
Outline Queue Tips on Programming Assignment 1

Queue and Tips on Programming Assignment 1

Roy Chan

CSC2100B Data Structures Tutorial 3

February 3, 2009

1 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

1 Queue
Overview
Implementation Using Array
Implementation Using Linked List

2 Tips on Programming Assignment 1
Common Questions
ex1 13
ex1 14

2 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Queue

3 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Queue Overview

First In First Out (FIFO)

Enqueue

Dequeue

4 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Queue Implementation

A queue may be implemented using linked-list or array

Implement a queue using array

5 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Queue Implementation Using Array

Implementing a queue using circular array

1 typedef struct {

2 int *data; //data is an array of int

3 int head;

4 int tail;

5 int num; // number of elements in queue

6 int size; //size of queue

7 }Queue;

6 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Queue Implementation Using Array

createQueue

1 // return 1 for success , 0 for fail

2 int createQueue(Queue *aqueue , int size)

3 {

4 aqueue ->data = (int*) malloc(sizeof(int)*size);

5 if (aqueue ->data == NULL)

6 return 0;

7
8 aqueue ->head = 0;

9 aqueue ->tail = -1;

10 aqueue ->num = 0;

11 aqueue ->size = size;

12
13 return 1;

14 }

7 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Queue Implementation Using Array

enqueue

1 void enqueue(Queue *aqueue , int adata)

2 {

3 aqueue ->tail = (aqueue ->tail +1)% aqueue ->size;

4 aqueue ->data[queue ->tail] = adata;

5 aqueue ->num ++;

6 }

8 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Queue Implementation Using Array

dequeue

1 int dequeue(Queue *aqueue)

2 {

3 int adata = aqueue ->data[aqueue ->head];

4 aqueue ->head = (aqueue ->head +1)% aqueue ->size;

5 aqueue ->num --;

6 return adata;

7 }

9 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Queue Implementation Using Array

isEmpty, isFull

1 int isEmpty(Queue *aqueue) {

2 return (aqueue ->num == 0);

3 }

4
5 int isFull(Queue *aqueue) {

6 return (aqueue ->num == aqueue ->size);

7 }

10 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Queue Implementation Using Array

front, makeEmpty

1 int front(Queue *aqueue)

2 {

3 return aqueue ->data[aqueue ->head];

4 }

5
6 void makeEmpty(Queue *aqueue)

7 {

8 aqueue ->head = 0;

9 aqueue ->tail = -1;

10 aqueue ->num = 0;

11 }

11 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Interesting Question

What if we don’t use ”num” in the queue definition?

Before

1 typedef struct {

2 int *data; //data is an array of int

3 int front;

4 int rear;

5 int num; // number of elements in queue

6 int size; //size of queue

7 }Queue;

After

1 typedef struct {

2 int *data; //data is an array of int

3 int front;

4 int rear;

5 int size; //size of queue

6 }Queue;

12 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Interesting Question
Before

1 // return 1 for success , 0 for fail

2 int createQueue(Queue *aqueue , int size)

3 {

4 aqueue ->data = (int*) malloc(sizeof(int)*size);

5 if (aqueue ->data == NULL)

6 return 0;

7 aqueue ->front = 0;

8 aqueue ->rear = -1;

9 aqueue ->num = 0;

10 aqueue ->size = size;

11 return 1;

12 }

After

1 // return 1 for success , 0 for fail

2 int createQueue(Queue *aqueue , int size)

3 {

4 aqueue ->data = (int*) malloc(sizeof(int)*size);

5 if (aqueue ->data == NULL)

6 return 0;

7 aqueue ->front = aqueue ->rear = 0;

8 aqueue ->size = size;

9 return 1;

10 }

13 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Interesting Question

Before

1 int isEmpty(Queue *aqueue) {

2 return (aqueue ->num == 0);

3 }

4
5 int isFull(Queue *aqueue) {

6 return (aqueue ->num == aqueue ->size);

7 }

After

1 int isEmpty(Queue *aqueue) {

2 return (aqueue ->front == aqueue ->rear);

3 }

4
5 int isFull(Queue *aqueue) {

6 return (((aqueue ->rear +1)% aqueue ->size) == aqueue ->front);

7 }

14 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Interesting Question

How about enqueue() and dequeue()?

How many data can the queue store?

15 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Implementation Using Linked List

1 struct node_s {

2 int data;

3 struct node_s *next;

4 };

5 typedef struct node_s node;

1 typedef struct {

2 node *front , *rear;

3 }Queue;

16 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Implementation Using Linked List

isEmpty

1 int isEmpty(Queue *aqueue) {

2 return (aqueue ->front == NULL);

3 }

”isFull()” is no longer needed

17 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Implementation Using Linked List

enqueue

1 void enqueue(Queue *aqueue , int adata)

2 {

3 node *newnode = (node *) malloc(sizeof(node));

4 newnode ->data = adata;

5 newnode ->next = NULL;

6 if (aqueue ->front == NULL)

7 aqueue ->front = aqueue ->rear = newnode;

8 else {

9 aqueue ->rear ->next = newnode;

10 aqueue ->rear = aqueue ->rear ->next;

11 }

12 }

18 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Implementation Using Linked List

dequeue

1 int dequeue(Queue *aqueue)

2 {

3 if (isEmpty(aqueue)) //Queue is empty

4 return -1;

5
6 node *p = front;

7 int x = aqueue ->front ->data;

8 aqueue ->front = aqueue ->front ->next;

9 delete p;

10 return x;

11 }

19 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Implementation Using Linked List

getFront, makeEmpty

1 int getFront(Queue *aqueue)

2 {

3 if (isEmpty(aqueue)) return -1;

4 return aqueue ->front ->data;

5 }

6
7 void makeEmpty(Queue *aqueue)

8 {

9 node *p;

10 while (aqueue ->front != NULL) {

11 p = aqueue ->front;

12 aqueue ->front = aqueue ->front ->next;

13 delete p;

14 }

15 }

20 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

When will the problem IDs be released?

Generally, the problem IDs will be released one day before the
Online Judge is opened.

Do we need to validate the user input?

No.

Would it be alright if I use both getchar() and scanf() in the
assignment?

Yes.

Can we use string handling functions included in ”string.h” in our
programming assignment?

Yes. If there are some functions that cannot be used, they will be
stated explicitly.

Are we expected to use pointer?

It is no a requirement. If it is needed, it will be stated explicitly.

Do we need to store all the outputs and print them at last?

No. You can print the output after reading each input.

21 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Exercise 1.13 Given a pair of integers. Calculate the summation
and subtraction of these two integers.

Input The input consists of the number of test cases, m, in the
first line and followed by m groups of 4 lines as inputs. The group
consists of a symbol, either + or -, two lines of integers followed by
a carriage return. The integer can have 100 digits and can also be
negative. An example is as follows,
2
+
123456
111111

-
0
-10

Output The output should be m lines of numbers. Each line
should be the summation or the difference of the two integers.
234567
10

22 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

How to read input

scanf()

Case 1 (Wrong)

1 scanf("%d" ,&noOfCase);

2 scanf("%c" ,&op);

3 scanf("%d" ,&no1);

4 scanf("%d" ,&no2);

5 scanf("\n");

6 ...

No "\n" in the scanf().

If the next scanf() reads
integer, no need to read the
carriage return.

If the next scanf() reads
character, you need to read the
carriage return.

Input file

2
+
123456
111111
(blank line)
-
0
-10
(blank line)

23 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

How to read input

scanf()

Case 2 (Wrong)

1 scanf("%d" ,&noOfCase);

2 scanf("%c" ,&cr);

3 scanf("%c" ,&op);

4 scanf("%d" ,&no1);

5 scanf("%d" ,&no2);

6 scanf("%c" ,&cr);

7 scanf("%c" ,&cr);

8 ...

You need to use char* to read
the numbers.

Input file

2
+
123456
111111
(blank line)
-
0
-10
(blank line)

24 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

How to read input

scanf()

Case 3 (Correct)

1 scanf("%d" ,&noOfCase);

2 scanf("%c" ,&cr);

3 scanf("%c" ,&op);

4 scanf("%c" ,&cr);

5 scanf("%s" ,&no1);

6 scanf("%s" ,&no2);

7 scanf("%c" ,&cr);

8 scanf("%c" ,&cr);

9 ...

If the next scanf() reads char*,
you can either read or not read
the carriage return.

Input file

2
+
123456
111111
(blank line)
-
0
-10
(blank line)

25 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Exercise 1.14 Given a pair of non-negative integers between 0 and
65535. Find the number of bits that are different in their
respective binary representation. For example, 3 in decimal is
equivalent to 0000000000000011 in binary and 1 in decimal is
equivalent to 0000000000000001 in binary so that the number of
bits that are different in these two binary patterns is 1.

Input The input consists of the number of test cases, m, in the
first line and followed by m lines of two positive integers as inputs.
For example,
3
1 3
100 100
65535 0
Output The output should be m lines of numbers.
1
0
16

26 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Operators you may need

^ (XOR)

1 no1 = 1;

2 no2 = 3;

3 no3 = no1^no2;

& (AND)

1 no1 = 3;

2 no2 = no1 &1;

3 no3 = no1 &2;

Table: XOR truth table

x y x^y

0 0 0
0 1 1
1 0 1
1 1 0

Table: AND truth table

x y x&y

0 0 0
0 1 0
1 0 0
1 1 1

27 / 28

Queue and Tips on Programming Assignment 1

Outline Queue Tips on Programming Assignment 1

Question

28 / 28

Queue and Tips on Programming Assignment 1

	Outline
	Queue
	Overview
	Implementation Using Array
	Implementation Using Linked List

	Tips on Programming Assignment 1
	Common Questions
	ex1_13
	ex1_14

