Construction of Dependent Dirichlet Processes based on Poisson Processes

Dahua Lin Eric Grimson John Fisher

CSAIL MIT

NIPS 2010 Outstanding Student Paper Award Presented by Shouyuan Chen

[Motivations](#page-2-0)

[Dynamic Mixture Models](#page-2-0) [Dependent Dirichlet Process](#page-5-0)

[Model Construction](#page-8-0)

[Key idea](#page-8-0) [Three operations](#page-13-0) **[Discussions](#page-17-0)**

[Inference and Experiments](#page-20-0) [Inference](#page-20-0)

[Experiments](#page-25-0)

[Motivations](#page-2-0) [Dynamic Mixture Models](#page-2-0)

[Dependent Dirichlet Process](#page-5-0)

[Model Construction](#page-8-0)

[Key idea](#page-8-0) [Three operations](#page-13-0) **[Discussions](#page-17-0)**

[Inference and Experiments](#page-20-0)

[Inference](#page-20-0) **[Experiments](#page-25-0)**

Mixture Models: From Static to Dynamic

- \blacktriangleright Evolutionary clustering
	- \blacktriangleright add/remove clusters
	- ▶ movement of clusters
- ▶ Document modeling
	- \blacktriangleright add/remove topics
	- \blacktriangleright evolution of topics
- \triangleright Other applications
	- \blacktriangleright image modeling
	- ▶ location base services
	- \blacktriangleright financial analysis

Model the behavior of latent components *overtime*

- \triangleright Creation of new components.
- \blacktriangleright Removal of existing components.
- ▶ Variation of component parameters.

Components can be

- ▶ Clusters \rightarrow Dynamic Gaussian Mixture Model
- \triangleright Topics \rightarrow Dynamic Topic Model

[Motivations](#page-2-0) [Dynamic Mixture Models](#page-2-0) [Dependent Dirichlet Process](#page-5-0)

[Model Construction](#page-8-0)

[Key idea](#page-8-0) [Three operations](#page-13-0) **[Discussions](#page-17-0)**

[Inference and Experiments](#page-20-0)

[Inference](#page-20-0) **[Experiments](#page-25-0)**

Dirichlet process (DP) \approx infinite limit of Dirichlet distribution.

- \blacktriangleright Finite mixture models.
	- ▶ Prior: Dir($\vec{\alpha}$): *k*-dimensional Dirichlet distribution
	- ▶ Pre-specified number of components *k*.
- ▶ Dirichlet process mixture models (DPMM).
	- **Prior:** DP (α, H) : "infinite dimensional Dirichlet distribution"
	- ▶ Learn hidden *k* automatically.

Extending DP to Dependent DPs

Key problem

How to design the Markov chain to support 3 key dependencies between *Dt*−¹ → *D^t* :

Creation Add a new component

Removal Remove an existing component

Transition Varying component parameters

[Motivations](#page-2-0)

[Dynamic Mixture Models](#page-2-0) [Dependent Dirichlet Process](#page-5-0)

[Model Construction](#page-8-0)

[Key idea](#page-8-0) [Three operations](#page-13-0)

[Discussions](#page-17-0)

[Inference and Experiments](#page-20-0)

[Inference](#page-20-0) **[Experiments](#page-25-0)**

Equivalent constructions for DP

Random measure Basic definition Posterior Chinese restaurant process Atomic construction Stick breaking process

Construct $DP(\mu)$ by ΓP and PP

- ▶ Generate compound poisson process PP($\mu \times \gamma$)
- **► Gamma process ΓΡ(** μ) is transformed from compound poisson process
- \triangleright Dirichlet process DP(μ) is normalized Gamma process

Poisson, Gamma and Dirichlet Process

Given a measurable space $(Ω, Σ, μ)$

▶ **Compound Poisson Process**

$$
\Pi^* \sim \mathsf{PP}(\mu \times \gamma), \quad \gamma(dw) = w^{-1} e^{-w} dw
$$

Π is a point process (collection of infinite random points) on product space $\mu \times \gamma$

$$
\Pi = \sum_{i=0}^\infty \delta_{(\theta,\omega_\theta)}
$$

▶ Gamma Process: Transformed from compound poisson process

$$
G \triangleq \sum_{(\theta,\omega_{\theta}) \in \Pi} \omega_{\theta} \delta_{\theta} \sim \Gamma \mathsf{P}(\mu)
$$

▶ **Dirichlet Process**: Normalized gamma process

$$
\mathsf{D}\triangleq\mathsf{G}/\mathsf{G}(\mu)\sim\mathsf{DP}(\mu)
$$

Key Idea for Transforming DPs

DP PP $------ \rightarrow$ New DP New PP Operations?

Complete randomness

A random measure of which the measure values of disjoint subsets are independent.

Complete Randomness Preserving Operations

Applying any operations that preserve complete randomness to Poisson processes results in a new Poisson process.

- ▶ Superposition two PP
- ▶ Subsampling a PP
- Mapping a PP point by point

Constructing a Chain of DPs

[Motivations](#page-2-0)

[Dynamic Mixture Models](#page-2-0) [Dependent Dirichlet Process](#page-5-0)

[Model Construction](#page-8-0)

[Key idea](#page-8-0) [Three operations](#page-13-0) **[Discussions](#page-17-0)**

[Inference and Experiments](#page-20-0) [Inference](#page-20-0)

[Experiments](#page-25-0)

Subsampling

Subsampling via Independent Bernoulli Trail

 $\forall \eta = (\theta, p_\theta), \quad z_\eta \sim \mathsf{Bernoulli}(q), \quad D = \sum_\eta p_\theta \delta_\theta \sim \mathsf{DP}(\mu)$

$$
S_q(D) \triangleq \frac{1}{\sum_{z_{\eta}=1} p_{\theta}} \sum_{z_{\eta}=1} p_{\theta} \delta_{\theta}
$$

Theorem (Subsampling)

 $S_q(D) \sim \mathsf{DP}(q_\mu)$

Proof sketch:

- \triangleright DP \rightarrow PP: $D \rightarrow \Pi \sim$ PP($\mu\gamma$).
- ▶ **Subsampling PP**: $S_q(\Pi) = \{ \eta \in \Pi : z_n = 1 \} \sim \text{PP}(q \mu \gamma).$
- \triangleright PP → DP: $S_q(\Pi)$ → $S_q(D)$ ~ DP($q\mu$)

Transition

Independent movement of each point

T(⋅, ⋅): probabilistic transition kernel $D = \sum_{\eta} p_{\theta} \delta_{\theta} \sim \mathsf{DP}(\mu)$

$$
\mathcal{T}(D) \triangleq \sum p_{\theta} \delta_{\mathcal{T}(\theta)}
$$

Theorem (Transition)

 $T(D) \sim DP(T\mu)$

Proof sketch:

- ▶ DP → PP: *D* → Π ∼ PP(𝜇 × 𝛾).
- ▶ **Mapping PP**: $\mathcal{T}(\Pi) = \{ (T(\theta), \omega_{\theta}): (\theta, \omega_{\theta}) \in \Pi \} \sim \text{PP}(T\mu \times \gamma).$
- ▶ PP → DP: *T*(Π) → *T*(*D*) ∼ DP(*T*𝜇)

Superposition

Sum of independent DPs

 $D_k \sim DP(\mu_k)$, $k = 1, \ldots, m$ be independent, $(c_1, \ldots, c_m) \sim \text{Dir}(\mu_1(\Omega), \ldots, \mu_m(\Omega))$

Theorem (Superposition)

$$
\sum_k c_k D_k \sim \mathsf{DP}(\mu_1 + \ldots + \mu_m)
$$

Proof sketch:

- ▶ DP → PP: *D^k* → Π*^k* ∼ PP(𝜇*^k* × 𝛾).
- ▶ Mapping PP: $\sum_k g_k \Pi_k \sim \mathsf{PP}(\sum_k g_k \mu_k \times \gamma).$

$$
\blacktriangleright \text{ PP} \rightarrow \text{DP: } \frac{1}{\sum_{k} g_{k}} \sum g_{k} D_{k} = \sum c_{k} D_{k} \sim \text{DP}(\sum_{k} \mu_{k})
$$

[Motivations](#page-2-0)

[Dynamic Mixture Models](#page-2-0) [Dependent Dirichlet Process](#page-5-0)

[Model Construction](#page-8-0)

[Key idea](#page-8-0) [Three operations](#page-13-0) **[Discussions](#page-17-0)**

[Inference and Experiments](#page-20-0) [Inference](#page-20-0)

[Experiments](#page-25-0)

Are All Poisson Things Necessary?

Basic definition of DP

 $D \sim DP(\mu)$ is a DP if for any partition A_1, \ldots, A_n of space Ω

$$
(D(A_1),\ldots,D(A_n))\sim \mathsf{Dir}(\mu(A_1),\ldots,\mu(A_n))
$$

Alternate proof of superposition theorem

Let $D = \sum_k c_k D_k$, consider any partition A_1, \ldots, A_n of space $\Omega,$

$$
(D(A_1),...,D(A_n)) = \left(\sum_k c_k D_k(A_1),..., \sum_k c_k D_k(A_n)\right)
$$

~ \sim Dir $(\sum_k \mu_k(A_1),..., \sum_k \mu_k(A_n))$

The second step is from the property of Dirichlet distribution, and it concludes that $D \sim \mathsf{DP}(\sum_k \mu_k).$

- ▶ By defining DP on an extended space over functions, we can directly model all three operations: subsampling, transition and superposition without appealing to Poisson process.
- ▶ Such construction also allows DDP to be constructed over any measurable space. This paper is exactly a special case if the space is fixed to be a discrete Markov chain.

[Motivations](#page-2-0)

[Dynamic Mixture Models](#page-2-0) [Dependent Dirichlet Process](#page-5-0)

[Model Construction](#page-8-0)

[Key idea](#page-8-0) [Three operations](#page-13-0) **[Discussions](#page-17-0)**

[Inference and Experiments](#page-20-0) [Inference](#page-20-0) **[Experiments](#page-25-0)**

- \triangleright Gibbs sampling. Sample one latent variable from posterior at each step. Consider time 1, . . . , *t* sequentially.
- \triangleright Update labels. Samples survived components (with probability *q*) and component assignments
- ▶ Update parameters. Samples component parameter from *T*(.)
- \blacktriangleright Iterates between step 2 and 3. Then move on to next time $t + 1$, and **never** estimate earlier distributions.

Sequential sampling

This paper doesn't derive a batch sampling algorithm. Earlier samples would likely be less accurate.

For simplicity of notation, and without loss of generality, assume the expectation of new components equals with removed components.

- ▶ Given a set of samples Φ ∼ *D^t* : 𝜙*ⁱ* appears *cⁱ* times
- ▶ (By DP posterior) $D_t |$ Φ \sim DP($\mu + \sum_k c_k \delta_{\phi_k}$)
- $▶$ (This paper) $D_{t+1} | ∞ ∩ \mathsf{DP}(\mu + \sum_k q c_k \delta_{\mathcal{T}(\phi_k)})$

Is that true?

Argument against it

Let
$$
D_t = \sum_k p_k \delta_{\theta_k}
$$
, $D_{t+1} = \frac{1}{\sum_{z_k=1}^L p_k} \sum_{z_k=1}^L p_k \delta_{\theta_k}$. $\phi \sim D_t$ is one sample from D_t .
Fact: $D_{t+1}|\phi$ is **not** DP.

Mixture of DP is not DP

Consider *z*^𝜙 ∼ Bernoulli(*q*). There are two different cases for D_{t+1} | ϕ :

 \triangleright $z_{\phi} = 1$. Thus ϕ is not removed. Thus ϕ is equivalently observed in D_{t+1} . $D_{t+1}|\phi, z_{\phi} = 1 \sim DP(\mu + \delta_{\phi})$

► $z_{\phi} = 0$. In this case ϕ is removed. $D_{t+1}|\phi, z_{\phi} = 0 \sim \text{DP}(\mu)$ Hence D_{t+1} | ϕ is a mixture of DPs:

$$
D_{t+1}|\phi = q\mathsf{DP}(\mu + \delta_{\phi}) + (1-q)\mathsf{DP}(\mu)
$$

It is proved **NOT** a DP. [\[1\]](#page-31-0)

- ▶ The observation is censored.
- \triangleright Only knows ϕ is not removed at now.
- \triangleright The complete lifespan of a component ϕ is not observed.
- \triangleright Posterior of DP under censored observations is a mixture of DP.

[Motivations](#page-2-0)

[Dynamic Mixture Models](#page-2-0) [Dependent Dirichlet Process](#page-5-0)

[Model Construction](#page-8-0)

[Key idea](#page-8-0) [Three operations](#page-13-0) **[Discussions](#page-17-0)**

[Inference and Experiments](#page-20-0)

[Inference](#page-20-0) **[Experiments](#page-25-0)**

Setup

- ▶ Simulated over 80 phases.
- \triangleright Gaussian mixture models with 2 components initially.
- \triangleright The speed of introducing new components (one new component per 20 phases in average) and removing existing components is equal.
- \triangleright Mean of component has a Brownian motion.
- \blacktriangleright 1000 samples per components at each phase.

Baselines

Finite mixture models with $K = 3, 5, 10$. DPM is not compared with.

Results

Real World Applications

Evolutionary Topic Model

- ▶ Model topic evolution of research paper
- ▶ Data: all NIPS papers over years
- \blacktriangleright Method: feature extraction to generate 12 dimensions feature per document. Then use Gaussian mixture model.

People Flow

- ▶ The motion of people in New York Grand Central station.
- ▶ Data: 90,000 frames in one hour, divided into 60 phases.
- \triangleright Try to group people tracks into flows depending on their motion patterns
- \triangleright Propose a principled methodology to construct dependent Dirichlet processes based on the theoretical connections between Poisson, Gamma and Dirichlet processes.
- \triangleright Develop a framework of evolving mixture model, which allows creation and removal of mixture components, as well as variation of parameters.
- \triangleright Derive a Gibbs sampling algorithm for inferring mixture model parameters from observations.
- \triangleright Test the approach on both synthetic data and real applications.
- ▶ Poisson process is not essential for constructing DDP.
- \triangleright Sequential sampling may damage the performance.
- ▶ Posterior of this model should be MDP rather than DP.

For Further Reading I

A C. E. Antoniak

Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems

Annals of Statistics, 2(6):1152-1174, 1974.

A sample from DP is almost surely *discrete*.

Stick-breaking representation

Let *D* ∼ *DP*(α , *H*) is a Dirichlet process. Then, almost surely

$$
D = \sum_{i=1}^{\infty} p_i \delta_{\theta_i}
$$

$$
p_{1...\infty} \sim \text{GEM}(\alpha)
$$

$$
\forall i, \quad \theta_i \sim H, \quad \text{i.i.d}
$$

The GEM distribution is called "stick-breaking" distribution.

My Experiments

Setup

- ▶ Simulated over 30 phases.
- \triangleright Gaussian mixture models with 2 components initially.
- \blacktriangleright The speed of introducing new components (0.4 new component per phase in average) and removing existing components is equal.
- \triangleright Mean of component has a Brownian motion.
- ▶ 200 samples per components at each phase.
- ▶ **Bias in posterior is fixed**

Baselines

DPM, Sequential sampling (Markov-DPM), Batch algorithm (F-DPM)

My Experiment Results

