional edit distance by defining some new edit
operations, namely: swap, fusion/fission and break
operations. Generally, the wvstring edit operation

O, can be represented as follows: O, =1;,0/, ie.

insertion: a=¢€,beX; deletion: aeX,b=¢;
substitution: a,be XL; swap: a,beX*; fusion:
a,be T*; break: a,be X, where R ={£,$},

RNI =0, Zis the vstring alphabet, and X * stands
for any combination of symbols from X . We can then
use the new edit operations and adopt an approach
similar to that used for traditional edit distances to
define a corresponding similarity mapping function
between video strings.

Swap: interchange two symbols (or blocks of
symbol) in one of the strings: abcde—adcbe,
(transpose b and d), abdc—cbda (transpose a and c). In
video, apart from the temporal positioning, the actual
contents of the frames in the sequence are also
important is assessing the similarity between
sequences. Thus the transposition operation will be
useful in handling the special transitions and possible
partial occlusions that may occur in a video sequence,
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or the cases of partial reverse. Though the temporal
ordering may not be the same in these cases, the
contents of the scene may still be viewed as similar by
the human observer, since the frames basically contain
the same information.

The swap edit operation is characterised by the size
of the strings to be swapped, and the number of
symbols separating them in the database string, and in
the query string. This is illustrated below:

Ar S Ay, Sy 5 B S, Ay S,

Syand S, are the strings (not necessarily single
symbols, ie. IS, 211S, =1) to be swapped, A, is

the number of symbols separating them in the database
string, and A is the corresponding size of separation

in the query string. Depending on the values of
Ayand A, we can define three variants of the swap

edit operation: (i)A-swap:4, =A, =A- the swap
operation can be applied to any of the sequences (the

database or the query) at the same cost. This is also
called a transposition operation. (ii))A, —swap:
A, <A, - swap operation is applied to the database
string. (iii)A, —swap: A, <A, - swap operation is
applied to the query string.

With the above formulation, we introduce a new edit
operation needed for video strings- the block-swap
operation. Unlike the usual swap or transposition edit
operation, here we can swap blocks of symbols in one
single operation, rather than through a repeated use of
the swap operation. The implications on cost will be
discussed in Section 6. ’

Fusion/fission: fusion: merge a consecutive stream of
the same symbol into a single symbol: aaa—a;
fission: split a single symbol into a stream of symbols
all of the same type: a—>aaa. This will be needed to
deal with the repetitive nature of symbols in a video
string. A single symbol can be split into many symbols
of the same type (fission), and similarly, many
consecutive symbols of the same type can be merged
into a single symbol (fusion).

Let [aa...a] (p symbols) be represented as a’ . The
fusion/fission operation then performs a simple
transformation: a” —a’, t= f(p)=12,... Clearly,
fip) the of

operation. Define f(p)= r > 0; For example, with

extent the fusion/fision

2]

determines

o b
r=3, the following will result from the application of
the fusion operator: aa — a, aaa — a; aaaa — aa;

a® - aa; The the
parameter r can be made based on the application, or

based on the lengths of the database and query

a’ -»a’=aaa. choice of

sequences. Typically, 1 < I_ﬁ.l, since in the extreme

case, the query string will be made up of m identical



symbols: le. B=bb,..b, =b" or
b, =b, i=12,..m The fusion/fission operation is
thus a form of normalisation or scaling' on the original
strings. We call r the scale of the fusion operation: i.e.
if r 2 1, each r or less consecutive symbols of the same
type are scaled down to a single symbol; if r < 1, each

single symbol is scaled up to L{_J symbols, all of the

same type. By simply making ¢ > p, (i.e. r <), we
obtain the fission/split operation. In general however, ¢
< p - tre. fusion operation, and in practice, we can
accomplish both the fusion and fission operations by
use of only the fusion operator, for instance by pre-
scanning A and B. The fusion operation also provides a
natural way for handling special video frame
transitions, such as fast forward, and slow motion,
which are usually achieved by frame dropping or frame
repetition. The cost of such an operation may be
different from that of repetitive use of the insert or
delete operations.

Break: insert or delete a scene break between two
adjacent symbols: insert break:.ab—a$b; delete break:
a%$b—ab; $ stands for a scene break. This is a special
edit operation that allows the insertion or deletion of
video scene breaks at any point in the sequence.
Because of the significance of scene breaks in video
sequences, they may not be very accurately modelled
as an ordinary concatenation, or by mere insertion and
deletion operations.

4.4 vString Edit Distance

The basis for the vstring (symbolic) representation
for video sequences is the feature values, which are real
(continuous)  numbers,  representing  numerical
quantities like colour, motion, etc. The vstring on the
other hand have discrete values, and depend on the
original feature values. We call the continuous feature
values the base/primary representation, and the vstring
the symbolic/secondary representation. For a more
precise appraisal of the distance between two vstrings,
we consider the differences due to both the base
representation and the symbolic representation. We
refer to the former as the base or primary edit distance,
and the later as the secondary or symbolic edit distance.

The use of the symbolic and the base distances also
provides a natural way of handling the fact that the
video string could be multidimensional, and that
symbols in a vstring could be multi-valued, rather than
mere presence/absence symbols as is usually the case in

' Though scaling as used here is related to the notion of scaled
matching introduced by Amir et al [Amir96}, our definition of
scaling is different. Here, scaling is only within the symbols in a
string, while in [Amir96], scaling was defined on the entire string
ie for A=a,ay..a,, A% = alsaé apy #(AA.A) =4

concatenated s times. s is the scaling factor.

traditional text strings. For a given dimension of the
vstring. the value of each symbol can be obtained from
the feature value used to derive the strings in that
dimension. Methods for multidimensional pattern
matching[Amir94, Giancarlo97] can then be used to
compute the corresponding multidimensional symbolic
edit distance, while traditional multidimensional
distance metrics can be used on the multidimensional
feature values for the base edit distance. As in
traditional edit distances, appropriate weights will have
to be assigned to each of the new operations.

4.4.1 vString Symbolic Edit Distance

Using the new operations, we can derive a general
similarity measure (actually distance measure in this
case) for video strings as follows: Let O, be the set of
edit operations: Op={insertion, deletion, substitution,
swap, fusion, break}, and o, be another set containing
the respective cost of each edit operation:
ap = Wins ’adel ’a.\'uh & oa Ya]'u,\' s Cpre } AlSO, let SE
denote a sequence of edit operations which transforms
A into B: Sg = ';,: 0, ‘;) 02‘;): 0, } where 510,

indicates that a,—b; by edit operation O, (O € O;) at
edit step i; a;and b; are the two symbols” involved in i-
th edit operation. We can then determine the symbolic
edit distance between A and B based on the cost of
using this particular edit sequence:

ofSg)= D, | Yerdion

00, | 0;=0%
where a* (a* e ) is the cost of edit operation o* |
PSP ="p P
for instance a: =aq,, if O;:insern’on, d(;0))is a
distance function whose result depends on a, b, and the
edit operation O,. Since we will typically have

different sequences of edit operations that can
transform A into B, we will actually have a set of such
edit sequences:

1 g2

Sase = E,SE,...,Sg}

where S/ is the i-th edit sequence that transforms A
into B. The symbolic edit distance between A and B,
d,(A,B) is then given by the least cost edit sequence:

d, (A B)=min{c(Sp)ISp e S,,5)

The symbolic edit distance is an extension of the
traditional edit distance, with consideration of the
special vstring edit operations. It is however not an
accurate representation of the distance between the
video strings. A more accurate measure of the distance

is obtained by combining the symbolic edit distance
and the base edit distance.

% They could also be symbol blocks for certain edit operations, for
instance in the fusion or the swap edit operation.



4.4.2 vString Base Edit Distance

Since we assume the results from the symbolic part
will still produce a general idea (though not very
accurate) indication of the distance, we can make use
of the edit sequence used for computing symbolic edit
distance in calculating the base edit distance. That is,
computing the base edit distance need only be
performed AFTER computation of the symbolic edit
distance. This will thus be calculated only for the
minimum cost edit sequence. This can easily be done
using any of the general distance metrics, such as the
city-block, Euclidean, or the general Minkowsky
metric. The use of the minimum cost edit sequence also
implies that computation of the base edit distance will
not add to the complexity of the symbolic edit distance,
since at worst, only O(m) additional computation will
be required.

Let S,,p  represent the minimum cost edit

sequence that transforms A into B. Thatis, S, 18

an ordered sequence of edit operations:

Sasn :{go,,‘;ioz,...,‘;;o,} used to compute the

symbolic edit distance. We define the base distance
between A and B using the above minimum cost edit
sequence:

! a
dy(ABY=) d,,(,,lo,.)
More generally, we can express the base distance
using the general Minkowsky metric:

dy (A, B) ={2:=1 [db(f,: Oi)]pr :

The base distance is thus dependent on the specific
edit operation and also on the symbols involved in the
operation. di(.) is defined as follows for each of the
vstring edit operations:

K, + fv(b)—fv(B)l ;insertion
Kp +|fy(a@)- }:v(A)t ; deletion

d, (‘,j O): £, @ = £, ®) ; substitution
£, (@)= £, ) ; swap

Kp +|f.(a)= f,(b) ; fusion

Ky ;break

where K5, K, K ¢,and K, are constants which could
be application dependent, f(a) is the normalised

feature value of symbol a, and f‘,(X)is the average

feature value for the string X. Let @ and b above be
symbol-blocks, rather than single symbols: i.e.
a=a,a,..a;, b=bb,..b . Then, we define the base

distance for the block-swap edit operation as follows:

s
db(‘,‘,O)=zl=]|f‘.(a,)—f‘,(b,. )| s block — swap
We have tried to make the above definition for the
base distance general. The constants can be assigned
the value of zero where desired, for instance, for the
fusion operation. Clearly,

KB 2 min{v(avb) If\'(a) - fl'(b)|+max{Kl’KD}

since it should cost more to insert/delete a scene break
to insert/delete an ordinary symbol.

4.4.3 vString Edit Distance

The final vstring edit distance D,(A,B) is obtained by
combing the symbolic edit distance and the base edit
distance, through a weighting function:

D.(A,B)=B.d, (A B)+(1- B).d (A B)
where 3 is a weighting function (0 < f8 <1) which
biases the weight to either the symbolic or the base
distances, d, and d,, are suitably normalised to within
the same range, e.g. dj, can easily be normalised to fall
within [0 1], while d, can be normalised by dividing
with the query string length.

The symbolic distance helps to reduce differences
due to noise variations, and problems of invariance in
the specific feature used to form the strings. The base
distance on the other hand uses the actual feature
values, and is thus more accurate - thereby reducing the
problem caused by the inherent loss of accuracy in the
vstring representation. The appropriate choice of the
weighting function is still an issue, but can generally be
application dependent. The vstring edit distance
described above may or may not be a metric. However,
the following theorem can be proved:

Theorem-2: If d, and d,, are metric distances, then
the vstring edit distance DJ(A,B) between two video
strings A and B (represented by their vstring) is also a
metric: ie. D,(A,B)20; D,(A,A)=0;

D,(A,B)=D(B,A);,D,(A,B) < D,(AC)+D,(C,B)

5. Preliminary Experimental Results
We tested the proposed edit distance based measure
on some test video sequences. We present the results
for only one sequence. The sequence is taken from a
news video. Space constraints does not permit us to
include the video frames in this paper. So we describe
(and group) the video contents in general terms:
V1,V2,V3,V7,Vi1o: anchor man + (inset) North Korean
flag, South Korean flag, Boris Yeltsin, tennis,
respectively;
V4,Vs,Ve: large hall with seats (different views);
vg,Vo: air plane (blue sky, green grass background
respectively);
Vi1,Vi2: tennis game (green lawn, different views); v;
represents the i-th video scene.
The distance between the scenes obtained using the
vstring distance is shown in the table below. The



results are for

Kp =K, =|z|+1

an alphabet size I[ZI=4, with
, cost function [1 1 1], B=0.5. Each

frame in the sequence was divided into 4 subframes,
and the vstring was formed using the colour mean and
standard deviation form the subframes. The base edit
distance was calculated using the symbol values (not
the exact feature values - see section on discussion).

Vi
length | 155 386

Vi

563

vs Ve

53 85

Ve

3R

Vo
1o

Yio

414

Vi Viz
434133

121 46

v, f0 017
vy 4]

0.17
.07

Q.55 0.53
0.59 059
0.68 0.65
A 0 01 009
Vs 0 0.16  0.54
\J 0 0.55 043
V7 0 0.59  0.50
Vi 0 031 0.86
Vo 0 053 032 030
Vio 0 049 0.58
ATl [ 0.13

0.54
0.61
0.72

0.04
0.20
0.20
0.55

0.62
0.90
100
0.42
0.44

0.50
0.56
0.58
0.25
0.25
0.29

0.16
0.03
0.08
(.58
Q.58
0.62
018

0.56  0.56
0.51 0.61
052 0.62
0.28  0.26
028 025
030 029
0.58  0.57
049 046

Table-3: Normalised vstring distance test video.

The table shows that, in general the scenes that
belong to the same group recorded smaller distances,
when compared with those belonging to another group,
implying that the proposed method provides some
reasonable measure of the similarity between the video
scenes. It may also be observed that the effect of scene
lengths have largely been reduced, by length
normalisation. The results are only preliminary.
Various issues are still under investigation, such as the
effect of alphabet size, the no of subframes, appropriate
cost functions and weights for d; and d,.

6. Discussion

6.1 Edit Cost for the Special Edit Operations

We can access the cost of the special vstring edit
operations by considering the basic edit operations
from which they are derived. For instance, the swap
operation can be realised by a sequence of insertion
and deletion operations, or by use of substitution
operations. For the special operations to be useful
however, the cost should be less than the corresponding
cost of using the traditional edit operations. We give a
genaral description of the cost for the block-swap
operation. When the swap blocks are of size 1, we have
the ordinary swap operation.

Example-2: Using the swap edit operation:
Given: A: cde efx abc and B: abc efx cde
Swap symbol blocks cde and abc

Using sequential swap (3 swap operations)

swap a and c: A: cde efx abc B: cbc efx ade
swap b and d: A: cde efx abc B: cdc efx abe
swap ¢ and e: A: cde efx abc B: cde efx abc
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Using block swap (1 single block-swap operation)
swap [abc] and [cde]:
A: cde efx abc B: cde efx abc

Swap Cost (for brevity, we skip the details)

Let  @&,,,= cost of block-swap  operation,
O pwap = COS of sequential swap, §,=swap block
size, (5, =18, =15, 1), A, =size of separation

between swap blocks, and A, = min{A,,A }. The
cost of the block swap operation will be:
ah.\'wa[) = (Sh + Ah,\ )(adel + ain.\ )

If sequential swap is used - ie. no block swap
operations are allowed, the cost will be:

o = (zsb + Ab.r - 1)(adel + ainx )sh

seqswap

It is clear from the above that O

segswap

2 ab.\‘wup .
Equality holds only for s, =1, in which case any of the

methods can be used. We can do a similar analysis for
the case of the fusion edit operation. The overall cost
will depend once again on the costs of the insertion and
deletion operations, since these are the elementary
operations from which the fusion operation is realised.
Another factor in determining the cost will be the scale
parameter r; the larger the value of r, the more the cost.

6.2 Weighted vString Edit Distance

The distance between any two strings depends very
much on the cost of the edit operations, and on the
number of edit operations. When the cost of each edit
operation is assumed to be the same, for instance unity,
the problem of choosing a threshold for similarity is
reduced to just deciding the k-differences that is to be
allowed in the match. As one may have noted from the
previous sections, a uniform cost for each of the edit
operations may not accurately model the importance of
each operation in the video sequence. For instance, a
deletion operation (which can be seen as analogous to
removing one frame in a video scene) should not carry
the same weight as a break operation (for instance
inserting a scene break) which divides one scene into
two different scenes. Also, a consideration of the
possibly multi-valued nature of the symbols in a video
string implies that the edit distances (even when the
same weight is used) may no longer be integer values.

Parametric edit distances try to put these issues into
consideration in determining the suitable cost functions
for each edit operation, and in the choice of thresholds.
For the case of traditional string edit distance, some
methods have been proposed for the basic edit
operations insertion, delete, and substitution
[Bunke95, Gusfield94, Rice97]. Parametric vstring edit
distance operations can borrow ideas from these
proposals for their realisation. Attention will have to be



paid to the special edit operations, and the distance
normalisation for a given cost function.

Apart from the edit costs, appropriate methods for
defining the weights between the base edit distance and
the symbolic edit distance are also required. One more
issue is the assumption that the base distance should be
based on the minimum cost path, which is used to
determine the symbolic distance, d,. This need not be
the case. In fact dj, can be computed separately - the
method used for the experiments. Alternatively, it can
be calculated for each edit operation, as part of the
decision on the minimum cost edit sequence. That is, at
each edit step, the vstring edit distance computation
will be performed for d; and d, for each edit operation,
and the combined minimum edit cost determined
BEFORE proceeding to the next edit step. The result
will be more accurate, but at an additional
computational cost. Also, new weights may be required
for d, and d,, if this approach is adopted.

A simplification of the base distance can be obtained
by using the serial number of the symbols as the
symbol value, and then replacing the feature values in
the computation of d, with the symbol values. Let Z; =

i-th symbol in the alphabet X. Then, its symbol value
willbe: f,(E;)=ii=12....[3].

One major problem with the vstring approach is the
high dependence on the robustness of features used to
derive the vstrings. For instance, if the initial features
are not invariant under certain changes in the video
sequence, such as illumination or partial occlusion, edit
distances computed based on the vstring representation
may not be very reliable. The other problem is the
computational time and space that may be needed,
especially when the database and the query sequences
are both long. One can still identify other issues that
need some attention in using the proposed vstring edit
distance, such as multidimensional vstring edit
distance, context dependent edit cost functions,
normalisation for the vstrings, and also for the edit
distances, etc.
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