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Motivation

» People with commercial intention vs. Search engine
Online purchase
Online research before actual transactions

» Most web users start their online behaviors by submitting
a web query to a search engine



Difficulties

» Queries are very short

93% queries contains less than 4 terms
» Web query often has multiple meanings (ambiguous)

» Intention of a web query can vary for different context



Problem Formulation

» Same as the first work in [ 1]

» Binary classification problem:
Query — {Commercial, Non-Commercial}
Query:
Text of query term
User query history

Query timestamp

Clickthrough log
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Overview

» Query log: <U, T,Q,[C]>
U: User ID (IP address)
T: Query timestamp
Q:Text of query term

C: Clickthrough log



Modeling Query Logs

» Skip-chain Conditional Random Field (SCCRF)

» p(y|x) x is the observed personal query log of length L;y
is the label of the query

» Y, is the OCI value of t™ query
» Threshold: 0.5



Modeling Query Logs
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» ¥,:linear-chain edges
» ¥, :skip edges

» Z(X) : normalization factor
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Modeling Query Logs
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» Ay, Ay : parameters

» ., f, :features function



Modeling Semantic Similarities between
Queries

» “First order” query expansion:

Retrieve the result pages of two queries as documents and get
TFIDF vector A and B, then use cosine similarity:
A-B

6@ = arccos
|A-[B]

» “Second order” query expansion
f (yu’ yv’ X) = maxlsiSm,lngm g (Sui ! Svj)

9(S,,S,) : value of similarities between query snippet
S, :i" query snippet of the u™ query



Modeling Semantic Similarities between
Queries

» Kernel function for Similarity
Top n returned VWeb page p;
Get TFIDF vector v, for each page p,
Truncate v. to include m highest terms (m=50)

C(x) be the centroid of L2 normalized vectors

C(X):%Zn Vi

i,
QE(X) be the L2 normalization of C(x)

- C(x)
*E0 el

Similarity: K(x,y) =QE(x)-QE(y)




Algorithm

» Input:
N: the length of a query log,
Each query item is represented by {x, y.}
x. is the i!" query and y, is the corresponding i*" label for x..

Q, which is a newly asked query.

» Output:
P, which is the probability for Q as being commercial intended.



Algorithm

» Assumption:
Assume all the queries in the personal query log we
considered here are issued by the same user or user group
» Parameters:

0: suggests the confidence parameter for us to add the skip
edges

L: the length of the personal query log training data
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Algorithm

fori=1to N - L+ 1do
Initialize the i'" training data as empty.
for  =0to L —1do
Add the (i + 7)™ query z,; to the i*" training data.
end for
end for
for : =1 to N do
Issue the query xz; to the search engine to get the top P landing pages. P can
be tuned to reflect more information from landing pages. To simplify, we set
P = 10 in our experiments.
Compute the corresponding OCI value of these landing pages from the baseline
method
Use these values as features for f;.
end for
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Algorithm

: Train the corresponding SCCRF model from the training set created.
:fort =N-—-L+2toN do
Add the query x; to the test personal query log.
end for
: Add the query () to the test personal query log. Now it contains L terms.
: fori=1to L do
for j =1toi—1do
Compute the semantic similarity of T; and T}, i.e. K(Ti,T;) = QE(T;) -
QFE(T;) as defined.
if K(7;,7T;) > 0 then
Add a skip edge between y; and y;, corresponding to the feature
function fa(y:,y;,x).
end if
end for
end for



Experiment

» AOL query log dataset
» Live Search collected in March 2008
» 100 users at least 100 queries

Labeler|AOL Commercial| AOL Non-commercial|Live Commercial|Live Non-Commercial
1 1238 8627 919 8819
2 1430 8435 1025 8713
3 1117 8748 973 8765
Sum 1247 8306 936 8738
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Experiment

Baseline classifier [1]

Dataset |Precision|Recall|F1-Measure
AOL 0.817 10.796 0.806
Live Search| 0.802 |0.836 0.809




Experiment

Proposed Algorithm with varying parameter 6, L=50

0 AOL (Variance)|Live Search (Variance)

6 =0.01| 0.863 (0.002) 0.872 (0.003)
6 = 0.02| 0.887 (0.005) 0.878 (0.003)
6 = 0.04| 0.892 (0.003) 0.881 (0.004)
6 = 0.08] 0.901 (0.005) 0.893 (0.002)
9 —0.1]0.913 (0.002) 0.901 (0.004)
9 =0.2] 0.912 (0.005) 0.908 (0.003)
6 =04 0.902 (0.004) 0.883 (0.006)
6 =0.8| 0.871 (0.003) 0.852 (0.008)
Baseline 0.806 0.809
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Experiment

Proposed Algorithm with varying parameter L, 6=0.1

L  |AOL (Variance)|Live Search (Variance)
L =5 0.872 (0.010) 0.871 (0.013)
L =10| 0.893 (0.011) 0.878 (0.010)
L =151 0.882 (0.009) 0.891 (0.005)
L =201 0.901 (0.005) 0.891 (0.003)
L =25] 0.910 (0.004) 0.897 (0.007)
L =30 |0.913 (0.002) 0.901 (0.004)
L =401 0.909 (0.003) 0.903 (0.005)
L =501 0.905 (0.003) 0.902 (0.003)
Baseline 0.806 0.809
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Experiment

Training Time with varying parameter L, 6=0.1

L [AOL Time|Live Search Time
L =5 1.7s 1.7s
L =10 3.0s 4.1s
L =15 4.9s 5.28
L =20 6.2s 6.8s
L =25 9.0s 10.2s
L =30 11.1s 11.7s
L =40 14.0s 14.1s
L =50 15.3s 16.3s
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Experiment

Comparison of first-order vs. second-order query expansion

Dataset |Baseline| First-Order [Second-Order

AOL 0.806 ]0.825 (0.007)] 0.913(0.002)
Live Search| 0.809 |0.826 (0.006)| 0.901(0.004)
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