Construction of Dependent Dirichlet Processes based on Poisson Processes

Dahua Lin Eric Grimson John Fisher

CSAIL MIT

NIPS 2010 Outstanding Student Paper Award Presented by Shouyuan Chen

Motivations

Dynamic Mixture Models Dependent Dirichlet Process

Model Construction

Key idea Three operations Discussions

Inference and Experiments

Inference Experiments

Motivations Dynamic Mixture Models

Dependent Dirichlet Process

Model Construction

Key idea Three operations Discussions

Inference and Experiments

Inference Experiments

Mixture Models: From Static to Dynamic

- Evolutionary clustering
 - add/remove clusters
 - movement of clusters
- Document modeling
 - add/remove topics
 - evolution of topics
- Other applications
 - image modeling
 - location base services
 - financial analysis

Model the behavior of latent components overtime

- Creation of new components.
- Removal of existing components.
- Variation of component parameters.

Components can be

- ► Clusters → Dynamic Gaussian Mixture Model
- Topics \rightarrow Dynamic Topic Model

Motivations Dynamic Mixture Models Dependent Dirichlet Process

Model Construction

Key idea Three operations Discussions

Inference and Experiments

Inference Experiments

Dirichlet process (DP) \approx infinite limit of Dirichlet distribution.

- Finite mixture models.
 - Prior: Dir($\vec{\alpha}$): *k*-dimensional Dirichlet distribution
 - Pre-specified number of components k.
- Dirichlet process mixture models (DPMM).
 - Prior: $DP(\alpha, H)$: "infinite dimensional Dirichlet distribution"
 - Learn hidden k automatically.

Extending DP to Dependent DPs

Key problem

How to design the Markov chain to support 3 key dependencies between $D_{t-1} \rightarrow D_t$:

Creation Add a new component

Removal Remove an existing component

Transition Varying component parameters

Motivations

Dynamic Mixture Models Dependent Dirichlet Process

Model Construction

Key idea

Three operations Discussions

Inference and Experiments

Inference Experiments

Several ways to Dirichlet Process

Equivalent constructions for DP

Random measure Basic definition Posterior Chinese restaurant process Atomic construction Stick breaking process

Construct $DP(\mu)$ by ΓP and PP

- Generate compound poisson process $PP(\mu \times \gamma)$
- Gamma process ΓP(μ) is transformed from compound poisson process
- Dirichlet process $DP(\mu)$ is normalized Gamma process

Poisson, Gamma and Dirichlet Process

Given a measurable space (Ω, Σ, μ)

Compound Poisson Process

$$\Pi^* \sim \mathsf{PP}(\mu imes \gamma), \quad \gamma(dw) = w^{-1} e^{-w} dw$$

 Π is a point process (collection of infinite random points) on product space $\mu \times \gamma$

$$\Pi = \sum_{i=0}^{\infty} \delta_{(\theta,\omega_{\theta})}$$

 Gamma Process: Transformed from compound poisson process

$$oldsymbol{G} riangleq \sum_{(heta, \omega_ heta) \in \Pi} \omega_ heta \delta_ heta \sim \mathsf{\Gamma}\mathsf{P}(\mu) \, .$$

• Dirichlet Process: Normalized gamma process

$$\textit{D} riangleq \textit{G}(\mu) \sim \mathsf{DP}(\mu)$$

Key Idea for Transforming DPs

 $\begin{array}{c}
\mathsf{DP} & \cdots & \mathsf{New} & \mathsf{DP} \\
\downarrow & & & \uparrow \\
\mathsf{PP} & & & \mathsf{Operations?} \\
\end{array}$ New PP

Complete randomness

A random measure of which the measure values of disjoint subsets are independent.

Complete Randomness Preserving Operations

Applying any operations that preserve complete randomness to Poisson processes results in a new Poisson process.

- Superposition two PP
- Subsampling a PP
- Mapping a PP point by point

Constructing a Chain of DPs

Motivations

Dynamic Mixture Models Dependent Dirichlet Process

Model Construction

Key idea Three operations Discussions

Inference and Experiments

Inference Experiments

Subsampling

Subsampling via Independent Bernoulli Trail

 $\forall \eta = (\theta, p_{\theta}), \quad z_{\eta} \sim \mathsf{Bernoulli}(q), \quad D = \sum_{\eta} p_{\theta} \delta_{\theta} \sim \mathsf{DP}(\mu)$

$$S_q(D) \triangleq rac{1}{\sum_{z_\eta=1} p_ heta} \sum_{z_\eta=1} p_ heta \delta_ heta$$

Theorem (Subsampling)

 $S_q(D) \sim \mathsf{DP}(q\mu)$

Proof sketch:

- DP \rightarrow PP: $D \rightarrow \Pi \sim$ PP($\mu \gamma$).
- Subsampling PP: $S_q(\Pi) = \{\eta \in \Pi : z_\eta = 1\} \sim \mathsf{PP}(q\mu\gamma).$
- ▶ $\mathsf{PP} \to \mathsf{DP}$: $S_q(\Pi) \to S_q(D) \sim \mathsf{DP}(q\mu)$

Transition

Independent movement of each point

 $T(\cdot, \cdot)$: probabilistic transition kernel $D = \sum_{\eta} p_{\theta} \delta_{\theta} \sim \mathsf{DP}(\mu)$

$$T(D) \triangleq \sum p_{\theta} \delta_{T(\theta)}$$

Theorem (Transition)

 $T(D) \sim \mathsf{DP}(T\mu)$

Proof sketch:

- DP \rightarrow PP: $D \rightarrow \Pi \sim$ PP($\mu \times \gamma$).
- Mapping PP: $T(\Pi) = \{(T(\theta), \omega_{\theta}) : (\theta, \omega_{\theta}) \in \Pi\} \sim \mathsf{PP}(T\mu \times \gamma).$
- ▶ $\mathsf{PP} \to \mathsf{DP}$: $T(\Pi) \to T(D) \sim \mathsf{DP}(T\mu)$

Superposition

Sum of independent DPs

 $D_k \sim DP(\mu_k), k = 1, \dots, m$ be independent, $(c_1, \dots, c_m) \sim \text{Dir}(\mu_1(\Omega), \dots, \mu_m(\Omega))$

Theorem (Superposition)

$$\sum_k c_k D_k \sim \mathsf{DP}(\mu_1 + \ldots + \mu_m)$$

Proof sketch:

- DP \rightarrow PP: $D_k \rightarrow \Pi_k \sim$ PP $(\mu_k \times \gamma)$.
- Mapping PP: $\sum_{k} g_k \Pi_k \sim \mathsf{PP}(\sum_{k} g_k \mu_k \times \gamma)$.

$$\blacktriangleright \mathsf{PP} \to \mathsf{DP}: \frac{1}{\sum_k g_k} \sum g_k D_k = \sum c_k D_k \sim \mathsf{DP}(\sum_k \mu_k)$$

Motivations

Dynamic Mixture Models Dependent Dirichlet Process

Model Construction

Key idea Three operations Discussions

Inference and Experiments

Inference Experiments

Are All Poisson Things Necessary?

Basic definition of DP

 $D \sim DP(\mu)$ is a DP if for any partition A_1, \ldots, A_n of space Ω

$$(D(A_1),\ldots,D(A_n)) \sim \mathsf{Dir}(\mu(A_1),\ldots,\mu(A_n))$$

Alternate proof of superposition theorem

Let $D = \sum_{k} c_k D_k$, consider any partition A_1, \ldots, A_n of space Ω ,

$$(D(A_1),\ldots,D(A_n)) = \left(\sum_k c_k D_k(A_1),\ldots,\sum_k c_k D_k(A_n)\right)$$

~ $\operatorname{Dir}(\sum_k \mu_k(A_1),\ldots,\sum_k \mu_k(A_n))$

The second step is from the property of Dirichlet distribution, and it concludes that $D \sim DP(\sum_k \mu_k)$.

- By defining DP on an extended space over functions, we can directly model all three operations: subsampling, transition and superposition without appealing to Poisson process.
- Such construction also allows DDP to be constructed over any measurable space. This paper is exactly a special case if the space is fixed to be a discrete Markov chain.

Motivations

Dynamic Mixture Models Dependent Dirichlet Process

Model Construction

Key idea Three operations Discussions

Inference and Experiments Inference

- Gibbs sampling. Sample one latent variable from posterior at each step. Consider time 1,..., t sequentially.
- Update labels. Samples survived components (with probability q) and component assignments
- Update parameters. Samples component parameter from T(.)
- Iterates between step 2 and 3. Then move on to next time t + 1, and never estimate earlier distributions.

Sequential sampling

This paper doesn't derive a batch sampling algorithm. Earlier samples would likely be less accurate.

For simplicity of notation, and without loss of generality, assume the expectation of new components equals with removed components.

- Given a set of samples $\Phi \sim D_t$: ϕ_i appears c_i times
- (By DP posterior) $D_t | \Phi \sim \mathsf{DP}(\mu + \sum_k c_k \delta_{\phi_k})$
- (This paper) $D_{t+1} | \Phi \sim \mathsf{DP}(\mu + \sum_k qc_k \delta_{\mathcal{T}(\phi_k)})$

Is that true?

Argument against it

Let
$$D_t = \sum_k p_k \delta_{\theta_k}$$
, $D_{t+1} = \frac{1}{\sum_{z_k=1} p_k} \sum_{z_k=1} p_k \delta_{\theta_k}$. $\phi \sim D_t$ is one sample from D_t .
Fact: $D_{t+1} | \phi$ is **not** DP.

Mixture of DP is not DP

Consider $z_{\phi} \sim \text{Bernoulli}(q)$. There are two different cases for $D_{t+1}|\phi$:

z_φ = 1. Thus φ is not removed. Thus φ is equivalently observed in *D*_{t+1}. *D*_{t+1}|φ, *z_φ* = 1 ~ DP(μ + δ_φ)

► $z_{\phi} = 0$. In this case ϕ is removed. $D_{t+1}|\phi, z_{\phi} = 0 \sim DP(\mu)$ Hence $D_{t+1}|\phi$ is a mixture of DPs:

$$D_{t+1}|\phi = q \mathsf{DP}(\mu + \delta_{\phi}) + (1 - q) \mathsf{DP}(\mu)$$

It is proved NOT a DP. [1]

- The observation is censored.
- Only knows ϕ is not removed at now.
- The complete lifespan of a component ϕ is not observed.
- Posterior of DP under censored observations is a mixture of DP.

Motivations

Dynamic Mixture Models Dependent Dirichlet Process

Model Construction

Key idea Three operations Discussions

Inference and Experiments

Inference Experiments

Setup

- Simulated over 80 phases.
- Gaussian mixture models with 2 components initially.
- The speed of introducing new components (one new component per 20 phases in average) and removing existing components is equal.
- Mean of component has a Brownian motion.
- 1000 samples per components at each phase.

Baselines

Finite mixture models with K = 3, 5, 10. DPM is not compared with.

Results

Real World Applications

Evolutionary Topic Model

- Model topic evolution of research paper
- Data: all NIPS papers over years
- Method: feature extraction to generate 12 dimensions feature per document. Then use Gaussian mixture model.

People Flow

- The motion of people in New York Grand Central station.
- Data: 90,000 frames in one hour, divided into 60 phases.
- Try to group people tracks into flows depending on their motion patterns

- Propose a principled methodology to construct dependent Dirichlet processes based on the theoretical connections between Poisson, Gamma and Dirichlet processes.
- Develop a framework of evolving mixture model, which allows creation and removal of mixture components, as well as variation of parameters.
- Derive a Gibbs sampling algorithm for inferring mixture model parameters from observations.
- Test the approach on both synthetic data and real applications.

- Poisson process is not essential for constructing DDP.
- Sequential sampling may damage the performance.
- Posterior of this model should be MDP rather than DP.

For Further Reading I

C. E. Antoniak

Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems

Annals of Statistics, 2(6):1152-1174, 1974.

A sample from DP is almost surely *discrete*.

Stick-breaking representation

Let $D \sim DP(\alpha, H)$ is a Dirichlet process. Then, almost surely

$$egin{aligned} D &= \sum_{i=1}^\infty p_i \delta_{ heta_i} \ p_{1\dots\infty} &\sim \mathsf{GEM}(lpha) \ orall i, \quad heta_i &\sim H, \quad ext{i.i.d} \end{aligned}$$

The GEM distribution is called "stick-breaking" distribution.

My Experiments

Setup

- Simulated over 30 phases.
- Gaussian mixture models with 2 components initially.
- The speed of introducing new components (0.4 new component per phase in average) and removing existing components is equal.
- Mean of component has a Brownian motion.
- 200 samples per components at each phase.
- Bias in posterior is fixed

Baselines

DPM, Sequential sampling (Markov-DPM), Batch algorithm (F-DPM)

My Experiment Results

