
Task Matching in Crowdsourcing

Man-Ching Yuen1, Irwin King1,2, and Kwong-Sak Leung1

1Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
2AT&T Labs Research, San Francisco, USA

{mcyuen, king, ksleung}@cse.cuhk.edu.hk; irwin@research.att.com

Abstract—Crowdsourcing is evolving as a distributed problem-
solving and business production model in recent years. In
crowdsourcing paradigm, tasks are distributed to networked
people to complete such that a company’s production cost can
be greatly reduced. A crowdsourcing process involves operations
of both requesters and workers. A requester submits a task
request; a worker selects and completes a task; and the requester
only pays the worker for the successful completion of the task.
Obviously, it is not efficient that the amount of time spent on
selecting a task is comparable with that spent on working on a
task, but the monetary reward of a task is just a small amount.
Literature mainly focused on exploring what type of tasks can
be deployed to the crowd and analyzing the performance of
crowdsourcing platforms. However, no existing work investigates
on how to support workers to select tasks on crowdsourcing
platforms easily and effectively. In this paper, we propose a novel
idea on task matching in crowdsourcing to motivate workers
to keep on working on crowdsourcing platforms in long run.
The idea utilizes the past task preference and performance of
a worker to produce a list of available tasks in the order of
best matching with the worker during his task selection stage.
It aims to increase the efficiency of task completion. We present
some preliminary experimental results in case studies. Finally, we
address the possible challenges and discuss the future directions.

Index Terms—crowdsourcing; task model; task matching
algorithm

I. INTRODUCTION

Nowadays, many tasks that are trivial for humans continue

to challenge even the most sophisticated computer programs,

such as image annotation. Therefore, these tasks cannot be

computerized and they are traditionally performed by an em-

ployee in a company. Crowdsourcing is a distributed problem-

solving and business production model. In an article for Wired

magazine in 2006, Jeff Howe defined “crowdsourcing” as “an

idea of outsourcing a task that is traditionally performed by

an employee to a large group of people in the form of an

open call” [2]. The objective of crowdsourcing is to reduce

a company’s production costs and make more efficient use of

labor and resources [3]. An example of crowdsourcing tasks

is the creative drawings, such as the Sheep Market [4]. The

Sheep Market is a web-based artwork to implicate thousands

of workers in the creation of a massive database of drawings.

Workers create their version of “a sheep facing to the left”

using simple drawing tools. Each worker is responsible for a

drawing receives a payment of two cents for his labor.

Because of the popularity of Web 2.0 technology, crowd-

sourcing websites attract much attentions at present [10],

[9]. Some popular examples of crowdsourcing websites

are Amazon Mechanical Turk (or MTurk)1, CrowdFlower2,

Taskcn3 and TopCoder4. A crowdsourcing site has two groups

of users: requesters and workers. The crowdsourcing site ex-

hibits a list of available tasks, associating with reward and time

period, that are presented by requesters; and during the period,

workers compete to provide the best submission. Meanwhile,

a worker selects a task from the task list and completes the

task because the worker wants to earn the associated reward.

At the end of the period, a subset of submissions are selected,

and the corresponding workers are granted the reward by the

requesters. In addition to monetary reward, a worker gains

credibility when his task is accepted by the requester.

Nowadays, recommendation systems [11], [5], [8] are used

to suggest relevant items (news, books, movies, etc.) attracting

particular users on the Web. In these systems, assigning each

user-item pair a score indicating the user’s rating on the item,

based on which a ranking list of items is generated to the

user as suggestions. In this paper, we address the issue of

recommendation on crowdsourcing platforms. Different from

traditional recommendation systems, multiple information and

various relational dependencies in crowdsourcing systems

should be utilized to improve recommendation results.

In this paper, we propose a novel task matching idea on

crowdsourcing platforms. It can elicit the preference of task

workers and collect their performance histories. In this way,

a list of tasks sorted by the order of best matching can be

provided to task workers when selecting tasks. It aims to

increase the efficiency of task completion. Task matching in

crowdsourcing is important because of the following reasons:

• Motivate workers of diverse background to work
on crowdsourcing tasks in long run. Currently, on

crowdsourcing sites, most workers only provide moderate

contributions [7] and there is a significant population of

young and well-educated Indian workers [6]. It can attract

more workers to contribute their efforts in long run if a

worker find a suitable task on a crowdsourcing site easily.

• Improve the quality of work. Workers perform better

if they are familiar with the tasks. Chilton et al. showed

that task workers only browsed the first few pages on

crowdsourcing sites when searching for tasks [1]. The

task list for a worker of Amazon Mechanical Turk site is

1Amazon Mechanical Turk website: https://www.mturk.com/
2CrowdFlower website: http://crowdflower.com
3Taskcn website: http://www.taskcn.com/
4TopCoder website: http://www.topcoder.com/

2011 IEEE International Conferences on Internet of Things, and Cyber, Physical and Social Computing

978-0-7695-4580-6/11 $26.00 © 2011 IEEE

DOI 10.1109/iThings/CPSCom.2011.128

409

usually displayed on hundreds of pages. A worker selects

a task from the list of available tasks sorted by a specified

feature of tasks such as task creation date and reward

amount. When the tasks posted on the first few pages are

not suitable for a worker, the worker might choose a task

that he does not familiar with and try to complete it to

earn the rewards; otherwise, the worker does not select

any task. Working with a unfamiliar task might decrease

the quality of work.

The rest of this paper is organized as follows. Section II

introduces the background and related works on task matching

in crowdsourcing. Section III describes our algorithms of

task matching in crowdsourcing. Section IV presents our

preliminary experimental results based on case studies. Section

V addresses possible challenges and concludes with future

directions.

II. BACKGROUND AND RELATED WORK

Crowdsourcing is an idea of outsourcing a task to a large

group of networked people in the form of an open call to

reduce the production cost. A worker has to select a task from

more than ten thousands of tasks to work on in order to earn

the tiny associated reward of such a few cents. Obviously, it is

not efficient that the amount of time spent on selecting a task is

comparable with that spent on working on a task. However, no

existing work investigates on how to support task workers to

select tasks on crowdsourcing platforms easily and effectively.

Task matching on crowdsourcing platforms are necessary.

Amazon Mechanical Turk is used as an example. In February

2011, the number of available HITs (Human Intelligence

Tasks) for qualified task workers and unqualified task workers

on Amazon Mechanical Turk were about 80,000 and 2,000 on

average per day. Qualified task workers passed qualification

tests on Amazon Mechanical Turk, while unqualified task

workers did not. It is extremely time-consuming for a task

worker to select a right task even the list of available tasks

can be sorted by a specified feature of HITs such as HIT

creation date, HITs available, reward amount, expiration date,

title or time allotted. Chilton et al. [1] showed that task

workers look mostly at the first page of the most recently

posted tasks and the first two pages of the tasks with the

most available instances but in both categories the position

on the result page is unimportant to workers. Some workers

searching by almost all the possible categories and looking

more than 10 pages deep. In 2011, Rachael King, a writer

for Bloomberg Businessweek5 in San Francisco, claimed that

he earned a measly USD$ 4.38 for spending eight hours in

a day crowdsourcing for Amazon Mechanical Turk. In his

experience, he spent most of time to search for a right task

which the wage was low.

Task matching can help workers to find their preferred

tasks easier and faster, and it can encourage more workers

to contribute and thus increase the population of workers.

The task searching result is highly related to the rate of task

5Bloomberg Businessweek website: http://www.businessweek.com/technology/

completion and the quality of resulted work. In 2010, Chilton

et al. [1] showed that a task with favorable positioning in

the search results was completed 30 times faster and for less

money than when its position was unfavorable. Task matching

helps requesters to collect completed results of tasks in a

shorter period of time without manipulating the position of

their tasks, and the tasks can be presented to the workers who

preferred to work on.

In this paper, our task matching algorithm can help a worker

to get a list of tasks sorted by which categories of tasks are

most preferred by the worker and which categories of tasks

are most accepted for the worker based on the workers’ task

selection history and performance history.

III. OUR PROPOSED TASK MATCHING ALGORITHM

In this section, we first formulate our task matching

algorithm in crowdsourcing and then describe our algorithm.

A. Definitions

Before proceeding further, we start with the definition of

crowdsourcing task domain which includes the relationships

among requesters, workers and tasks on a crowdsourcing

platform. Next, we define the worker performance record of a

worker to elict the worker’s interest and performance. Then,

we give a mathematical description of TaskRank which is used

to sort the available tasks in the order of best matching with

a worker.

Definition 1: A crowdsourcing task domain CT D of a

crowdsourcing platform is a 4-tuple (U ,V, C, T).
1) U = {ux|x = 1, ..., UN} is a set of requesters who

distribute tasks on a crowdsourcing platform and UN

is the total number of requesters.

2) V = {vy|y = 1, ..., VN} is a set of workers who work on

tasks on a crowdsourcing platform and VN is the total

number of workers.

3) C = {ci|i = 1, ..., CN} is a set of categories of tasks and

CN is the total number of categories of tasks.

4) T = {Ti|i = 1, ..., CN} is a set of tasks in all categories,

where Ti is a set of tasks in category ci and is defined as

Ti = {ti,j |j = 1, ..., TN} such that TN is the total

number of tasks in category ci.

A task in category ci, ti,j , has the following attributes:

a) ri,j is the requester of task ti,j where ri,j = ∃ux ∈
U .

b) Wi,j = {wi,j,k|k = 1, ...,WN} is a set of workers

who work on task ti,j and WN is the number of

workers who work on task ti,j , where wi,j,k =
∃vy ∈ V .

c) ei,j is the time allotted by requester ri,j for worker

wi,j,k to complete task ti,j .

d) A(ri,j) is a set of the workdone of task ti,j
accepted by requester ri,j .

e) mi,j is the monetary reward offered by requester

ri,j for worker wi,j,k to complete task ti,j .

f) d(wi,j,k) is the workdone of task ti,j completed

by worker wi,j,k.

410

Worker wi,j,k earns mi,j if d(wi,j,k) ∈ A(ri,j);
otherwise, worker wi,j,k earns 0 if d(wi,j,k) �∈
A(ri,j).

Definition 2: A worker performance record WPR of

a worker vy on a crowdsourcing platform is a 4-tuple

(AR, CPS,RPS, T PS) which is defined as:

1) Ti(vy) = {ti,j |1 � j � TN ; vy = ∃wi,j,k ∈ Wi,j} is

a set of tasks in category ci for worker vy , such that

Ti(vy) ⊂ Ti ⊂ T .

2) T ′
i (vy) = {ti,j |1 � j � TN ; vy = ∃wi,j,k ∈ Wi,j and

d(wi,j,k) ∈ A(ri,j)} is a set of tasks in category ci for

worker vy and the workdone of task ti,j by worker vy is

accepted by requester ri,j , such that T ′
i (vy) ⊂ Ti(vy).

Ti(vy)−T ′
i (vy) is a set of tasks in category ci completed

by worker vy but not accepted by requester ri,j .

3) Acceptance rate ARi(vy) of tasks in category ci for

worker vy is defined as:

ARi(vy) =
|T ′

i (vy)|
|Ti(vy)| (1)

4) Task category preference score CPSi(vy) on category

ci of worker vy is defined as:

CPSi(vy) =
|Ti(vy)|

CN∑
p=1

|Tp(vy)|
(2)

5) Reward preference score RPSi(vy) on category ci for

worker vy is defined as:

RPSi(vy) =

TN∑
j=1

mi,j

|Ti(vy)| (3)

6) Time alloted preference score T PSi(vy) on category

ci for worker vy is defined as:

T PSi(vy) =

TN∑
j=1

ei,j

|Ti(vy)| (4)

Definition 3: TaskRank T R of a task ti,j in category ci

for a worker vy is given as follows:

T Ri,j(vy) =ARi(vy) ∗ CPSi(vy)∗(
1−

∣∣∣∣mi,j −RPSi(vy)
RPSi(vy)

∣∣∣∣
)
∗

(
1−

∣∣∣∣ei,j − T PSi(vy)
T PSi(vy)

∣∣∣∣
) (5)

B. Overview

To increase the efficiency of task completion, the matching

algorithm utilizes the past task preference and performance of

a worker to produce a list of available tasks in the order of

best matching with the worker during his task selection stage.

Table I shows our proposed task matching algorithm.

TABLE I
THE TASK MATCHING ALGORITHM IN CROWDSOURCING

Procedure ComputeTaskRank(worker vy , performance recordWPR(vy))
{Execute when worker vy log into the crowdsourcing system}
Input:
T , the set of available tasks in all categories
CN , the number of task categories
TN , the number of available tasks in category ci

Algorithm:
for i = 1→ CN do

for j = 1→ TN do
Based on T and WPR(vy)
Compute TaskRank T R of each available task for vy

j ← j + 1
end for
i← i + 1

end for
Output:
The list of available tasks of all categories sorted by TaskRank in
descending order for vy

Procedure UpdateRecord(worker vy , completed task ti,j(vy))
{Execute when worker vy complete a task ti,j(vy)}
Input:
T ′, the set of expired tasks in all categories
CN , the number of task categories
TN , the number of expired tasks in category ci

Algorithm:
for i = 1→ CN do

Based on T ′ and ti,j(vy)
Update acceptance rate ARi(vy) for vy

Update task category preference score CPSi(vy) for vy

Update reward preference score RPSi(vy) for vy

Update time alloted preference score T PSi(vy) for vy

Update performance record WPR(vy) of vy for each category
i← i + 1

end for
Output:
Updated performance record WPR(vy) of vy for all categories

The process of generating the task list of best matching

proceeds in the following steps:

1) At the beginning, a set of task categories has to be pre-

defined on a crowdsourcing platform, so that any task

offered by a requester can be categorized into one of the

task categories. Examples of task categories are image

annotation and translation. When a requester offers a

task on a crowdsourcing platform, the requester has to

identify which task category that the task belongs to.

2) The crowdsourcing platform maintains a worker perfor-

mance record for each worker. The worker performance

record of a worker stores his task selection preference

and his task acceptance rate. The task selection prefer-

ence of a worker is computed based on the information

of the tasks selected by the worker in the past. The

information includes task category, reward and time

alloted, and they are the major task selection criteria for

a worker. The task acceptance rate of a worker reflects

the performance of the worker on each task category.

3) When a worker log into the crowdsourcing platform,

the platform lists the available tasks in the order of best

matching with the worker based on his TaskRank of

tasks. TaskRank provides a method to rate the available

411

tasks for workers to select. A higher TaskRank value

means a higher likelihood that a worker will choose to

work on. For a worker, the TaskRank of a task measures

the worker’s interest on the task and his ability to

complete the task successfully. In other words, different

workers might have different TaskRank on the same

task. As mentioned before, most workers only browsed

the first few pages when searching tasks; while some

requesters try to manipulate the position of their tasks

in the search results to workers [1]. The available tasks

list in the order of best matching with a worker can

help the worker to pay attention on the most suitable

and interested tasks easily and quickly.

IV. PRELIMINARY RESULTS IN CASE STUDIES

In August 2011, we ran a case study in Hong Kong to ex-

amine the related effectiveness of our proposed task matching

algorithm. The experiment involves 12 participants of different

backgrounds. 7 of the participants are males and 5 of the

participants are females. The age range of the participants is

from 18 to 50. Some participants are students, while the others

have various occupations. There are 4 cateorgies of tasks, and

they are grammar correction, vocabulary usage, calculation

and knowledge acquisition in science. Each cateorgy has

10 tasks. The time alloted for tasks varies from 10 to 30

minutes. The monetary reward for each task is the same. Each

participant is required to complete 10 out of 40 tasks and rate

4 additional tasks. We use the Mean Absolute Error (MAE)

metrics to measure the prediction quality of our proposed

approach with the random approach. MAE is defined as

MAE =
∑ |rw,t − r̂w,t|

N
(6)

where rw,t denotes the rating that worker w gave to task t,
and r̂w,t denotes the rating that worker w gave to task t which

is predicted by our approach, and N denotes the number of

tested ratings. In MAE metrics, a lower value indicates higher

accuracy.

Table II shows the MAE comparison between our proposed

algorithm and random approach. We observed that our pro-

posed algorithm has higher accuracy than random approach

in predicting users’ preferences. Moreover, feedback from

workers show that they prefer to work on tasks which they

performed before in long run.

TABLE II
MAE COMPARISON WITH RANDOM APPROACH

MAE
TaskRank 0.50

Random 1.08

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel idea on task

matching in crowdsourcing. It utilizes the past task preference

and performance of a worker to produce the available task

list in the order of best matching with the worker during task

selection. It can motivate workers to contribute their efforts

on crowdsourcing tasks in long run, improve the quality of

work and increase the efficiency of task completion. Besides,

we have described and formulated our algorithm in detail. We

have presented some preliminary experimental results in case

studies.

In the future, we plan to conduct some experiments on

Amazon Mechanical Turk for performance evaluation. Some

potential future extensions include evaluating computational

complexity of our algorithm in real time and examining how to

categorize tasks on a crowdsourcing platform. Too many task

categories increases the computational complexity; while too

few task categories decreases the accuracy of our algorithm.

ACKNOWLEDGMENT

This work was partially supported by a grant from Mi-

crosoft (Project No. CUHK 6902498) and the Research Grants

Council of the Hong Kong Special Administrative Region,

China (Project No. CUHK 413210). It is affiliated with the

Microsoft-CUHK Joint Laboratory for Human-centric Com-

puting and Interface Technologies.

REFERENCES

[1] L. B. Chilton, J. J. Horton, R. C. Miller, and S. Azenkot. Task search
in a human computation market. In Proceedings of the ACM SIGKDD
Workshop on Human Computation, HCOMP ’10, pages 1–9, New York,
NY, USA, 2010. ACM.

[2] J. Howe. The rise of crowdsourcing. Wired, 14(6), June 2006.
[3] J. Howe. Crowdsourcing: Why the Power of the Crowd is Driving the

Future of Business. Crown Business, 2008.
[4] A. M. Koblin. The sheep market. In Proceeding of the seventh ACM

conference on Creativity and cognition, C&C ’09, pages 451–452, New
York, NY, USA, 2009. ACM.

[5] H. Ma, I. King, and M. R. Lyu. Effective missing data prediction for
collaborative filtering. In Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’07, pages 39–46, New York, NY, USA, 2007. ACM.

[6] J. Ross, L. Irani, M. S. Silberman, A. Zaldivar, and B. Tomlinson.
Who are the crowdworkers?: shifting demographics in mechanical turk.
In Proceedings of the 28th of the international conference extended
abstracts on Human factors in computing systems, CHI EA ’10, pages
2863–2872, New York, NY, USA, 2010. ACM.

[7] O. Stewart, D. Lubensky, and J. M. Huerta. Crowdsourcing participation
inequality: a scout model for the enterprise domain. In Proceedings of
the ACM SIGKDD Workshop on Human Computation, HCOMP ’10,
pages 30–33, New York, NY, USA, 2010. ACM.

[8] X. Xin, I. King, H. Deng, and M. R. Lyu. A social recommendation
framework based on multi-scale continuous conditional random fields. In
Proceeding of the 18th ACM conference on Information and knowledge
management, CIKM ’09, pages 1247–1256, New York, NY, USA, 2009.
ACM.

[9] M.-C. Yuen, L.-J. Chen, and I. King. A survey of human computation
systems. In CSE ’09: Proceedings of IEEE International Conference
on Computational Science and Engineering, pages 723–728. IEEE
Computer Society, 2009.

[10] M.-C. Yuen, I. King, and K.-S. Leung. A survey of crowdsourcing sys-
tems. In SocialCom ’11: Proceedings of The Third IEEE International
Conference on Social Computing. IEEE Computer Society, 2011. To be
appeared.

[11] T. C. Zhou, H. Ma, I. King, and M. R. Lyu. Tagrec: Leveraging tagging
wisdom for recommendation. In Proceedings of the 2009 International
Conference on Computational Science and Engineering - Volume 04,
pages 194–199, Washington, DC, USA, 2009. IEEE Computer Society.

412

