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Abstract

In most Information Retrieval (IR) applications, Euclidean
distance is used for similarity measurement. It is adequate
in many cases but this distance metric is not very accurate
when there exist some different local data distributions in
the database. We propose a Gaussian mixture distance for
performing accurate nearest-neighbor search for Information
Retrieval (IR). Under an established Gaussian finite mixture
model for the distribution of the data in the database, the
Gaussian mixture distance is formulated based on minimizing
the Kullback-Leibler (KL) divergence between the distribu-
tion of the retrieval data and the data in database. We com-
pared the performance of the Gaussian mixture distance with
the well-known Euclidean and Mahalanobis distance based on
a precision performance measurement. Experimental results
demonstrate that the Gaussian mixture distance function is su-
perior in the others for different types of testing data.

1 Introduction

Research on Information Retrieval (IR) is a key area for build-
ing and managing large multimedia databases. Given a query,
the objective of IR is to find out the most relevant data of
the query according to a similarity metric. To describe the
similarity, a form of the geometrical distance metric between
points in the feature space is considered a logical choice in
many IR applications. The smaller the distance between two
vectors in the feature space, the greater the similarity. Thus,
the nearest-neighbor search technique is often employed to re-
trieve the most similar data in the database corresponding to
the a query.

A general definition of the distance between two d-
dimensional feature vectors ~q and ~x is

D = k~q � ~xk2A = (~q � ~x)TA�1(~q � ~x); (1)

where we call the matrix, A, as the distance matrix which is

any positive definite d � d matrix. The effect of A is to scale
the distance along each feature axis.

In practice, the most two commonly used distance measures
in IR are (1) the Euclidean distance whose distance matrix
is the identity matrix and (2) the Mahalanobis distance whose
distance matrix is the inverse covariance matrix of the data ob-
jects. The main weakness of the above two metrics is that they
are not accurate when there exist some clusters with different
distributions in the feature space since (1) the Euclidean dis-
tance is independent of the distribution of the data, and (2) the
Mahalanobis distance only considers the global distributionof
the data. In our research, to overcome the weakness, we for-
mulate a Gaussian mixture distance according to a Gaussian
finite mixture model which estimates the underlying local dis-
tribution of the database. A similar Gaussian mixture distance
has been used by Cox et al. for face recognition with some
satisfactory results [1]. In this paper, we extend Cox’s work
using the KL divergence and a Gaussian mixture model to-
gether to formulate an optimal metric under the accuracy con-
sideration for similarity measure when the estimation of data
has been established. In our research, we find the Gaussian
mixture distance is a more accurate similarity measure than
the Euclidean and the Mahalanobis distance since it captures
the local distribution of the database.

The Gaussian mixture distance is highly dependent on the es-
timation of the distributionof the data. To establish an optimal
mixture model for the data in database, the “actual” number of
the mixtures in the Gaussian mixture model needs to be deter-
mined. In our research, we select a mixture number determi-
nation criterion based on the Bayesian YING-YANG (BYY)
theory for its robust performance [2, 3].

In the next section, we formulate the Gaussian mixture dis-
tance in detail using the KL divergence method. Section 3
introduces a mixture number determination criterion based
on BYY theory to obtain the optimal mixture numbers of
the Gaussian mixture model using EM algorithm. In sec-
tion 4, we demonstrate our experimental results when com-
paring the performance of using different distance definitions



for the nearest-neighbor search using a synthetically gener-
ated database. Finally, a short conclusion is given in Section
5.

2 Gaussian Mixture Distance Function

2.1 Probability Model for Nearest-Neighbor
Search

Given a set of d-dimensional feature vectors, X = f~xig
N
i=1,

and a query, ~q, the objective of IR is to find out a subset C
which containsM retrieved data with theM greatest values of
the conditional probability density p(~x ij~q), where C � X and
p(~xij~q) is a retrieval probability function. If we estimate the
probability density function p(~xj~q), as a Gaussian distribution
whose mean is the query vector ~q, then

p(~xj~q) =
1

(2�)d=2j�Cj1=2
exp

�
�
1

2
(~x � ~q)T�C

�1(~x � ~q)

�
;

(2)
where �C is the covariance matrix and j�C j is the determinant
of �C. Notice that

max
~xi

p(~xij~q) / max
~xi

log p(~xij~q);

where

log p(~xij~q) = � log
�
(2�)d=2j�Cj

1=2
�

�
1

2
(~xi � ~q)T�C

�1(~xi � ~q): (3)

Hence,

max
~xi

p(~xij~q) / min
~xi

�
�(~xi � ~q)T�C

�1(~xi � ~q)
�

= min
~xi

(~xi � ~q)T
�
��C

�1
�
(~xi � ~q); (4)

where � is a positive constant. In Eqn. (4),

(~xi � ~q)T
�
��C

�1
�
(~xi � ~q) (5)

can be considered as a distance function and the task of re-
trieval becomes to search M nearest-neighbors of ~q in the
database based on the distance function, where ��C

�1 can be
seen as the distance matrix and �C

�1 is the major parameter
needs to be estimated.

2.2 Distance Matrix under a Single Gaussian
Model

In practice, the identity matrix I is one of the most com-
mon choices as the distance matrix, and therefor Eqn. (5)

becomes the Euclidean distance, where �C
�1 is estimated

as 1

�
I which is a diagonal matrix. Another popular choice

of �C
�1 is the inverse covariance matrix of the database,

�C
�1 � ��1

X
, where �X is the covariance matrix of the

whole database. Then Eqn. (4) becomes the well-known Ma-
halanobis distance. However, above choices of the distance
matrix mainly depend on researchers’ experience or intuition.
Hence, a theoretical criterion for distance metric estimation is
required. Next, we give a method for estimating the distance
matrix based on KL divergence [4].

Let p(~x) denotes a probability density function (pdf) of the
feature vector ~x to represent the distribution of the data in
the database. Since the retrieved data must derive from the
database, an important criterion for estimating p(~xj~q) is to
minimize the divergence between p(~xj~q) and p(~x). Here, we
use the relative entropy(KL divergence) to describe the diver-
gence,

KL(p(~xj~q)kp(~x)) =

Z
p(~xj~q) log

�
p(~xj~q)

p(~x)

�
d~x: (6)

Hence, the optimal estimation, �̂C, of �C is

�̂C � argmin
�C

KL(p(~xj~q)kp(~x)): (7)

If p(~x) is a Gaussian distribution with the covariance matrix
�X and the mean ~m, the KL divergence becomes,

KL(p(~xj~q)kp(~x)) =
1

2
log
j�X j

j�C j
+

1

2
tr
�
�C(�

�1

X
��C

�1)
�

+
1

2
tr
�
��1
X

(~m� ~q)(~m � ~q)T
�
; (8)

where tr[�] denotes the trace of the matrices. The
KL divergence has the property that it is non-negative,
KL(p(~xj~q)kp(~x)) � 0. Let dKL

d�C
denotes the partial deriva-

tives of KL to each element in �C, then,

dKL

d�C
=

1

2
tr
��
��1
X
� ��1

C

�
[1]k�k

�
: (9)

Hence, the optimal estimate of �C is

�̂C � argmin
�C

KL(p(~xj~q)kp(~x)) = �X : (10)

From the above results, the Mahalanobis distance using ��1
X

can be considered as an optimal metric for estimating �C
when the distribution of all data in the database can be well
described using a single Gaussian. And especially when the
Gaussian is a norm Gaussian, �X = aI, where a is a posi-
tive constant and I is the identity matrix, the distance can be
seen as an Euclidean distance which is a special case of Maha-
lanobis distance. Fig. 1 shows cases of using the Mahalanobis
distance and Euclidean distance. The two distance matrices
are uniform and independent of the position of the query ~q.
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Figure 1: The distributions where the Euclidean and Mahalanobis distance
are the optimal metrics
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Figure 2: Some clusters in a data set with different local distributions.

Next, let us consider a data set which consists of some differ-
ent types of data clustered as illustrated in Fig. 2. It becomes
unsuitable to use a uniform distance matrix for the different
queries in this case. Here, we introduce a method to estimate
the distance matrix when using a Gaussian mixture model for
data clustering. We call the distance function as the Gaussian
mixture distance.

2.3 Distance Matrix under a Gaussian Mixture
Model

The finite Gaussian mixture model has been widely accepted
for data clustering since the Expectation-Maximum (EM) al-
gorithm was introduced by Dempster et al. in [5]. This mix-
ture model estimates the data distribution as the sum of k
weighted Gaussian distributions,

p(~x) =

kX
j=1

�jG(~x; ~mj ;�Xj
); (11)

where each weight, �j � 0 and
Pk

j=1�j = 1, and each
G(~x; ~mj;�Xj

) is a single Gaussian function with the mean,
~mj and the covariance matrix, �Xj

. In the mixture model,
an “incomplete data”, j, which represents the index cluster
number is introduced and the conditional probabilityP (jj~x)1

describes the probability of a feature vector ~x belonging to
the j-th cluster. Hence, we can use a joint probability density
function, p(~x; j) = p(~xjj)P (j), of ~x and j to describe the
distribution in the database, where P (j) = �j and p(~xjj) =
G(~x; ~mj;�Xj

).

Following the above definitions, we estimate the distribution
of retrieved data C as p(~xj~q) =

Pk
j=1P (jj~q)p(~xj~q; j), where

p(~xj~q) is a Gaussian function whose mean is the query vector
~q and covariance matrix is �C. Hence, the KL divergence
between the distribution of the retrieved data and the data in
database is

KL(p(~x; jj~q)kp(~x; j))

=

Z Z
p(~x; jj~q) log

�
p(~x; jj~q)

p(~x; j)

�
d~xdj

= KL(p(jj~q)kp(j)) +KL(p(~xjj; ~q)kp(~xjj)): (12)

In Eqn. (12),

KL(p(jj~q)kp(j)) =
kX

j=1

P (jj~q) log

�
P (jj~q)

P (j)

�
; (13)

and

KL(p(~xjj; ~q)kp(~xjj)) (14)

=

kX
j=1

P (jj~q)

Z
p(~xjq) log

�
p(~xjq)

G(~x; ~mj ;�Xj
)

�
d~x:

Then,

dKL

d�C
=

1

2
tr

2
4
0
@ kX

j=1

P (jj~q)��1
Xj
� ��1

C

1
A [1]k�k

3
5 : (15)

Hence, the optimal estimate of �C is

�̂C � argmin
�C

KL(p(~xj~q)kp(~x)) =

0
@ kX

j=1

P (jj~q)��1
Xj

1
A
�1

;

(16)
where

P (jj~q) =
�jG

�
~q; ~mj;�Xj

�
Pk

i=1�iG (~q; ~mi;�Xi
)
: (17)

Obviously, the performance of the distance highly depends
on the estimation p(~x) of the data in the database. The main

1In the paper, we use P (�) to denote probability and p(�) to denote prob-
ability density. For a discrete variable j, its probability density p(j) can be

written as p(j) = lim�!0
P (j)

�
.



problem concerning with the estimation of p(~x) is model se-
lection, i.e., how to detect the “true” mixture number in the
database. Notice that, Mahalanobis distance can be seen a
special case of the Gaussian mixture distance where there only
exists one mixture in the feature space. In the next section, we
will introduce a cluster number selection method based on the
BYY theory.

3 Mixture Number Selection

Determine the number of mixtures is a well-known model se-
lection problem that has an important role in unsupervised
learning. Recently, a Bayesian-Kullback scheme, called the
YING-YANG Learning Theory and System, has been pro-
posed to act as a general learning scheme for unifying existing
major unsupervised and supervised learning schemes [2, 3].
One special case of the YING-YANG machine can provide us
a criterion for solving the problem of selecting cluster number.
In our research, we choose an optimal number of mixtures us-
ing the following steps:

Step 1: Set k 1, where k is the candidate mixture number.

Step 2: Estimate the parameters, � = f�j; ~mj;�Xj
gkj=1, of

the Gaussian mixture model under the number of mix-
tures, k, using the EM algorithm as follows:

E step:

P (jj~xi) =
�oldj G

�
~xijj; ~mold

j ;�old
Xj

�
Pk

j=1 �
old
j G

�
~xijj; ~mold

j ;�old
Xj

� : (18)

M step:

�newj =
1

N

NX
i=1

P (jj~xi);

~mnew
j =

PN
i=1 P (jj~xi)~xiPN
i=1P (jj~xi)

; (19)

�new
Xj

=

PN

i=1 P (jj~xi)(~xi � ~mold
j )(~xi � ~mold

j )TPN
i=1 P (jj~xi)

:

Step 3: Evaluate the choice of k with the following BYY cri-
terion,

J(k) =
1

2

kX
j=1

�j log j�Xj
j �

kX
j=1

�j log�j: (20)

The Eqn.(20) can be seen as a cost function: the smaller
the J(k), the smaller the cost of choosing k as the op-
timal number of mixtures. As shown in paper [2], the

number selection criterion is that the curve of cost func-
tion J(k) versus k reaches its global minimum point at
k = k0, where k0 is the actual number of mixtures in the
finite Gaussian mixture.

Step 4: Choose a new k k + 1, repeat the step 2 and 3 till
k reaches a predefined number.

After using the above steps, we choose the k which minimizes
the J(k) as the optimal number of mixtures. Under the opti-
mal estimated k and the parameters � = f�j; ~mj;�Xj

gkj=1,
we can formulate the Gaussian mixture distance for nearest-
neighbor search. Next, we perform some experiments to com-
pare the performance of the Gaussian mixture, the Euclidean
and the Mahalanobis distance in the next section.

4 Experiments

4.1 Test Data

We tested the accuracy performance of the Gaussian mixture
distance for IR with 3 sets of 2-dimensional synthetic feature
vectors. Each test set contains 1200 vectors generated from
6 Gaussian mixtures, with each mixture containing 200 syn-
thetic feature vectors. We assumed the vectors coming from a
same mixture belong to the same type. Figures 3(a)-3(c) show
the distributions of the 3 set of synthetic feature vectors. From
the figures, we can see that the global distribution of the test
set 1 has an elliptical shape where the local distributions of all
mixtures are spherical, the set 2 has an elliptical global dis-
tribution where the local distributions of all mixtures also are
elliptical with the same major axis direction, and the set 3 has
an irregular global distribution where the local distributions
of the mixtures are different.

4.2 Estimation of the Test Data

We applied EM algorithm along with the BYY mixture num-
ber selection criterion to estimating the distribution of each
test set. Figures 3(d)-3(f) show the value of cost function
Eqn. (20) for selecting the number of mixtures in test set 1
to set 3. In our experiments, the cost function J(k) reaches
its global minimum at k = 6 in the J(k) versus k curves for
all test set, where k is the mixture number. From the exper-
imental results, the BYY criterion has correctly chosen the
actual number of mixtures for all of our synthetic data sets.
Based on the optimal selected mixture number, we estimated
the parameters of the Gaussian mixture models corresponding
to each test data set.



4.3 Performance Test of the Gaussian Mixture
Distance

Under the Gaussian mixture model of a test data set, we can
formulate a Gaussian mixture distance function correspond-
ing to a query according to Eqn. (16). Then the Gaussian mix-
ture distance can be used to find out the predefined number of
similar vectors from the test data set with the nearest-neighbor
search technique. In our experiments, we compared the per-
formance of the Gaussian mixture distance with the Euclidean
and Mahalanobis distance for IR. We used the Precision of
IR as the performance measure which is defined as:

Precision =
Number of target data retrieved

Number of data retrieved
: (21)

For each test data set, we conducted 600 trials divided into
5 group to perform nearest-neighbor search using Euclidean,
Mahalanobis, and Gaussian mixture distance, where each
group contains 120 randomly chosen vectors from the the test
set as queries. In each trial, we retrieved 200 similar vectors
for a query vectors. Table 1 presents the average Precision

of the IR results and the average KL divergences of Eqn. (12)
using the three distance functions.

From the experimental results, we can see how the local dis-
tributions influence the accuracies of the distance functions.
The Euclidean distance obtained the higher Precision than
the Mahalanobis distance for the test set 1, where the local
distributions are all spherical. And the Mahalanobis distance
has higher Precision than the Euclidean distance for the test
set 2, where the local distributions are similar with the globe
one’s. For the test set 3, the Precision measurements for
the Euclidean and Mahalanobis distance are low since the lo-
cal distributions are irregular. However, the Gaussian mixture
distance always can obtain the highest Precision in all the 3
test sets. Our experiments are conducted using an Ultra 5/270
with the MATLAB Version 5.2.1 software. The average time
for performing each trial is 0.4591 seconds for the Euclidean,
0.4623 for the Mahalanobis and 0.4628 for the Gaussian mix-
ture distance.

Next, we demonstrate that the Gaussian mixture distance has
the variable parameters. Unlike Euclidean or Mahalanobis
distance function, the parameters of the Gaussian mixture dis-
tance can change along with the position of current query in
the feature space. The variable parameters are able to cap-
ture the characters of the local distributions of the data. Fig-
ures 4(a)-4(c) display the different Gaussian mixture distance
contours corresponding to 3 queries at different position in the
feature space.

Set No. Distance Precision KL Divergence
Euclidean 0.8246 43.9738

1 Mahalanobis 0.7210 50.1851
Gaussian Mixture 0.8279 35.7958

Euclidean 0.7278 30.9869
2 Mahalanobis 0.7837 22.6229

Gaussian Mixture 0.7947 13.0392
Euclidean 0.6437 34.0311

3 Mahalanobis 0.6750 31.3070
Gaussian Mixture 0.7718 15.1037

Table 1: The averagePrecision of the nearest-neighborsearch results using
the Euclidean, Mahalanobis and Gaussian Mixture distance for the test data.
The average KL divergences of Eqn. (12) are given in the table.

5 Conclusion

In this paper, we formulated a Gaussian mixture distance
function based on minimizing the KL divergence between the
distribution of the retrieved data and the data in database. Us-
ing the Gaussian mixture distance, we can perform more ac-
curate nearest-neighbor search in IR to find out the similar
data of a query than using the Euclidean or Mahalanobis dis-
tance. Our experiments have shown that the Gaussian mixture
distance always has the highest precision performance among
the three distance functions for all test data sets. We also no-
ticed that although the Gaussian mixture distance have shown
its advantage in accuracy, there still exists an infeasible factor
when applying the Gaussian mixture distance to a practical IR
application. The weakness is that the computation complex-
ity is high, since we have to calculate the distance between
the query and each data in the test data set in our experiments.
After all, it is impractical to visit all data of a huge database
corresponding to each query. We are now considering to build
some optimal indexing structures according the local distribu-
tion of data to solve the problem.
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Figure 3: Three test sets of 2-dimensional synthetic feature vectors: (a) the set 1, (b) set 2 and (c) set 3 with the relevant cost function curves (d) corresponding
to (a), (e) to (b) and (c) to (f).
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Figure 4: The different shapes of distance contour for the three queries at
different positions in the feature space.
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