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Abstract

A new large margin classifier, named Maxi-
Min Margin Machine (M4) is proposed in
this paper. This new classifier is constructed
based on both a “local” and a “global” view
of data, while the most popular large mar-
gin classifier, Support Vector Machine (SVM)
and the recently-proposed important model,
Minimax Probability Machine (MPM) con-
sider data only either locally or globally. This
new model is theoretically important in the
sense that SVM and MPM can both be con-
sidered as its special case. Furthermore, the
optimization of M4 can be cast as a sequen-
tial conic programming problem, which can
be solved efficiently. We describe the M4

model definition, provide a clear geometri-
cal interpretation, present theoretical justi-
fications, propose efficient solving methods,
and perform a series of evaluations on both
synthetic data sets and real world benchmark
data sets. Its comparison with SVM and
MPM also demonstrates the advantages of
our new model.

1. Introduction
Recently, learning large margin classifiers (Smola
et al., 2000) has become an active research topic. Sup-
port Vector Machine (SVM) (Vapnik, 2000), the most
famous one of them, achieves a great success in ma-
chine learning and pattern recognition. SVM aims to
find a hyperplane, which can separate two classes of
data with the maximal margin. However, this mar-
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Figure 1. A decision hyperplane with considerations of
both local and global information.

gin is defined in a “local” way, i.e., the margin is
exclusively determined by some critical points, which
are called support vectors, whereas all other points
are totally irrelevant to the decision hyperplane. Al-
though this scheme is both theoretically and empiri-
cally demonstrated to be powerful, it actually discards
the global information of data. An illustration exam-
ple can be seen in Figure 1. In this figure, the classi-
fication boundary is intuitively observed to be mainly
determined by the dotted axis, i.e., the long axis of
the y data (represented by �’s) or the short axis of
the x data (represented by o’s). Moreover, along this
axis, the y data are more possible to scatter than the
x data, since y contains a relatively larger variance in
this direction. Noting this “global” fact, a good deci-
sion hyperplane seems reasonable to lie closer to the
x side (see the dash-dot line). However, SVM ignores
this kind of “global” information, i.e., the statistical
trend of data occurrence: the derived SVM decision
hyperplane (the solid line) lies unbiasedly right in the
middle of two “local” points (the support vectors).

Motivated from this important observation, we pro-
pose Maxi-Min Margin Machine (M4) to simultane-
ously consider data in both a local and a global fash-
ion. Interestingly, as we show later, M4 is actu-
ally a unified model of SVM and another recently-



proposed promising model Minimax Probability Ma-
chine (MPM) (Lanckriet et al., 2002). Moreover, based
on our proposed local and global view of data, an-
other popular model, Linear Discriminant Analysis
(LDA) (Fukunaga, 1990) can easily be interpreted and
extended as well. Another critical feature of M4 is
that, it can be cast as a sequential conic program-
ming problem (Pruessner, 2003), or more specifically, a
sequential Second Order Cone Programming (SOCP)
problem (Lobo et al., 1998), which can be solved effi-
ciently.

This paper is organized as follows. In the next sec-
tion, we introduce the M4 model in detail, including its
model definition, the geometrical interpretation, con-
nections with other models, and the associated solving
methods. Following that, we evaluate this novel model
in Section 4. Finally, we conclude this paper in Sec-
tion 5.

2. Maxi-Min Margin Machine
In the following, we first introduce the notations used
in this paper. We then, for the purpose of clarity,
divide M4 into separable and nonseparable categories,
and introduce the corresponding models sequently.

2.1. Notations
We only consider two-category classification tasks. As-
suming a training data set contains two classes of sam-
ples, represented by xi ∈ R

n and yj ∈ R
n respectively,

where i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny. The basic
task here can be informally described to find a suit-
able hyperplane f(z) = wT z+b separating two classes
of data as robustly as possible (w ∈ R

n\{0}, b ∈ R,
and wT is the transpose of w). Future data points z
for which f(z) ≥ 0 are then classified as the class x;
otherwise, they are classified as the class y.

2.2. Separable Case
Assuming the classification samples are separable, we
first introduce the model definition and the geometri-
cal interpretation. We then transform the model op-
timization problem into a sequential SOCP problem
and discuss the detailed optimization method.

2.2.1. Model Definition

The formulation for M4 can be written as:

max
ρ,w �=0,b

ρ s.t. (1)

(wT xi + b)√
wT Σxw

≥ ρ, i = 1, 2, . . . , Nx , (2)

−(wT yj + b)√
wT Σyw

≥ ρ, j = 1, 2, . . . , Ny , (3)

Figure 2. A geometric interpretation of M4.

where Σx and Σy refer to the covariance matrices of
the x and the y data, respectively.

This model tries to maximize the margin defined as the
minimum Mahalanobis distance for all training sam-
ples,1 while simultaneously classifying all the data cor-
rectly. Compared to SVM, M4 incorporates the data
information in a global way; namely, the covariance
information of data or the statistical trend of data oc-
currence is considered, while SVMs, including l1-SVM,
l2-SVM, and l∞-SVM (lp-SVM means the “p-norm”
distance-based SVM) (Smola et al., 2000), simply dis-
card this information or consider the same covariance
for each class.

A geometrical interpretation of M4 can be seen in Fig-
ure 2. In this figure, the x data are represented by
the inner ellipsoid on the left side with its center as
x0, while the y data are represented by the inner el-
lipsoid on the right side with its center as y0. It is
observed that these two ellipsoids contain unequal co-
variances or risks of data occurrence. However, SVM
does not consider this global information: its decision
hyperplane (the dotted blue line) locates unbiasedly in
the middle of two support vectors (filled points). In
comparison, M4 defines the margin as a Maxi-Min Ma-
halanobis distance, which thus constructs a decision
plane (the solid magenta line) with considerations of
both the local and global information: the M4 hyper-
plane corresponds to the tangent line of two dashed
ellipsoids centered at the support vectors (the local
information) and shaped by the corresponding covari-
ances (the global information).

2.2.2. Optimization Method

We will in the following show how the above problem
can be cast as a sequential conic programming prob-
lem, or more specifically, a sequential SOCP problem.

Our strategy is based on the “Divide and Conquer”
1This also motivates the name of our model.



technique. One may note that in the optimization
problem of M4, if ρ is fixed to a constant ρn, the prob-
lem is exactly changed to “conquer” the problem of
checking whether the constraints of (2) and (3) can be
satisfied. Moreover, as will be demonstrated shortly,
this “checking” procedure can be stated as an SOCP
problem. Thus the problem now becomes how ρ is
set, which we can use “divide” to handle: if the con-
straints are satisfied, we can increase ρn accordingly;
otherwise, we decrease ρn.

We detail this solving technique in the following two
steps:

1. Divide: Set ρn = (ρ0 + ρm)/2, where ρ0 is a
feasible ρ, ρm is an infeasible ρ, and ρ0 ≤ ρm.

2. Conquer: Call the Modified Second Order Cone
Programming (MSOCP) procedure elaborated in
the following to check whether ρn is a feasible ρ.
If yes, set ρ0 = ρn; otherwise, set ρm = ρn;

In the above, if a ρ satisfies the constraints of (2) and
(3), we call it a feasible ρ; otherwise, we call it an
infeasible ρ. These two steps are iterated until |ρ0−ρm|
is less than a small positive value.

The MSOCP procedure is introduced in the following.
We reformulate the constraints of (2) and (3) as fol-
lows:

(wT xi + b) ≥ ρn

√
wT Σxw, i = 1, . . . , Nx ,

−(wT yj + b) ≥ ρn

√
wT Σyw, j = 1, . . . , Ny .

Our task here is to check whether there exist a w and
a b satisfying the above two constraints, which are ob-
viously the forms of the second order cones (here ρn is
a constant). Actually, many SOCP programs, e.g., Se-
dumi (Sturm, 1999), provide schemes to directly han-
dle the above checking procedure. However, to make it
clear, we elaborate in the following how this checking
problem can be transformed as an SOCP optimization
problem.

Introducing dummy variables τ , we rewrite the above
checking problem into an equivalent optimization
problem:

max
w �=0,b,τ

{
Nx+Ny

min
k=1

τ k} s.t.

(wT xi + b) ≥ ρn

√
wT Σxw − τ i,

−(wT yj + b) ≥ ρn

√
wT Σyw − τ j+Nx ,

where i = 1, . . . , Nx and j = 1, . . . , Ny.

By checking whether the minimum τ k at the optimum
point is positive, we can know whether the constraints
of (2) and (3) can be satisfied.

We can further introduce another dummy variable and
transform the above problem into an SOCP problem:

max
w �=0,b,τ ,η

η s.t.

(wT xi + b) ≥ ρn

√
wT Σxw − τ i ,

−(wT yj + b) ≥ ρn

√
wT Σyw − τ j+Nx ,

η ≤ τ k ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k =
1, . . . , Nx + Ny. By checking whether the optimal η
is greater than 0, we can immediately know whether
there exist a w and a b satisfying the constraints of
(2) and (3). Moreover, the above optimization is eas-
ily verified to be the standard SOCP form, since the
optimization function is a linear form and the con-
straints are either linear or the typical second order
conic constraints.

We now analyze the time complexity of M4. As in-
dicated in (Lobo et al., 1998), if the SOCP is solved
based on interior-point methods, it contains a worst-
case complexity of O(n3). If we denote the range of
feasible ρ’s as L = ρmax − ρmin and the required pre-
cision as ε, then the number of iterations for M4 is
log(L/ε) in the worst case. Adding the cost of form-
ing the system matrix (constraint matrix), which is
O(Nn3) (N represents the number of training points),
the total complexity would be O(log(L/ε)n3 +Nn3) ≈
O(Nn3), which is relatively large but can still be
solved in polynomial time.2

2.3. Connections with Other Models
In this section, we establish connections between M4

and other models. We show that SVM and MPM are
actually special cases of our model. Moreover, LDA
can be interpreted and extended according to our local
and global views of data.

2.3.1. Connection with Minimax Probability
Machine

If one expands the constraints of (2) and add all of
them together, one can immediately obtain the follow-
ing:

wT x + b ≥ ρ
√

wT Σxw , (4)

where x denotes the mean of the x training data.
2Note that the system matrix needs to be formed only

once.



Similarly, from (3) one can obtain:

−(wT y + b) ≥ ρ
√

wT Σyw , (5)

where y denotes the mean of the y training data.

Adding (4) and (5), one can obtain:

max
ρ,w �=0,b

ρ s.t.

wT (x − y) ≥ ρ(
√

wT Σxw +
√

wT Σyw) . (6)

The above optimization is exactly the MPM optimiza-
tion (Lanckriet et al., 2002). Note, however, that the
above procedure cannot be reversed. This means the
MPM is a special case of M4.

Remarks: In MPM, since the decision is com-
pletely determined by the global information, namely,
the mean and covariance matrices (Lanckriet et al.,
2002),3 to assure an accurate performance, the esti-
mates of mean and covariance matrices need to be re-
liable. However, it cannot always be the case in real
world tasks. On the other hand, M4 seems to solve this
problem in a natural way, because the impact caused
by inaccurately estimated mean and covariance matri-
ces can be neutralized by utilizing the local informa-
tion, namely by satisfying those constraints of (2) and
(3) for each local data point. This is also demonstrated
in the later experiment.

2.3.2. Connection with Support Vector
Machine

If one assumes Σx = Σy = Σ, the optimization of M4

can be changed as:

max
ρ,w �=0,b

ρ s.t.

(wT xi + b) ≥ ρ
√

wT Σw ,

−(wT yj + b) ≥ ρ
√

wT Σw ,

where i = 1, . . . , Nx and j = 1, . . . , Ny.

Observing that the magnitude of w will not influence
the optimization, without loss of generality, one can
further assume ρ

√
wT Σw = 1. Therefore the opti-

mization can be changed as:

min
w �=0,b

wT Σw s.t. (7)

(wT xi + b) ≥ 1 , (8)
−(wT yj + b) ≥ 1 , (9)

where i = 1, . . . , Nx and j = 1, . . . , Ny.

3This can be directly observed from (6).

A special case of the above with Σ = I is precisely the
optimization of SVM, where I is the identity matrix.

Remarks: In the above, two assumptions are implic-
itly made by SVM: One is the assumption on data
“orientation” or data shape, i.e., Σx = Σy = Σ, and
the other is the assumption on data “scattering magni-
tude” or data compactness, i.e., Σ = I. However, these
two assumptions are inappropriate. We demonstrate
this in Figure 3(a) and Figure 3(b). We assume the
orientation and the magnitude of each ellipsoid repre-
sent the data shape and compactness, respectively, in
these figures.

Figure 3(a) plots two types of data with the same data
orientations but different data scattering magnitudes.
It is obvious that, by ignoring data scattering, SVM is
improper to locate unbiasedly in the middle of the sup-
port vectors (filled points), since x is more possible to
scatter in the horizontal axis. Instead, M4 is more rea-
sonable (see the solid line in this figure). Furthermore,
Figure 3(b) plots the case with the same data scatter-
ing magnitudes but different data orientations. Simi-
larly, SVM does not capture the orientation informa-
tion. In comparison, M4 grasps this information and
demonstrates a more suitable decision plane: M4 rep-
resents the tangent line between two small dashed el-
lipsoids centered at the support vectors (filled points).
Note that SVM and M4 do not need to achieve the
same support vectors. In Figure 3(b), M4 contains
the above two filled points as support vectors, whereas
SVM has all the three filled points as support vectors.

2.3.3. Link with Linear Discriminant Analysis

LDA, an important and popular method, is used
widely in constructing decision hyperplanes and reduc-
ing the feature dimensionality. In the following dis-
cussion, we mainly consider its application as a clas-
sifier. LDA involves solving the following optimiza-
tion problem: maxw �=0

|wT (x−y)|√
wT Σxw+wT Σyw

. Similar to

MPM, LDA also focuses on using the global infor-
mation rather than considering data both locally and
globally. We now show that LDA can be modified to
consider data both locally and globally.

If one changes the denominators in (2) and (3)
as

√
wT Σxw + wT Σyw, the optimization can be

changed as:

max
ρ,w �=0,b

ρ s.t. (10)

(wT xi + b)√
wT Σxw + wT Σyw

≥ ρ , (11)

−(wT yj + b)√
wT Σxw + wT Σyw

≥ ρ , (12)



(a) (b) (c)

Figure 3. An illustration on the connections between SVM, LDA and M4. (a) demonstrates SVM omits the data com-
pactness information. (b) demonstrates SVM discards the data orientation information. (c) demonstrates LDA partly
yet incompletely considers the data orientation.

where i = 1, . . . , Nx and j = 1, . . . , Ny. The above
optimization is actually a generalized case of LDA,
which considers data locally and globally. This is ver-
ified as follows.

If one performs the procedure similar to that of Sec-
tion 2.3.1, the above optimization problem is easily
verified to be the following optimization:

max
ρ,w �=0,b

ρ s.t.

wT (x − y) ≥ ρ
√

wT Σxw + wT Σyw. (13)

One can change (13) as: ρ ≤ |wT (x−y)|√
wT Σxw+wT Σyw

, which

is exactly the optimization of the LDA (wT (x − y) is
implicitly implied as a positive value from (11) and
(12)).

Remarks: The extended LDA optimization actu-
ally focuses on considering the data orientation, while
omitting the data scattering magnitude information.
Using the analysis similar to that of Section 2.3.2, we
can know that the extended LDA lacks the considera-
tion on the data scattering magnitude. Its decision hy-
perplane in the example of Figure 3(a) coincides with
that of SVM. With respect to the data orientation, it
actually uses the average of covariances for two types
of data. As illustrated in Figure 3(c), the extended
LDA corresponds to the line lying exactly in the mid-
dle of the long axes of the x and y data. This shows
that the extended LDA considers the data orientation
partially yet incompletely .

2.4. Nonseparable Case
In this section, we modify the M4 model to handle the
nonseparable case. We need to introduce slack vari-
ables in this case. The optimization of M4 is changed

as:

max
ρ,w �=0,b,ξ

ρ − C

Nx+Ny∑
k=1

ξk s.t. (14)

(wT xi + b) ≥ ρ
√

wT Σxw − ξi ,

−(wT yj + b) ≥ ρ
√

wT Σyw − ξj+Nx
,

ξk ≥ 0 ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k =
1, . . . , Nx + Ny. C is the positive penalty parameter
and ξk is the slack variable, which can be considered
as the extent how the training point zk disobeys the
ρ margin (zk = xk when 1 ≤ k ≤ Nx; zk = yk−Ny

when Nx + 1 ≤ k ≤ Nx + Ny). Thus
∑Nx+Ny

k=1 ξk

can be conceptually regarded as the training error. In
other words, the above optimization achieves maximiz-
ing the minimum margin while minimizing the total
training error. The above optimization is easily veri-
fied to be an SOCP problem if we fix ρ. We can then
update ρ sequently. This is again a sequential SOCP
problem and thus can be solved practically.

3. Kernelization
One may note that in the above, the classifier derived
from M4 is provided in a linear configuration. In or-
der to handle nonlinear classification problems, in this
section, we seek to use the kernelization trick to map
the n-dimensional data points into a high-dimensional
feature space R

f , where a linear classifier corresponds
to a nonlinear hyperplane in the original space.

The kernel mapping can be formulated as: xi → ϕ(xi),
yj → ϕ(yj), where i = 1, . . . , Nx, j = 1, . . . , Ny, and
ϕ : R

n → R
f is a mapping function. The correspond-

ing linear classifier in R
f is γT ϕ(z) = b, where γ, ϕ(z)



Table 1. Notations used in Kernelization Theorem of M4

Notation

z ∈ R
Nx+Ny zi := xi i = 1, 2, . . . , Nx .

zi := yi−Nx i = Nx + 1, Nx + 2, . . . , Nx + Ny .

η ∈ R
Nx+Ny η := [µ1, . . . , µNx , υ1, . . . , υNy ]T .

K is Gram matrix Ki,j := ϕ(zi)
T ϕ(zj).

Kx :=




K1,1 K1,2 . . . K1,Nx+Ny

K2,1 K2,2 . . . K2,Nx+Ny

.

.

.
.
.
.

.

.

.
.
.
.

KNx,1 KNx,2 . . . KNx,Nx+Ny


 .

Ky :=




KNx+1,1 KNx+1,2 . . . KNx+1,Nx+Ny

KNx+2,1 KNx+2,2 . . . KNx+2,Nx+Ny

.

.

.
.
.
.

.

.

.
.
.
.

KNx+Ny,1 KNx+Ny,2 . . . KNx+Ny,Nx+Ny


 .

Ki := [Ki,1, Ki,2, . . . , Ki,Nx+Ny ]T .

k̃x, k̃y ∈ R
Nx+Ny [k̃x]i := 1

Nx

∑ Nx
j=1 K(xj , zi) .

[k̃y]i := 1
Ny

∑ Ny
j=1 K(yj , zi) .

1Nx ∈ R
Nx 1i := 1 i = 1, 2, . . . Nx .

1Ny ∈ R
Ny 1i := 1 i = 1, 2, . . . Ny .

K̃ :=

(
K̃x

K̃y

)
:=

(
Kx − 1Nx k̃T

x

Ky − 1Ny k̃T
y

)
.

∈ R
f , and b ∈ R.

The optimization of M4 in the feature space can be
written as:

max
ρ,γ �=0,b

ρ s.t. (15)

(γT ϕ(xi) + b)√
γT Σϕ(x)γ

≥ ρ, i = 1, 2, . . . , Nx , (16)

−(γT ϕ(yj) + b)√
γT Σϕ(y)γ

≥ ρ, j = 1, 2, . . . , Ny .(17)

However, to make the kernel work, we need to repre-
sent the optimization and the final decision hyperplane
into a kernel form, K(z1, z2) = ϕ(z1)T ϕ(z2), namely,
an inner product form of the mapping data points.

3.1. Kernelization Theory for M4

In the following, we demonstrate that the kernelization
trick indeed works in M4, provided suitable estimates
of means and covariance matrices are applied therein.

Corollary 1 If the estimates of means and covariance
matrices are given in M4 as

ϕ(x) =
Nx∑
i=1

ϕ(xi), ϕ(y) =
Ny∑
j=1

ϕ(yj)

Σϕ(x) =
Nx∑
i=1

(ϕ(xi) − ϕ(x))(ϕ(xi) − ϕ(x))T

Σϕ(y) =
Ny∑
j=1

(ϕ(yj) − ϕ(y))(ϕ(yj) − ϕ(y))T

then the optimal γ in (15-17) lies in the space spanned
by the training points.

Proof We write γ = γp + γd, where γp is the pro-
jection of γ in the vector space spanned by all the
training data points and γd is the orthogonal compo-
nent to this span space. By using γT

d ϕ(xi) = 0 and
γT

d ϕ(yj) = 0, one can easily verify that the optimiza-
tion (15-17) changes to:

max
ρ,{γp,γd}�=0,b

ρ s.t.

−(γT
p ϕ(xi) + b)√

γT
p Σϕ(x)γp + γT

d γd

≥ ρ , (18)

−(γT
p ϕ(yj) + b)√

γT
p Σϕ(y)γp + γT

d γd

≥ ρ , (19)

where i = 1, . . . , Nx, j = 1, . . . , Ny. Since we intend
to maximize the margin ρ, the denominators in the
constraints of (18) and (19) need to be as small as
possible. This would lead to γd = 0. In other words,
the optimal γ lies in the vector space spanned by all
the training data points.

According to Corollary 1, we can write γ as γ =∑Nx

i=1 µiϕ(xi) +
∑Ny

j=1 υjϕ(yj), where the coefficients
µi, υj ∈ R, i = 1, . . . , Nx, j = 1, . . . , Ny. By simply
substituting the above formula into (15-17), we can
obtain the kernel form of the optimization of M4 in
the feature space. We present the main result as the
following Kernelization Theorem.
Kernelization Theorem of M4 The optimal deci-
sion hyperplane for M4 involves solving the following



optimization problem:

max
ρ,η �=0,b

ρ s.t.

(ηT Ki + b)√
1

Nx
ηT K̃T

x K̃xη
≥ ρ, i = 1, 2, . . . , Nx ,

−(ηT Kj+Nx + b)√
1

Ny
ηT K̃T

y K̃yη
≥ ρ, j = 1, 2, . . . , Ny .

The notations in the above are defined in Table 1.

4. Experiments
In this section, we report the evaluation results. The
SOCP problem is solved based on the popular SOCP
software Sedumi (Sturm, 1999).

4.1. Evaluations on a Synthetic Toy Data Set
We demonstrate the advantages of our approach in
comparison with SVM and MPM in the following syn-
thetic toy data set first.

As illustrated in Figure 4, the data set is gener-
ated under two Gaussian distributions: the x data
are randomly sampled from the Gaussian distribu-
tion with the mean as [−3, 0]T and the covariance as
[0.5, 0; 0, 8], while the y data are randomly sampled
from another distribution with the mean and the co-
variance as [4, 0]T and [6, 0; 0, 1] respectively. Train-
ing (test) data, consisting of 20 (60) data points for
each class, are presented as o’s (+’s) and ×’s (�’s) for
x and y respectively. Figure 4(a) illustrates the cor-
responding derived decision hyperplanes from training
data, while Figure 4(b) illustrates the performance of
these hyerplanes on the test set.

From Figure 4, M4 achieves the ideal decision bound-
ary, which considers data both locally and globally;
whereas SVM obtains the local boundary just in the
middle of the support vectors, which discards the
global information, namely the statistical “trend” of
data occurrence. For MPM, its decision hyperplane
is exclusively dependent on the mean and covariance
matrices. Thus we can see that this hyperplane coin-
cides with the data shape, i.e., the long axis of training
data of x is nearly in the same direction as the MPM
decision hypeplane. However, the estimated mean and
covariance may be inaccurate. This results in a rela-
tively lower test accuracy as illustrated in Figure 4(b).
In comparison, M4 incorporates the information of the
local points to neutralize the effect caused by inaccu-
rate estimations. The test accuracies are respectively
98.3%, 97.5%, and 95.8% for M4, SVM, and MPM,
which also demonstrates the advantages of M4.

4.2. Evaluations on Other Data Sets
We perform evaluations on seven standard data sets.
Data for Twonorm problem were synthetically gener-
ated according to (Breiman, 1998). The remaining six
data sets were real world data obtained from the UCI
machine learning repository. We compared M4 with
SVM and MPM engaging both the linear and Gaus-
sian kernels. The parameter C for both M4 and SVM
was tuned via cross validations, so were the width pa-
rameter in the Gaussian kernel for all three models.
The final performance results were obtained via the
10−fold cross validation. Table 2 summarizes the eval-
uation results.

From the results, we observe that M4 achieves the
best overall performance. In comparison with SVM
and MPM, M4 wins five cases in the linear kernel and
four cases in the Gaussian kernel. The evaluations on
these standard bench-mark data sets demonstrate that
it is worth considering data both locally and globally,
which is emphasized in M4. Inspecting the differences
between M4 with SVM, the kernelized M4 appears
marginally better than the kernelized SVM, while the
linear M4 demonstrates a distinctive advantage over
the linear SVM. Due to the sparsity of data points in
the kernelized space or feature space (compared with
the infinite dimension in the Gaussian kernel), this is
reasonable, since the plug-in estimation of the covari-
ance matrices may not accurately represent the data
information in this case. Further investigations on this
topic is highly worthy in the future.

5. Conclusion
We propose a novel large margin classifier, called
Maxi-Min Margin Machine. This model learns the de-
cision boundary in both a local and a global fashion.
In comparison, other large margin classifiers construct
classifiers either locally or globally. For example, a
state-of-the-art large margin classifier, Support Vec-
tor Machine considers data locally; while another sig-
nificant model Minimax Probability Machine focuses
on building the decision hyperplane exclusively based
on the global information. As a critical contribution,
we show that M4 actually presents a unified frame-
work of Support Vector Machine and Minimax Prob-
ability Machine. This establishes a bridge between
these two important models and provides potentials
to exploit the properties of both models in a common
way. Moreover, based on our proposed local and global
view of data, another popular model, Linear Discrim-
inant Analysis can easily be interpreted and extended
as well. The experimental results have also demon-
strated the advantages of our new model.

Two important issues are worthy of future investiga-
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Figure 4. A synthetic toy example to illustrate M4.

Table 2. Comparisons of classification accuracies among M4, SVM, and MPM.
Data set Linear kernel Gaussian kernel

M4 SVM MPM M4 SVM MPM

Twonorm(%) 96.5 ± 0.6 95.1 ± 0.7 97.6 ± 0.5 96.5 ± 0.7 96.1 ± 0.4 97.6 ± 0.5
Breast(%) 97.5 ± 0.7 96.6 ± 0.5 96.9 ± 0.8 97.5 ± 0.6 96.7 ± 0.4 96.9 ± 0.8

Ionosphere(%) 87.7 ± 0.8 86.9 ± 0.6 84.8 ± 0.8 94.5 ± 0.4 94.2 ± 0.3 92.3 ± 0.6
Pima(%) 77.7 ± 0.9 77.9 ± 0.7 76.1 ± 1.2 77.6 ± 0.8 78.0 ± 0.5 76.2 ± 1.2
Sonar(%) 77.6 ± 1.2 76.2 ± 1.1 75.5 ± 1.1 84.9 ± 1.2 86.5 ± 1.1 87.3 ± 0.8
Vote(%) 96.1 ± 0.5 95.1 ± 0.4 94.8 ± 0.4 96.2 ± 0.5 95.9 ± 0.6 94.6 ± 0.4
Heart(%) 86.6 ± 0.8 84.1 ± 0.7 83.2 ± 0.8 86.2 ± 0.8 83.8 ± 0.5 83.1 ± 1.0

tions. First, due to the sparsity of M4 (with support
vectors as well), it would be highly valuable to develop
methods to reduce those redundant data points so as
to reduce the time complexity of M4. Moreover, We
believe that there is much to gain from both exploiting
analogies to SVM and developing specialized optimiza-
tion procedures for the M4 model. Second, both SVM
and MPM contain a generation error bound. There-
fore, exploring the bound of their superset, M4, is an
interesting subject. Third, the current M4 can only
handle binary classifications. How to extent its appli-
cation into multi-way classifications is also an impor-
tant topic.
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