
Fuzzy Clustering Method for Content-based Indexing

K.S. Leung, I. King and H.Y. Yue

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Shatin, New Territories, Hong Kong

Email: fksleung, king, hyyueg@cse.cuhk.edu.hk

Abstract

E�cient and accurate information retrieval is one

of the main issues in multimedia databases. In

content-based multimedia retrieval databases, con-

tents or features of the database objects are used

for retrieval. To retrieve similar database objects,

we often perform a nearest-neighbor search. A

nearest-neighbor search is used to retrieve simi-

lar database objects with features nearest to the

query under the feature vector space with a given

distance function (similarity measurement). Typi-

cally, data exist in natural cluster. However, many

of the currently indexing methods do not utilize

this data cluster information in the construction

of the indexing structure which leads to perfor-

mance degradation. To improve the retrieval per-

formance, we (1) use Fuzzy Competitive Cluster-

ing (FCC), a noise resistance fuzzy clustering al-

gorithm, to locate good approximate cluster proto-

types e�ciently, (2) use the result of FCC cluster-

ing to construct a good indexing structure (FCC-b-

tree) for e�ective nearest-neighbor search and (3)

Dervied two elimination rules for purning the in-

dexing tree in searching process. Our experimental

results show that: (1) FCC gets the better cluster

prototypes then other traditional clustering algo-

rithms in general. and (2) The FCC-b-tree always

has a better performance than linear search.

1 Introduction

E�cient and accurate information retrieval is one

of the main issues in multimedia databases. The

content-based retrieval lets users to specify queries

by features (or contents) such as color, texture,

sketch and shape to retrieve database objects with

features similar to the queries.

Many content-based retrieval multimedia database

systems have been developed in the past few years.

For example, Montage [1] is an image database

for managing and retrieving visual information ef-

�ciently and e�ectively. It supports content-based

retrieval by color histogram, sketch, texture, and

shape. Query by Image Content (QBIC) [2] allows

queries on databases based on color, texture, and

shape of database objects. Photobook [3] makes

use of semantics-preserving image compression

to support search based on three image content

descriptions: appearance, 2-D shape, and textural

properties. VisualSEEk [4] is a content-based

image and video retrieval system for World Wide

Web. It uses color contents and the spatial

layout of color regions of images for retrieval.

Other multimedia database systems which support

content-based query include Chabot [5], MMIS [6],

VIMSYS [7], ART MUSEUM [8], KMeD [9], and

CORE [10]. Although the above databases use

di�erent features for retrieval, most of them have

shown that they are e�cient and e�ective.

In a typical multimedia database, all database ob-

jects have to be pre-analyzed and then organized

in a special way for retrieval. The main steps are:

1. Feature Extraction - The corresponding

features from each of the database objects

are �rst extracted. These features are usu-

ally stored in the form of real-valued multi-

dimensional vectors.

2. Index Structure Building - The database

may then organize the extracted features by

using an indexing structure for retrieval.

3. Content-Based Retrieval - Content-based

retrieval can be performed on the indexing

structure e�ciently and e�ectively.

1

1.1 Nearest-neighbour Searching

By using feature vectors, the content-based

retrieval multimedia databases support similar

searching. Applying a suitable distance function

to the feature vectors as the similarity mea-

surement, the database objects will be ranked

according to a query. The top ranked objects are

then retrieved as the result for similar retrieval.

Nearest-neighbor search is a typical kind of similar

searching. In the feature vector space or the real

space, a query can be seen as a multi-dimensional

point (or vector). Thus, the retrieved objects of

this query are the nearest points around the query

point.

An e�cient nearest-neighbor search requires an

indexing structure, which generates partitions for

the feature vector space. Based on this indexing

structure, only the objects in one or a few of

partitions instead of in the whole feature vector

space need to be visited during a nearest-neighbor

search. Thus, the key issue of an indexing method

is how to partition the feature space [11].

1.2 Boundary Problem

Researchers have developed many indexing meth-

ods for content-based retrieval in databases such as

R-tree, R+-tree, R*-tree, SR-tree, Quad-tree, k-d

tree, VP-tree, MVP-tree, and some other methods.

However, these existing indexing methods usually

confront the problem of performance degradation

when the queries lie near the generated partition

boundaries. The main reason of the problem is

that these methods do not consider the natural

clusters in the feature space.

The above problem is called as boundary problem.

Generally, the objects in a multimedia database

form some natural clusters in the corresponding

feature vector space. Using nearest-neighbor

search with a query, the retrieved objects almost

belong to the same cluster which contains the

query. However, the existing indexing methods

often divide the objects in a natural cluster into

several di�erent nodes. As a result, when a query

lies near partition boundary, the indexing methods

will cause error if they only retrieve data from one

partition, or will loss the e�ciency if they have to

visit many partitions for a search.

We build an indexing structure which partitions

feature vector space based on the natural clusters

to decrease the inuence of the boundary problem.

In this indexing structure, the partitioning bound-

aries approximatly are the natural clustering

boundaries. The nearest-neighbor search on this

indexing structure will become more e�cient.

In the next section, we will introduce a noise re-

sistance clustering algorithm, Fuzzy Competitive

Clustering (FCC) and make a brief comparison be-

tween FCC and several traditional clustering algo-

rithms. In Section 3, we will describe about how to

build an e�cient indexing structure, FCC Binary

Tree (FCC-b-tree) by using FCC. Also, we will in-

troduce two elimination rules for pruning the tree

while searching and shown the experiment results

in this section. Then we will come to our discus-

sion and conclusion part in Section 4 and Section

5 respectively.

2 Fuzzy Clustering Methods

for Indexing

We propose to use an e�cient fuzzy clustering algo-

rithm for content-based indexing in order to lessen

the boundary problems mentioned in the pervious

section.

2.1 Fuzzy Competitive Clustering

(FCC)

Fuzzy Competitive Clustering (FCC) is an exten-

sion of traditional competitive learning. The main

di�erence between FCC and traditional compet-

itive learning is that in traditional competitive

learning, the measurement in the competition

step is the absolute distance, however, in FCC

the measurement is the fuzzy membership value,

which is a relative distance. It is more exible and

robust when compare with using absolute distance

as a measurement.

The algorithm of FCC is outlined as follows.

(Step 0) Initialization: Every cluster in FCC

is describe by fuzzy prototype [12, 13]. In the

initialization, we randomly pick k points as the

initial cluster prototype centers and every proto-

type have the same variance in each dimension as

the initial variance of the cluster prototypes.

2

(Step 1) Competition: Calculate the fuzzy

membership value for each data instance to each

cluster prototype. The membership value uik for

data instance xk to cluster i is calculated from the

equation:

uik =

Pa

j=1 ujik

a
; (1)

where a is the the number of attribute and ujik
is the membership value of data instance xk to

cluster i in jth dimension.

ujik can be any fuzzy membership function. In

our experiment, we use crisp function as the fuzzy

membership function and it is de�ned as:

ujik =
�ji + 1

�ji + d(i; k) + 1
; (2)

where �ji is the variance of ith cluster prototype

in jth dimension. d(i; k) is the distance between

instance xk and the ith cluster center.

After the claculation of fuzzy membership values,

we increase the weighting, wik, of the k
th instance

towards ith cluster if the membership value of this

data instance is the largest towards this cluster.

The weighting is changed according to the follow-

ing equation:

wik =

(
uik + �

�
1� uik

�
if uik is the largest;

uik otherwise:

(3)

where, �, 0 � � � 1, is the learning rate.

The changing process of wik is a simulation to

the normalization process in traditional clustering

algorithms. If uik is the the largest, then its

weighting, wik should be the largest among wik
for all k. Through this kind of normalization like

process, we let each cluster prototype interact

with each other to prevent generating coincident

clusters [14].

(Step 2) Updating Cluster Fuzzy Proto-

types: We update the cluster prototype by

m
0

i =

Pn

k=1w
2

ikxkPk=n

k=1 w
2

ik

; (4)

�
0

i =

Pn

k=1wik

xi �mi

Pk=n

k=1 wik
; (5)

where, m
0

i is the new cluster centroid of ith cluster

and �
0

i is the new variance vector of ith cluster.

A variance vector stores the variance of each

dimension for a cluster.

Steps 1 and 2 are iterated until the iteration con-

verges or the number of iterations reaches a pre-

speci�ed value. The �nal cluster prototypes are

the results of the FCC.

2.2 Di�erence between FCC and

traditional clustering algorithms

There are many di�erent types of clustering

algorithms, every method has its own advan-

tages and disvantages, from K means clustering

algorithm (KM), Competitive Learning (CL)

to Fuzzy c means algorithm (FCM) [15]. How-

ever, almost all the common clustering algo-

rithms [16, 17, 18, 19, 20, 21, 22] nowadays can

divide into two groups. They are probabilistic

clustering [23] and possibilistic clustering [24].

One of the great problem on Probabilistic Cluster-

ing algorithms is Outliers. Outliers are vectors, or

called data point, in the data domain which are so

distant from the rest of the other vector in the data

set, that it would be unreasonable to assign them

high membership values to any of the c clusters.

Every Probabilistic Clustering algorithm obeys the

constraint:

cX
i=1

uik = constant; k = 1; :::; n ; (6)

where, uik is the membership value of kth instance

to ith cluster.

However, the above constraint does not permit

all the c memberships to assume value lower than

1=c. For an outlier xk, all the ratios dik=djk
will often be close to unity. This resulting

that all the c membership values close to 1=c.

Because FCM and many other Probabilistic

Clustering algorithms use the membership value

as a weighting to calculate the cluster centroid.

This unreasonable high membership values often

cause improper positioning of the centroids. In

fact, if an outlier is very distant, one of the cen-

troids might position itself at the outlier's position.

On the other hand, possibilistic clustering also

raise another problem. Use Possibilistic c means

3

(PCM) algorithm [25, 26] as an example. The

objective function for PCM can break down into

a sum of c single objective function. As a result,

the centroids do not a�ect each other during

the optimization process. This properties often

leads to coincident clusters. Another problem for

PCM is the result of PCM is heavily depends on

initialization. The authors of [25] suggest to use

FCM to initialize PCM. However, if an outlier is

distanct, PCM will not able to recover from the

bad initial partition generated by FCM.

However, FCC does not have the above problems.

It is because in FCC, we do not have the constraint

as in Eq. (6). Hence, we can assign small value of

uik to an instance, if it is needed to do so. Also,

as every cluster prototype interacts with each

other, FCC would not generate coincident clusters

like PCM. As we use fuzzy prototype to describe

the cluster in FCC, FCC can be used to �nd the

information of the cluster in each dimension.

Here we show a table to summarize the feature of

these clustering algorithm:

Table 1: Comparison on the properities between

FCC and several traditional clustering algorithms.

CL FCM FCC KM

Fuzzy No Yes Yes No

Inter-cluster Yes Yes Yes Yes

data

Intra-cluster No No Yes No

data

Noise-

Resistant

Yes No Yes No

Pc

i=1 uik = 1 - Yes Not Yes

Needed

Knowledge No No Yes No

on each

dimension

2.3 Experimental Results

2.3.1 Experiments Setting

We test our method with synthetic data sets in the

Gaussian Mixture distribution, whose probability

density function can be written as follows:

p(~x) =

nX
j=1

�jG(~x; ~mj ;�Xj
); (7)

where n is the number of mixtures. Each weight,

�j � 0 and
Pn

j=1 �j = 1, and each G(~x; ~mj ;�Xj
)

is a single Gaussian function with the mean, ~mj

and the covariance matrix, �Xj
.

In our experiments, we use the equal weight for

each Gaussian mixture as follows,

�1 = �2 = � � � = �n =
1

n
: (8)

We also use a diagonal matrix as the covariance

matrix of each Gaussian function.

�Xi
=

2
6664

�i 0 � � � 0

0 �i � � � 0
...

...
. . .

...

0 0 � � � �i

3
7775 (9)

we set �i as a random variable with range from 1

to 10 and n = 3 for generating the testing data set.

2.3.2 Experiment Results

From the above experiment setting. We randomly

initialize 10 di�erent data set and apply several

clustering algorithms on the data set to test their

performance. The included clustering algorithms

are, fuzzy competitive clustering, competitive

learning, rival penalized competitive learning, fuzzy

c means clustering and K means clustering. Each

time after we �nish the clustering, we use the

clustering results to perform classi�cation and

compare the classi�cation results with those given

from Maximum a posterior (MAP) [27]. The

results are summarized as follows:

Table 2: Comparison on the perfermance between

FCC and several traditional clustering algorithms.

Average Error Rate

(in percentage)

Fuzzy Competitive

Clustering

9.70

Fuzzy c Means 15.48

K Means 13.29

Competitive Learning 16.07

Rival Penalized 13.12

Competitive Learning

Maximum a Posterior 5.59

4

3 FCC-b-tree: A Top-Down

Hierarchical FCC Indexing

Structure

3.1 Generating Top-Down Indexing

Structure

After the FCC clustering is �nished, the next step

is to build an indexing structure. We realize the

indexing structure using a top-down hierarchical

clustering approach, which clusters the next level

of feature vectors only based on the subset of data

points partitioned in the previous level. Thus,

the hierarchical clustering approach transforms

a feature vector space into a sequence of nested

partitions.

In this approach, the clusters at the same level

do not overlap each other. Therefore, we can use

a tree to describe the relationships between the

di�erent clustering levels. Especially, if we set a

restriction that each set of data points in a level

can only be partitioned into at most two subsets

in the next clustering level, this tree becomes

a binary tree. After clustering, all the feature

vectors are in one cluster at the root level, level

0, and there are at most 2i subtrees (clusters) at

level i.

We can use the binary tree as indexing structure

for nearest-neighbor search. The basic idea is

that, at the root node of the binary tree, a query

vector ~q is compared to the fuzzy prototypes of

the clusters in the immediate lower level. The

child node corresponding to the cluster with ~q

having the highest membership value is selected.

The elements in the selected cluster will be the

result of the query if they satisfy the criteria of the

nearest-neighbor search. Otherwise, the search

will proceed to the lower levels.

Next, we outline the procedure of building a binary

indexing tree using FCC clstering. We name the

tree FCC-b-tree, FCC Binary Tree.

3.2 Building FCC-b-tree

Given a set of data, we perform top-down FCC

clustering and build a FCC-b-tree based on the

clusters. The basic idea is that we apply FCC

to cluster the data set into two sub-clusters each

time and then continue to do FCC clustering

hierarchically to each of the sub-clusters until

each of the �nal sub-clusters contains less than a

pre-speci�ed number of data points. With these

FCC clusters, we can build a binary tree structure.

There are two kinds of nodes in the tree: leaf node

and non-leaf node.

A leaf node contains a cluster of at most M data

points calculated by FCC clustering. M is the

maximum number of data in a leaf node.

The algorithm for building the hierarchical binary

tree by using FCC clustering is shown in the

Appendix section.

Considering the update of FCC-b-tree, we next de-

sign two operations which insert or delete a single

feature vector to or from the FCC-b-tree without

re-clustering. Next, we show the two update oper-

ations.

3.3 Update of FCC-b-tree

3.3.1 Insertion

The algorithm for insering a single feature vector

~p to the FCC-b-tree is shown in the Appendix

section.

The performance of the indexing tree for searching

may be reduced after some individual data point

insertions. The more the insertions, the worse the

performance. The reason is that the insertion al-

gorithm dose not fully consider the overall distri-

bution of the inserted data point and the original

data so that it cannot guarantee to keep the natu-

ral clusters. The searching performance will then

be worse. As a result, we may have to rebuild the

indexing structure after a certain amount of data

points have been inserted.

3.3.2 Deletion

Apart from insertion, we can also delete an

individual feature vector from a FCC-b-tree. The

algorithm of deletion is shown in the Appendix

section.

The deletion algorithm makes the searching

performance worse. When the number of deletions

increases, the searching performance will decrease

because node merging will change the original

indexing structure. Sometimes, the resultant

indexing tree will give better searching results es-

pecially when the number of deletions is relatively

5

small. It is because only a few points are removed

from the indexing tree and it does not a�ect the

natural clusters and the indexing structure any

more.

Next, we show how to realize retrieval using nearest

nearest-neighbor search based on the FCC-b-tree

indexing structure.

3.4 Nearest-neighbor Search Based

on FCC-b-tree

The basic idea of our searching algorithm is that,

given a query vector ~q, we compare it to the fuzzy

prototypes of the clusters in the immediate lower

level. The child node corresponding to the cluster

with ~q having the highest membership value is

selected. Then, we test it with two elimination

rules, to test whether or not the data instance

in the node can be the nearest neighbor to the

query. If it is possible, we check its child node too.

Otherwise, we prune the sub-tree.

The elimination rules is based on the following

properties of fuzzy prototype we used:

Property 3.1 (Membership and Distance)

Let, D(ci; xk) is the distance between instance xk
and cluster i, uik is the fuzzy membership value

for data instance xk to cluster i.

If D(ci; xk) > D(ci; xm) then uik < uim (10)

Property 3.2 (Prototype of the query)

Given a query X, the variance in jth dimension,

variancej is equal for all j.

Based on this property, we obtain the following

elimination rules. Let X be the query, B be the

point of current nearest neighbor of X among the

features considered up to the present, Sp be the

set of features associated with node p, Np be the

number of samples associated with node p, Mp be

the sample mean of Sp, upmin = minupk xk 2 Sp,

Minp be the data instance in Sp with membership

value upmin, Bp be the point on the line fromMp to

X with D(Bp; X) = D(B;X) and uMpBp
� uMpX .

Rule 3.1 (General Inclusion Rule) Xi 2 Sp
can be the nearest neighbor to X, if

uXMp
> uXB :

Proof: If uXMp
> uXB , then by Property 3.1

D(Mp; X) < D(B;X) ;

it follows that,

9Xi 2 Sp; D(Xi; X) < D(B;X) :

By the de�nition of nearest search, we directly

conclude that, Xi 2 Sp can be the nearest neigh-

bor to X.

Rule 3.2 (General Exclusion Rule) No Xi 2

Sp can be the nearest neighbor to X, if

uMpBp
< upmin

and

uXMp
� uXB

Proof: If

uXMp
� uXB

it follows that,

D(X;Mp) > D(X;B) :

And

D(X;Mp) � D(X;Xi) +D(Xi;M) ;

D(X;Bp) +D(Bp;Mp) � D(X;Xi) +D(Xi;M) ;

D(X;Bp) � D(X;Xi) +D(Xi;M)�D(Bp ;Mp) ;

D(X;Bp) < D(X;Xi)+D(Minp;M)�D(Bp;Mp) ;

because,

D(Minp;M)�D(Bp;Mp) � 0 ;

then,

D(X;Bp) < D(X;Xi) ;

D(X;B) < D(X;Xi) ;

By the de�nition of nearest search, we conclude

that, noXi 2 Sp can be the nearest neighbor to X.

These rules is actually very similar to those in

branch-and-bound algorithm [28] . The main dif-

ferent between these two rules and those in branch-

and-bound algorithm is in branch-and-bound al-

gorithm, they use the absolute distance as the

measurement. While in our elimination rules, we

use fuzzy membership value as the measurement,

which is more exible then using absolute distance

as the measurement.

6

3.5 E�ciency Tests for FCC-b-tree

In this section, we are going to de�ne the e�ciency

for the FCC-b-tree indexing method and demon-

strate it through a set of experiments.

De�nition 3.1 (E�ciency Measurement)

Let, x is the number of instances reached for the

checked method, y is the number of instances

reached in linear search, and z is the size of data.

efficiency = 1�
x

y

= 1�
x

z
: (11)

Then, we perform the experiments with the follow-

ing setup and procedures.

3.5.1 Experiments Setting

We test our method with the same setting that de-

scribed in Section(2.3.1), except we set the value

of n = 10 and a total 10000 data instance for gen-

erating the testing data set.

3.5.2 Experiments Results

After a series of data retrieval, we calculate the

maximum, average and minimum performance

of the indexing structure. In calculating the

average performance, we omit the the trials

with the largest number of instance reached and

the smallest number of instance reached. After

performance calculation, we found the following:

Table 3: E�ciency measurement of FCC-b-tree.

Maximum E�ciency 0.87

Average E�ciency 0.79

Minimum E�ciency 0.59

4 Discussion

After introducing the FCC-b-tree for indexing and

retrieval, we would like to have a short discussion

on its performance.

1. E�cient Nearest-neighbor Retrieval:

From most the experimental results, the e�-

ciency is about 0.8 for 100%-accuracy nearest-

neighbor retrieval in general. It is because

FCC gives us natural clusters and we try to

keep each of the natural clusters in a node.

Therefore, most of the data in the node can be

retrieved together as the result of a requested

nearest-neighbor query and hence improve the

e�ectiveness of retrieval. Besides, we make use

of the elimination rules stated in Section 3.4

on the FCC-b-tree for retrieval so that the ef-

�ciency of nearest-neighbor search can be in-

creased.

2. Solving the Boundary Problem for 100%

Nearest-neighbor Result:

By using the stopping criteria stated in Sec-

tion 3.4 on the FCC-b-tree, the boundary

problem described in Section 1 can be solved.

For example, there is a nearest-neighbor query

lying on a boundary of two cluster partitions.

With the backtracking mechanism and the

2 elimination rules, the searching algorithm

gives us 100% result of the query which may

contain data objects on di�erent clusters on

both sides of the boundary e�ciently.

3. Insertion and Deletion:

FCC-b-tree has a hierarchical indexing struc-

ture which helps us to perform data insertion

and deletion. From Sections 3.3.1 and 3.3.2,

we know that a single data object can be in-

serted to or deleted from the indexing struc-

ture easily because there is a clear relationship

among the internal nodes. Starting from the

root node, we can �nd the target leaf node

without any problem and then update the in-

dexing structure for data insertion and dele-

tion.

In summary, our method has good searching per-

formance in general. The searching algorithm

solves the boundary problem and makes nearest-

neighbor search on the FCC-b-tree e�ciently and

e�ectively. Moreover, the hierarchical structure

helps us to update the FCC-b-tree simply.

5 Conclusion

We have used an e�cient clustering algorithm

Fuzzy Competitive Clustering (FCC) to locate nat-

ural clusters for content-based indexing and re-

trieval. Based on the located clusters, we have pro-

posed to build a hierarchical binary tree (FCC-b-

tree) for retrieval. We also make use of some elim-

ination rules to solve the boundary problem. From

the experimental results, it is concluded that: (1)

FCC gets the better cluster prototypes then other

traditional clustering algorithms in general. (2)

7

The FCC-b-tree always has a better performance

than linear search.

6 Appendix

Algorithm to build (BuildTree(D, P , M)) the

FCC-b-tree, insert (Insert(T , p, M)) instance into

and delete (Delete(T , q, M)) instance from the

FCC-b-tree:

Algorithm 1 BuildTree(D, P , M)
. Input: A set of data objects D, a FCC-b-tree node P

(P is empty at the �rst time), and the maximum node

size M

. Output: A FCC-b-tree

1 if D's size is greater than M then do

2 create a non-leaf node Q

3 add Q as a child node of P if any

4 use FCC to cluster D into two sub-sets D1 and

D2

5 BuildTree(D1, Q, M)

6 BuildTree(D2, Q, M)

7 return Q

8 else

9 create a leaf node L for D

10 add L as a child node of P if any

11 calculate the clustering information of D and

store it in the corresponding entry of P

12 return L

13 end if

Algorithm 2 Insert(T , p, M)
. Input: A FCC-b-tree T , a to-be inserted data object

p, and the maximum node size M

. Output: An updated FCC-b-tree

1 N the root node of T

2 while N is not a leaf node do

3 N the node that p gives the highest mem-

bership value among its child nodes if any

4 end while

5 associate p to N

6 update the cluster prototype of N according to the

FCC clustering rules

7 if N 's size is larger than M then do

8 split the node into 2 sub-nodes by using FCC

9 end if

10 update the information of N 's ancestors if neces-

sary

Algorithm 3 Delete(T , q, M)
. Input: A FCC-b-tree T , a to-be deleted data object q,

and the maximum node size M

. Output: An updated FCC-b-tree

1 N the root node of T

2 while N is not a leaf node do

3 N the node that p gives the highest mem-

bership value among its child nodes if any

4 end while

5 if q is associated with N then do

6 remove q form N

7 update the cluster prototype of N according to

FCC clustering rules

8 update the information of Q's ancestors if nec-

essary

9 if the size of Q's parent node less thanM then

do

10 merge all Q's parent node's child nodes

11 end if

12 end if

References

[1] I. King, A. Fu, L. Chan, and L. Xu, \Mon-

tage: An image database for the hong kong's

textile, fashion, and clothing industry," 1995.

http://www.cse.cuhk.edu.hk/�miplab.

[2] W. Niblack, R. Barber, W. Equitz, M. Flick-

ner, E. Glasman, D. Petkovic, P. Yanker,

C. Faloutsos, and G. Taubin, \The qbic

project: querying images by content using

color, texture, and shape," in Proceedings of

the SPIE - The International Society for Opti-

cal Engineering, vol. 1908, pp. 173{187, 1993.

[3] A. Pentland, R. W. Picard, and S. Sclaro�,

\Photobook: Content-based manipulation of

image databases," International Journal of

Computer Vision, vol. 18, pp. 223{254, June

1996.

[4] J. Smith and S. F. Chang, \Visualseek: a

fully automated content-based image query

system," in ACM multimedia - international

conference - 1996, pp. 87{98, Nov. 1996.

[5] V. Ogle and M. Stonebraker, \Chabot: Re-

trieval from a relational database of images,"

Computer, vol. 28, pp. 40{48, Sept. 1995.

[6] M. H. O'Dochery, C. N. Daskalakis, P. J.

Crowther, C. A. Goble, M. A. Ireton, J. Oak-

ley, and C. S. Xydeas, \The design and imple-

mentation of a multimedia information system

with automatic content retrieval," Informa-

tion Services and Use, vol. 11, pp. 345{385,

1991.

[7] A. Gupta, T. Weymouth, and R.Jain, \Se-

mantic queries with pictures: The vimsys

model," in Proc. 17th VLDB, pp. 69{79, 1991.

8

[8] T. Kato, \Database architecture for content-

based image retrieval," in SPIE, vol. 1662,

pp. 112{123, 1992.

[9] W. W. Chu, A. F. Cardenas, and R. K. Taira,

\Kmed: A knowledge-based multimedia med-

ical distributed database system," Informa-

tion Systems, vol. 20, no. 2, pp. 75{96, 1995.

[10] J. K. Wu, A. D. Narasimhalu, B. M. Mehtre,

C. P. Lam, and Y. P. Gao, \Core: A content-

based retrieval engine for multimedia infor-

mation systems," ACM Multimedia Systems,

vol. 3, pp. 25{41, Feb. 1995.

[11] I. King and T. K. Lau, \Comparison of sev-

eral partitioning methods for information re-

trieval in image databases," in Proceedings of

the 1997 International Symposium on Mul-

timedia Information Processing (ISMIP'97),

pp. 215{220, 1997.

[12] J. Zhang and L. Zhang, \Learning fuzzy con-

cept prototypes using genetic algorithms," in

Fuzzy Systems Conference Proceedings, 1999.

FUZZ-IEEE '99. 1999 IEEE International,

vol. 3, pp. 1790{1795, 1999.

[13] E. Smith and D. Osherson, \Conceptual com-

bination with prototype concepts," in Cogni-

tive Science 8(4), pp. 337{361, 1984.

[14] M. Barni, V. Cappellini, and A. Mecocci,

\Comments on a possibilistic approach to

clustering," in IEEE Trans. Fuzzy System,

vol. 4, pp. 393{396, 1996.

[15] J. C. Bezdek, Pattern Recognition with Fuzzy

Objective Function Algorithms. New York:

Plenum Press, 1987.

[16] E. Backer, \Cluster analysis by optimal de-

composition of induced fuzzy sets," in Delft,

The Netherlands: Delft University Press,

1978.

[17] F. Sets and S., \Pattern recognition with

fuzzy objective function algorithms," Plenum

Pres, pp. 112{127, 1981.

[18] J. Dunn, \A fuzzy relative of the isodata pro-

cess and its use in detecting compact well-

separated clusters," in Journal of Cybernetics,

p. 3:32, 1974.

[19] J. Dunn, \Well separated clusters and optimal

fuzzy-partitions," in Journal of Cybernetics,

pp. 4:95{104, 1974.

[20] E. Ruspini, \A new approach to clustering,"

in Information and Control, pp. 15(1):22{32,

July 1969.

[21] L. Zadeh, \Similarity relations and fuzzy or-

derings," in Information Sciences, vol. 3,

pp. 177{200, 1970.

[22] S. Ovchinnikov, r fuzzy, and p fuzzy,

\Fuzzy sets and systems," in Similarity re-

lations, fuzzy partitions, and fuzzy orderings,

pp. 40:107{126, 1991.

[23] R. Dav and E. Krishnapuram, \Robust

clustering method: a uni�ed view," in

IEEE Transactions on Fuzzy Systems, vol. 5,

pp. 270{293, 1997.

[24] R. Krishnapuram and J. Keller, \A possibilis-

tic approach to clustering," in IEEE Trans-

actions on Fuzzy Systems, vol. 1, pp. 98{110,

May 1993.

[25] R. Krishnapuram and J. Keller, \A possibilis-

tic approach to clustering," in IEEE Trans-

actions on Fuzzy System, vol. 1, pp. 98{110,

May 1993.

[26] J. Krishnapuram, R.; Keller, \The possibilis-

tic c-means algorithm: insights and recom-

mendations," in Fuzzy Systems, IEEE Trans-

action, vol. 4 3, pp. 385{393, 1996.

[27] C. Bouman and K. Sauer, \A generalized

gaussian image model for edgepreserving map

estimation," in IEEE Transactions on Image

Processing, vol. 2, pp. 296{310, Jul. 1993.

[28] B. Kamgar and L. N. Kanal, \An improved

branch and bound algorithm for computing k-

nearest neighbors," Pattern Recognition Let-

ters, vol. 3, pp. 7{12, Jan. 1985.

9

