Several Recent Work on Social Mining: **A Brief Review**

ICDM'II Detecting Community Kernels in Large Social Networks Who Will Follow You Back? Reciprocal Relationship Prediction CIKM'II Inferring Social Ties Across Heterogeneous Networks WSDM'12

*: alphabetical order

Liaoruo Wang Tiancheng Lou Cornell

IIIS, Tsinghua

Jie Tang John E. Hopcroft Jon Kleinberg Tsinghua Cornell

Cornell

Outline

- Detecting Community Kernels in Large Social Networks
- Who Will Follow You Back? Reciprocal Relationship Prediction
- Inferring Social Ties Across Heterogeneous Networks (very briefly)
- Related topics
- Summary and conclusions

Outline

• Detecting Community Kernels in Large Social Networks

- Who Will Follow You Back? Reciprocal Relationship Prediction
- Inferring Social Ties Across Heterogeneous Networks (very briefly)
- Related topics
- Summary and conclusions

Detecting Community Kernels Motivation

• "Pareto Principle"

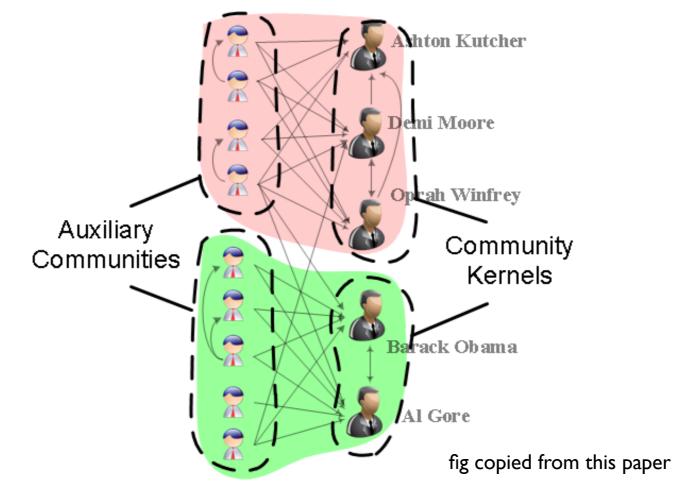
- Less than 1% of the Twitter users (e.g. Lady Gaga, Kaifu Lee) produce 50% of its content, while the others (e.g. fans, followers, readers) have much less influence and completely different social behavior.
- **2 types of users:** very different influence and behavior

Detecting Community Kernels Motivation

• Challenges

- Distinguish stars ("kernels") from others ("auxiliary community")
- Distinguish among stars

Detecting Community Kernels Problem "Definition"

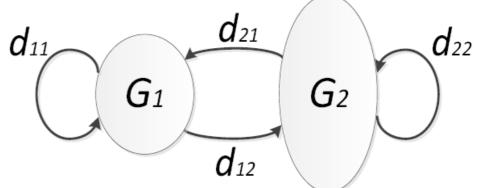


- Identify kernel members from auxiliary members
- Determine the "structure" of community kernels

Detecting Community Kernels Unbalanced Weakly-Bipartite (UWB) Structure

• Empirical property of many real-world networks

 $\begin{aligned} &d_{21} > d_{11} > d_{22} \gg d_{12} \\ &d_{ij} = \frac{|E(V_i, V_j)|}{|V_j|}, \ i, j \in \{1, 2\} \end{aligned}$



Network	<i>d</i> ₂₁	<i>d</i> ₁₁	<i>d</i> ₂₂	<i>d</i> ₁₂
Coauthor	14.19	5.34	4.42	0.37
Wikipedia	1689.31	104.22	4.69	0.60
Twitter	110.78	26.78	2.94	0.29
Slashdot	180.90	84.56	10.75	0.64
Citation	76.69	35.81	23.80	0.26

fig copied from this paper

Detecting Community Kernels Proposed Algorithms

- Greedy
- Weight-Balanced Algorithm

Detecting Community Kernels Greedy

- Input: graph G; kernel size (max # of vertices in a kernel): k.
- Output: community kernels $K = \{K_1, ..., K_L\}$
- Algorithm
 - init S to contain a random vertex
 - iteratively (k times) add to S
 - the vertex with most connections to S
 - add S to community kernels: K={K,S}
- Fast: O(V+E). But no approximation bound.
- Prone to initialization. Need multiple random initializations.

Detecting Community Kernels WEBA

• Each vertex v has a weight vector: $\vec{w}(v) = \{w_1(v), \dots, w_l(v)\}\$ to represent its relative importance for each community kernels

Optimization framework:

$$\sum_{\substack{max \\ w_i(v) \in E}} \mathcal{L}(\vec{w}) = \sum_{\substack{(u,v) \in E}} \vec{w}(u) \cdot \vec{w}(v)$$
subject to

$$\sum_{v \in V} w_i(v) = k, \ \forall i \in \{1, \dots, l\}$$

$$\sum_{1 \le i \le l} w_i(v) \le 1, \ \forall v \in V$$

$$w_i(v) \ge 0, \forall v \in V, \ \forall i \in \{1, \dots, l\}$$

- Intractable and thus need approximation
 - by solving its I-dim version L(w)

Detecting Community Kernels WEBA Properties

- Theorem I.A global maximum of the objective function L(w) corresponds to a community kernel.
- However, maximizing L(w) is still NP-Hard (or is it?)
- Approximating *L(w)*:
 - init S using Greedy algorithm
 - using local heuristic to update S until convergence

Detecting Community Kernels WEBA Pseudocode

Input: G = (V, E) and kernel size k **Output**: community kernels $\mathbf{K} = \{\mathcal{K}_1, \mathcal{K}_2, \cdots, \mathcal{K}_\ell\}$ $\mathbf{K} \leftarrow \emptyset$ repeat $S \leftarrow$ a subset returned by GREEDY(G, k) $\forall v \in S, w(v) \leftarrow 1; \forall v \notin S, w(v) \leftarrow 0$ while $\exists u, v \in V$ satisfying the relaxation conditions do if $(u, v) \notin E$ then $\delta \leftarrow \min\{1 - w(u), w(v)\}$ else $\delta \leftarrow \min\left\{1 - w(u), w(v), \frac{nw(u) - nw(v)}{2}\right\}$ pick one pair $\{u, v\}$ with the maximum δ value $w(u) \leftarrow w(u) + \delta, \ w(v) \leftarrow w(v) - \delta$ $C \leftarrow \{v \in V \mid w(v) = 1\}$ if $C \notin \mathbf{K}$ then $\mathbf{K} \leftarrow \{\mathbf{K}, C\}$ until O(|V|/k) times; return K

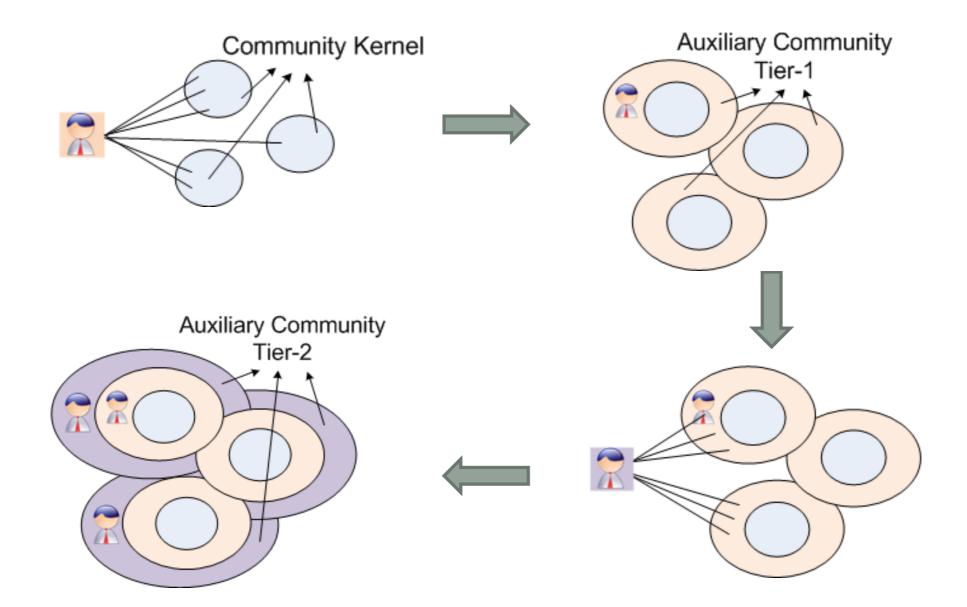
Detecting Community Kernels WEBA Guarantees

• Theorem 2.

- WEBA is guaranteed to converge.
- Theorem 3.
 - For any assigned weights $\{w(v), \forall v \in V\}$ and any $\varepsilon > 0$, after $\max\left\{\frac{4k^3D^5}{\varepsilon^2}, \frac{2mkD^3}{\varepsilon}\right\}$

iterations, we have $\mathcal{L}(w^*(v)) - \mathcal{L}(w(v)) \le \varepsilon$.

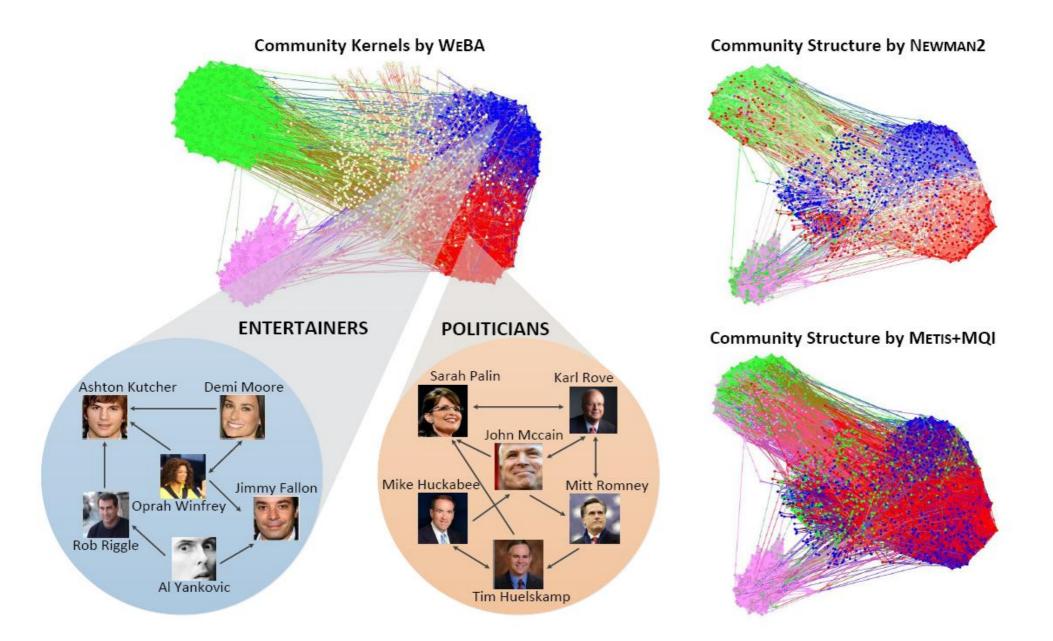
Detecting Community Kernels Find auxiliary community



Detecting Community Kernels Experiment: Setup

- Data sets
 - Coauthor (kernel = PC member)
 - Wikipedia (kernel = admins)
 - Twitter
- 8 different compared algorithm

Detecting Community Kernels Experiment: Visualization



Detecting Community Kernels Experiment: Results

On average, WEBA improves Precision by 340% (wiki) and 70% (coauthor), and improves Recall by 130% (wiki) and 41% (coauthor).

Precision						Recall						
	wiki		coauthor			wiki		coauthor			r	
	Talk	User	AI		NC	Average	Talk	User	AI		NC	Average
LSP	0.061	0.085	0.502		0.342	0.573	0.171	0.315	0.458		0.398	0.561
d-LSP	0.051	0.091	0.528		0.504	0.617	0.427	0.273	0.519		0.463	0.609
p-LSP	0.046	0.082	0.678		0.403	0.641	0.442	0.237	0.337		0.491	0.574
METIS+MQI	0.049	0.012	0.847		0.055	0.488	0.062	0.361	0.089		0.077	0.379
Louvain	0.063	0.122	0.216		0.272	0.437	0.388	0.348	0.184		0.19	0.343
NEWMAN1	0.033	0.203	0.4		0.259	0.431	0.759	0.077	0.306		0.174	0.311
NEWMAN2	0.039	0.085	0.298		0.613	0.463	0.029	0.075	0.364		0.467	0.335
α-β	0.324	0.336	0.443		0.747	0.626	0.422	0.427	0.602		0.568	0.654
WEBA	0.456	0.46	0.852		0.837	0.911	0.589	0.57	0.577		0.582	0.664
GREEDY	0.334	0.403	0.83		0.746	0.752	0.432	0.499	0.545		0.56	0.659

Detecting Community Kernels Experiment: Other results

- FI-score and recall improved up to 300%
- not sensitive to parameters
- fast, parallelization etc.

Outline

- Detecting Community Kernels in Large Social Networks
- Who Will Follow You Back? Reciprocal Relationship Prediction
- Inferring Social Ties Across Heterogeneous Networks (very briefly)
- Related topics
- Summary and conclusions

Reciprocal Relationship Prediction Motivation

- Background: 2 kinds of relationship
 - one-way (aka parasocial) relationship (Twitter)
 - two-way (aka reciprocal) relationship (Facebook)
 - usually developed from one-way relationships
- Problem: predict the formation of two-way relationships
 - micro-level dynamics
 - underlying community structure?
 - how users influence each other?

Reciprocal Relationship Prediction Motivation

• Challenges

- How to model the formation of two-way relationships?
 - Will Alice follow-back Bob?
- How to combine many <u>social theories</u> into the prediction model?

Reciprocal Relationship Prediction Problem Definition

- Given a network, $G = \{V, E, X, Y\}$
 - X: edge-specific features (fully observed)
 - Y: follow-back behavior
 - partially observed
- Goal: predict unknown Y.

Reciprocal Relationship Prediction Proposed Model

• Triad Factor Graph (TriFG) Model

- incorporate social theories over triads into factor graph model
- **Goal**: compute the posterior *P*(*Y*|**X**,*G*). By Bayes theorem,

$$P(Y|\mathbf{X}, G) \propto P(\mathbf{X}|Y)P(Y|G)$$
$$\propto P(Y|G)\prod_{e} P(\mathbf{x}_{e}|y_{e})$$

- Problem: model P(Y|G) and $P(\mathbf{x}_e|\mathbf{y}_e)$
 - Using Markov Random Field (MRF).

• Hammersly-Clifford theorem

$$P(\mathbf{x}_{e}|y_{e}) = \frac{1}{Z_{1}} \exp\left\{\sum_{d} \alpha_{d} f_{d}(x_{ed}, y_{e})\right\}$$

$$P(Y|G) = \frac{1}{Z_{2}} \exp\left\{\sum_{c} \sum_{k} \mu_{k} h_{k}(Y_{c})\right\}$$
here cogbines social theories

Reciprocal Relationship Prediction Proposed Model

• Triad Factor Graph (TriFG) Model

- incorporate social theories over triads into factor graph model
- **Goal**: compute the posterior *P*(*Y*|**X**,*G*). By Bayes theorem,

$$P(Y|\mathbf{X}, G) \propto P(\mathbf{X}|Y)P(Y|G)$$

 $\propto P(Y|G)\prod_{e} P(\mathbf{x}_{e}|y_{e})$

- Problem: model P(Y|G) and $P(\mathbf{x}_e|\mathbf{y}_e)$
 - Using Markov Random Field (MRF).

• Hammersly-Clifford theorem

$$P(\mathbf{x}_{e}|y_{e}) = \frac{1}{Z_{1}} \exp\left\{\sum_{d} \alpha_{d} f_{d}(x_{ed}, y_{e})\right\}$$

$$P(Y|G) = \frac{1}{Z_{2}} \exp\left\{\sum_{c} \sum_{k} \mu_{k} h_{k}(Y_{c})\right\}$$
Consider the complete social theories

also know as Conditional Random Field

Tuesday, 10 January 2012

Reciprocal Relationship Prediction Learning and Prediction

- Framework
 - maximize log-likelihood to find best parameters (using gradient descent)

$$O(\theta) = \sum_{e} \sum_{d} \alpha_d f_d(x_{ed}, y_e) + \sum_{c} \sum_{k} \mu_k h_k(Y_c) - \log Z$$

- using estimated parameters to predict unknown variables
- Challenges
 - logZ is intractable: even compute the gradient is NP-hard
 - using Loopy Belief Propagation as an approximation

Reciprocal Relationship Prediction Learning and Prediction

- Framework
 - maximize log-likelihood to find best parameters (using gradient descent) sum over all triads!
 sum over all triads!

$$O(\theta) = \sum_{e} \sum_{d} \alpha_d f_d(x_{ed}, y_e) + \sum_{c} \sum_{k} \mu_k h_k(Y_c) - \log Z$$

using estimated parameters to predict unknown variables

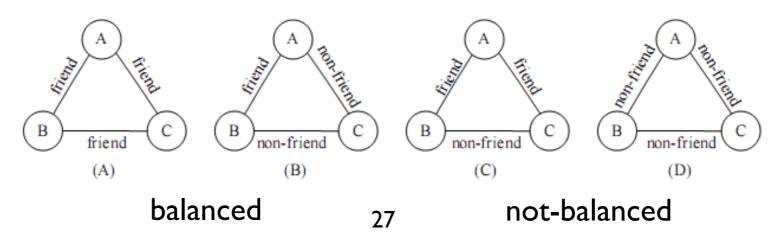
standard MRF MAP problem

- Challenges
 - logZ is intractable: even compute the gradient is NP-hard
 - using Loopy Belief Propagation as an approximation

standard MRF learning approach

Reciprocal Relationship Prediction Features

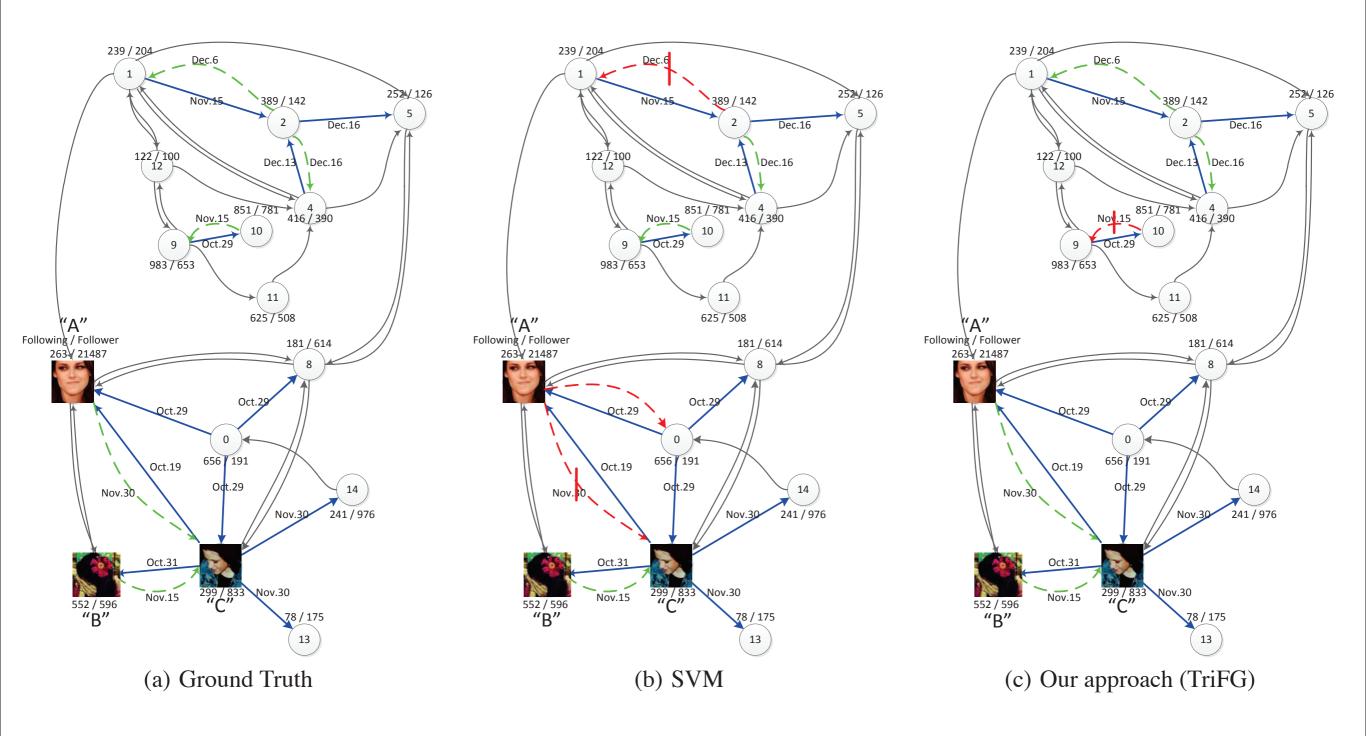
- Edge-specific features
 - Geographic distance between users
 - Link homophily: users with common friends tend to follow each other
 - Status homophily: elite users tend to follow each other.
 - Retweet-reply-network is correlated with two-way relationships
- Triad features
 - structural balance social theory



Reciprocal Relationship Prediction Experiment: Setup

- Data sets
 - Twitter (with time-stamp)
- Baseline
 - SVM, Logistic regression, CRF (without unlabeled data)

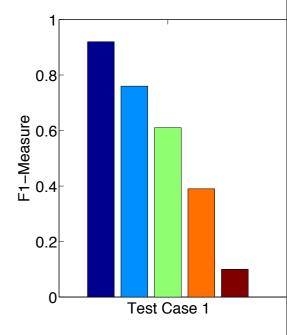
Reciprocal Relationship Prediction Experiment: Case Study



Reciprocal Relationship Prediction Experiment: Result

• Inferred 90% follow-back behavior

I	[1	
Data	Algorithm	Prec.	Rec.	F1	Accu.
	SVM	0.6908	0.6129	0.6495	0.9590
	LRC	0.6957	0.2581	0.3765	0.9510
Test Case 1	CRF-balance	0.9968	0.5161	0.6801	-9 9670
	CRF	1.0000	0.6290	0.7723	0.97 19
	wTriFG	0.9691	0.5483	0.7904	0.9430
	TriFG	1.0000	0.8548	0.9217	0.9910
Test Case 2	SVM	0.7323	0.6212	0.6722	0.9534
	LRC	0.8333	0.3030	0.4444	0.9417
	CRF-balance	0.9444	0.5151	0.6667	0.9114
	CRF		0.6333	0.7755	0.9717
	wTriFG	0.9697	0.5697	0.7177	0.9389
	TriFG	1.0000	0.8788	0.9355	0.9907



Reciprocal Relationship Prediction Experiment: Other Result

- Better than other graph-based algorithm
- Fast, convergence, etc.

Outline

- Detecting Community Kernels in Large Social Networks
- Who Will Follow You Back? Reciprocal Relationship Prediction
- Inferring Social Ties Across Heterogeneous Networks (very briefly)
- Related topics
- Summary and conclusions

Inferring Social Ties (in 5 slides) Motivation

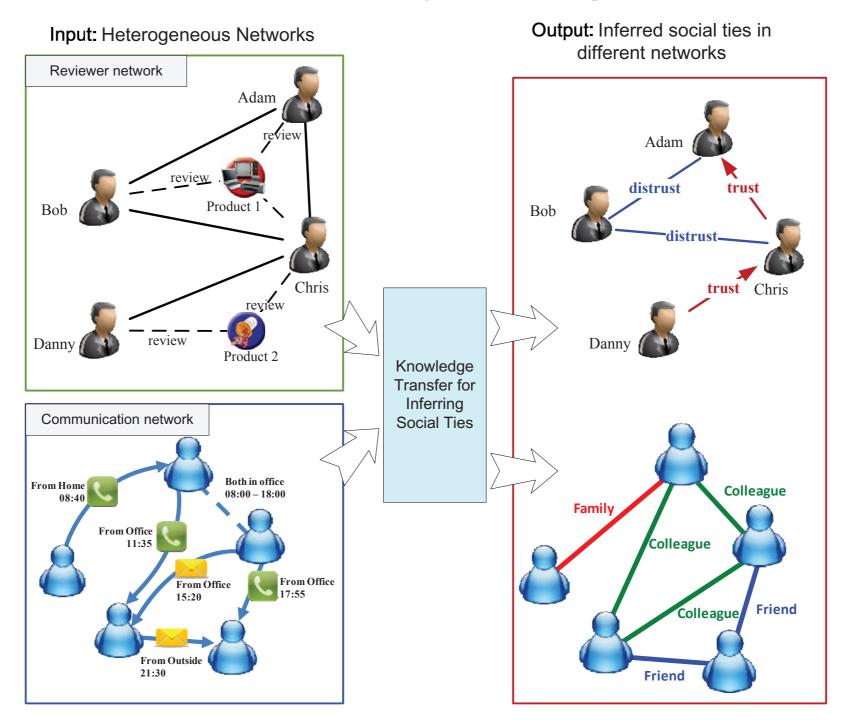
Background

- Many different types of social "ties" (aka. relationship).
- Many different types of online social networks.
- Labeled relationships are scare.

• Problem

• Leverage labeled relationships from one network to infer type of relationships in another different network

Inferring Social Ties Motivating Example



Reciprocal Relationship Prediction Proposed Model

• Triad Factor Graph (TriFG) Model

- incorporate social theories over triads into factor graph model
- **Goal**: compute the posterior *P*(*Y*|**X**,*G*). By Bayes theorem,

$$P(Y|\mathbf{X}, G) \propto P(\mathbf{X}|Y)P(Y|G)$$

$$\propto P(Y|G)\prod_{e} P(\mathbf{x}_{e}|y_{e})$$
 Y: follow-back?

- Problem: model P(Y|G) and $P(\mathbf{x}_e|\mathbf{y}_e)$
 - Using Markov Random Field (MRF).

• Hammersly-Clifford theorem

$$P(\mathbf{x}_{e}|y_{e}) = \frac{1}{Z_{1}} \exp\left\{\sum_{d} \alpha_{d} f_{d}(x_{ed}, y_{e})\right\}$$

$$P(Y|G) = \frac{1}{Z_{2}} \exp\left\{\sum_{c}\sum_{k} \mu_{k} h_{k}(Y_{c})\right\}$$
a
Conditional theorem

also know as Conditional Random Field

here combines social theories

Reciprocal Relationship Prediction Proposed Model

Triad Factor Graph (TriFG) Model

- incorporate social theories over triads into factor graph model
- **Goal**: compute the posterior P(Y|X,G). By Bayes theorem,

$$P(Y|\mathbf{X}, G) \propto P(\mathbf{X}|Y)P(Y|G)$$

$$\propto P(Y|G)\prod_{e} P(\mathbf{x}_{e}|y_{e}) \qquad Y: \text{follow-back?}$$

- Problem: model P(Y|G) and $P(\mathbf{x}_e|\mathbf{y}_e)$
 - Using Markov Random Field (MRF).

• Hammersly-Clifford theorem

$$P(\mathbf{x}_{e}|y_{e}) = \frac{1}{Z_{1}} \exp\left\{\sum_{d} \alpha_{d} f_{d}(x_{ed}, y_{e})\right\}$$

$$P(Y|G) = \frac{1}{Z_{2}} \exp\left\{\sum_{c} \sum_{k} \mu_{k} h_{k}(Y_{c})\right\}$$
a
Conditional equations are combined as a social theorem

llso know as onal Random Field

nere complines social theories

Inferring Social Ties **Proposed Model**

- **Triad Factor Graph (TriFG) Model**
- **Transfer-based Factor Graph (TranFG) Model**
- **Goal**: compute the posterior P(Y|X,G). By Bayes theorem,

$$P(Y|\mathbf{X},G) \propto P(\mathbf{X}|Y)P(Y|G)$$

$$\propto P(Y|G)\prod_{e} P(\mathbf{x}_{e}|y_{e}) \qquad \text{Y: type of}$$

f social tie

- Problem: model P(Y|G) and $P(\mathbf{x}_e|\mathbf{y}_e)$
 - Using Markov Random Field (MRF).

• Hammersly-Clifford theorem

$$P(\mathbf{x}_{e}|y_{e}) = \frac{1}{Z_{1}} \exp\left\{\sum_{d} \alpha_{d} f_{d}(x_{ed}, y_{e})\right\}$$

$$P(Y|G) = \frac{1}{Z_{2}} \exp\left\{\sum_{c} \sum_{k} \mu_{k} h_{k}(Y_{c})\right\}$$
Con

also know as ditional Random Field

nere complines social theories

Inferring Social Ties Learning and Prediction

- Framework
 - maximize log-likelihood (using Loopy Belief Propagation)
 - "learn across heterogeneous networks" $\begin{aligned}
 & \text{source network} \quad \text{target network} \\
 & \text{for a structure of the second second$

 $O(\theta) = \sum_{e} \sum_{d} \alpha_{d} f_{d}(x_{ed}, y_{e}) + \sum_{c} \sum_{k} \mu_{k} h_{k}(Y_{c}) - \log Z$

Inferring Social Ties Experiment

- Data sets
 - Epinions, Slashdot, Mobile, Coauthor, Enron
- Baseline methods
 - SVM, CRF, PFG (CRF which uses unlabeled data proposed by Jie Tang)
- Results
 - 8-28% improvements over alternative method on FI-score
 - fast, convergence, etc.

Outline

- Detecting Community Kernels in Large Social Networks
- Who Will Follow You Back? Reciprocal Relationship Prediction
- Inferring Social Ties Across Heterogeneous Networks (very briefly)
- Related topics
- Summary and conclusions

Related topics

- Community detection (DCK)
- Leader detection (DCK)
- Link prediction (RRP) (IST)
- Link classification (RRP) (IST)
- Each of these topic is very popular in recent years and have hundreds of related papers.

DCK: Detecting Community Kernels RRP: Reciprocal Relationship Prediction IST: Inferring Social Ties

Summary and conclusion

- Three papers in decent conferences produced in 6~8 months
- Common feature
 - Very consistent, careful and professional writing style

• A	lmost san	ne section	titles:			
Introduction	Problem Definition	Data and Observation	Model Framework	Experiments + Result and	Related Work	Conclusions
• C	arefully d	istinguish v	vith existir	Analysis ng problem	ns and solut	tions

- A good name to the problem and solution.
- Extensive experiments and in depth data analysis

Thanks! Question?