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Label Ranking (An example)

= Learning the customers’ preference on cars

customer 1 MINI _ Toyota BMW
customer 2 BMW  MINI  Toyota
customer 3 BMW  Toyota MINI
customer 4 Toyota MINI BMW
new customer 77?7

Where the customers could be represented by
features vectors. Eg( gender, age, place of
birth,...)



Label ranking (An example)

= Learning the customers’ preference on cars

customer 1 1 2 3
customer 2 2 3 1
customer 3 3 2 1
customer 4 2 1 3
new customer ? ? ?

(i) = position of the i-th label in the ranking
1: MINI 2: Toyota 3: BMW



i Some Challenges

= Training data: Nalve Bayes?
= Distance measures for ranking.
= Incomplete ranking.



i Label Ranking (formally)

= Given:
» a set of training instances: {xx|[k=1...m}CX
> asetoflabels L={li|i=1...n}

» for each training instances Xk : a set of pairwise
preferences of the form I; =, I; (for some of the
labels)

= Find:
a ranking function (¥ — 2 mapping) that maps each

x € X to a ranking ~xof L (Permutation”x ) and
generalizes well in terms of a loss function on
rankings (e.g. , kendall’s tau coefficient)



i Local approach (this work)
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= Target function X — Q is estimated (on demand) in a local way.
= Distribution of ranking is (approx.) constant in a local region.
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= Core part is to estimate the locally constant model.
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i Local approach

= Output (ranking) of an instance x Is generated
according to a distribution P(-|x) on (.

= This distribution is (approximately) constant within
the local region under consideration.

= Nearby preferences are considered as a sample
generated by P, which is estimated on the basis of
this sample via ML.



i Probabilistic Model for Ranking

Mallows model (Mallows, Biometrika, 1957)

exp(—@d(m, o))
¢(0,m)

P(olb,n) =

with

center ranking m €

spread parameter ¢ >0

and d(.) i1s a right invariant metric on permutations

Vr,o,v €, d(r,0) = d(nv,ov).




‘L Inference (complete rankings)

Rankings ¢ = {o1....,0x} observed locally.
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i Inference (incomplete rankings)

Probability of an incomplete ranking:

Bl S e

c€E(o;)
where E(¢;) denotes the set of consistent extensions of o;.

Example for label set {a,b,c}:

Extensions E(o)

a b ¢

a_ b a:c:b

- c a_ b



i Inference (Incomplete rankings) cont.

The correspondlng likelihood:
P(o|d,n H'P (E(0;)|0, )

_H Z P(J|6‘ )

i=locE(o

Ha_lzﬂeE = lon))

k
n  1—exp(—j8)
(szl 1—exp(—@) )

Exact MLE (7.0) = argmaxP(al0,7) phecomes infeasible when n is
large. Approximation is needed.



Inference (Incomplete rankings) cont.

Approximation via a variant of EM, viewing the non-observed
labels as hidden variables.
= replace the E-step of EM algorithm with a maximization step

1. Start with an initial center ranking (via generalized Borda count)

2. Replace an incomplete observation with its most probable extension
(first M-step, can be done efficiently)

3. Obtain MLE as in the complete ranking case (second M-step)
2. Replace the initial center ranking with current estimation
5. Repeat until convergence



low variance

high variance

Not only the estimated ranking T is of interest ...

... but also the spread parameter 9, which is a measure of precision
and, therefore, reflects the confidence/reliability of the prediction
(Just like the variance of an estimated mean).

The bigger @, the more peaked the distribution around the center
ranking.



Label Ranking Trees
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Major modifications: - .
= split criterion \ZEr ez enhy e e ez axby
split ranking set 7into 7" and 7, maximizing
goodness-of-fit
Eeloe T Talss
T

= stopping criterion for partition
1. treeis pure _ _

any two labels in two different rankings have the same order
2. number of labels in a node is too small

prevent an excessive fragmentation



Labels: BMW, Mini, Toyota

IF age < 35

IF sex="f IF & PhD student




i Experimental Results

r:ulllplut.u ru.nking:a

307 missing labels

60% missing labels

cC IBLR  LRT cC IBLR  LRT CC IBLR LRT
authorship | .020(2) .036(1) .882(3) 1.1 | 801(2) .032(1) .871(3) 0.0 | .B35(2) .020(1) .828(3) 0.7
bodyfat 281(1) .248(2) .117(3) 1.6 | .260(1) .223(2) .097(3) 1.7 | .224(1) .180(2) .070(3) 1.0
calhousing | .250(3) .351(1) .324(2) 0.7 | .249(3) .327(1) .307(2) 0.5 | .247(3) .289(1) .273(2) 0.3
epu-small A75(2)  .506(1) .447(3) 2.3 | 474(2) .498(1) .405(3) 2.3 | 470(2) .480(1) .367(3) 1.5
elevators 768(1) .733(3) .760(2) 0.2 | .767(1) .7T19(3) .T56(2) n.2 T65(1)  .690(3) .742(2) 0.3
fried 999(1) .935(2) .800(3) 5.5 | 908(1) .928(2) .863(3) 5.3 | .997(1) .895(2) .809(3) 3.0
glass B46(3) .865(2) .883(1) 2.5 | .835(2) .824(3) .850(1) 2. n 789(2) .TTI(3)  .799(1) 2.0
housing 660(3) .T45(2) .797(1) 2.3 | 655(3) .697(2) ."'34(1} u 638(1) .630(3) .634(2) 1.5
iris 836(3) .066(1) .947(2) 1.5 | .807(3) .945(1) .009(2) 1.2 | .743(3) .882(1) .794(2) 1.5
pendigits 003(3)  .044(1) .935(2) 6.2 | .002(3) .924(1) .914(2} 32 000(1)  .899(2) .871(3) 2.2
segment 014(3)  .950(1) .949(2) 3.8 | 011(3) .934(1) .933(2) 3. a 002(2)  .902(3)  .003(1) 2.3
stock .737{3; 027(1)  .895(2) 1.5 | .735(3) .004(1) .87T(2) 1.6 | .724(3) .858(1) .827(2) 1.1
vehicle 855(2) .862(1) .827(3) 0.8 | .830(2) .842(1) .819(3) 0.9 | .810(1) .791(2) .T64(3) 0.5
vowel 623(3)  .000(1) .794(2) 4.6 | 615(3) .824(1) .T18(2) 3. E 508(3)  .722(1)  .615(2) 3.2
wine 033(2)  .040(1) .882(3) 0.8 | 0911(2) .941(1) .552(3} 1.1 | .853(1) .789(2) .752(3) 0.8
wisconsin 620(1) .506(2) .343(3) 1.6 | 617(1) .484(2) .284(3) 1.5 | .566(1) .438(2) .251(3) 1.6
average rank | 2.25 .44 7.31 719 1.50 331 175 .88 3.38




‘L Accuracy (Kendall's tau)
= Typical “learning curves”:
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more € amount of preference information = less
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