CMSC5733 Social Computing

Tutorial 4: Assignment I Solution

Yuanyuan, Man

The Chinese University of Hong Kong sophiaqhsw@gmail.com

I. I Radius

- The longest path from a node v1 to all other nodes of a connected graph be defined as the radius of node v1
- Answer:
 - A:4 (A-B-D-F-G)
 - D:2 (D-B-A or D-F-G)
 - F: 3 (F-D-B-A or F-E-C-A)

I.2 Diameter

- The "longest shortest path"
- Answer: 4
 - $\mathsf{A}-\mathsf{C}-\mathsf{E}-\mathsf{F}-\mathsf{G}$
 - Or A B D F G
 - Or A C D F G

I.3 Center

- The center of the graph is the node with the smallest radius
- Answer:
 - A(4),B(3),C(3),D(2),E (2),F(3),G(4)
 - D or E
 - D or E is the best place to locate the supermarket

I.5 Adjacency Matrix

- The adjacency matrix ignores duplicate links between node
- Answer:

	А	в	С	D	Е	F	G
А	0	1	1	0	0	0	0
в	1	0	0	1	0	0	0
С	1	0	0	1	1	0	0
D	0	1	1	0	1	1	0
Е	0	0	1	1	0	1	0
F	0	0	0	1	1	0	1
G	0	0	0	0	0	1	0

I. 5 Laplacian Matrix

The Laplacian matrix of graph G, namely, L(G), is a combination of the connection matrix and (diagonal) degree matrix: L = C - D, where D is a diagonal matrix and C is the connection (adjacency) matrix

$$d_{i,j} = \begin{cases} \text{degree}(v_i) & \text{if } j = i \\ 0 & \text{otherwise} \end{cases}$$

I. 5 Laplacian Matrix

F

G

• Answer:

0

0

0

0

A B D G G

Е G в С D F А -21 1 0 0 А 0 0 $-2 \quad 0 \quad 1$ - 0 в 1 0 0 1 -31 1 0 С 0 0 1 1 0 1 D -41 0 1 - 0 1 1 Е 0 -30

0

0

1 1

0

0

-3

1

1

1.6

- What node(s) is (are) the farthest from the central node, and how far?
- Central node: D/E
- Answer:
 - D: A, G
 - E: A, B, G

1.7

• Answer:

2. I Density

- Density = $\frac{2|E|}{|V|(|V|-1)}$
- Answer:
 2*7/ 5*4 = 0.7

2.2 Degree Sequence

 Degree sequence: g=[d₁, d₂,...,d_n] define a degree sequence containing the degree values of all n nodes in G

• Answer:

- g= [2,2,2,4,4] 0 | 2 3 4

2. I Average Path Length

• The average path length of G is equal to the average over all shortest paths

$$l_G = \frac{1}{n \cdot (n-1)} \cdot \sum_{i,j} d(v_i, v_j)$$

 For unweighted graph G, let d(vI,v2) denote the shortest distance between vI and v2; n is the number of node.

2. I Average Path Length

 Path matrix: path matrix P(G) stores the number of hops along the direct path between all node pairs in a graph

2. I Average Path Length

- Answer:
 - -26/5*4 = 1.3

3. I Cluster Coefficient

 For a node u, suppose that the neighbors share c links, then the cluster coefficient of node u, Cc(u), is

3. I Cluster Coefficient

• Answer: the average clustering coefficient of this network is 0. There are no triads in this network.

3.2 Cluster Coefficient

 Answer: All the odd nodes will have a cluster coefficient of I because they only have two neighbors and those two neighbors know one another. So their cluster coefficient is 2*1/(2*1)=1

3.2 Cluster Coefficient

 Answer: The even nodes have four neighbors, and the two pairs of neighbors on either side know one another. So their cluster coefficient is 2*2/ (4*3) = 1/3

3.2 Cluster Coefficient

 Answer: The cluster coefficient for the whole network is therefore n/2*(1+1/3)/n= 2/3

In a special case n=6,
 cluster_coefficient(even node) = 3*2/4*3 = 1/2
 cluster_coefficient(odd node) = 1
 average_cc(graph) = n/2 * (1+1/2) /n = 3/4

3.3 Special Case

 In a special case n=4, cluster_coefficient(even node) = 2*2/3*2 = 2/3 cluster_coefficient(odd node) = 1 average_cc(graph) = n/2 * (1+2/3) /n = 5/6

4. I Closeness

 Closeness centrality of a node u is the reciprocal the sum of the shortest path distance from u to all n-1 other nodes.

$$C(u) = \frac{1}{\sum_{v=1}^n d(v,u)}$$

where d(v, u) is the shortest path distance between v and u, and n is the number of nodes in the graph.

4. I Closeness

• Answer:

 $-D \rightarrow (A, B, C, E, F, G)$ (2 | 1 | 1 | 2)D(D) = 8Closeness(D) = 1/8 $-F \rightarrow (A, B, C, D, E, G)$ D(F) = 10Closeness(F) = 1/10

4. I Closeness

- Normalization
 - Closeness is normalized by the sum of minimum possible distance n-l

$$C(u) = \frac{n-1}{\sum_{v=1}^{n} d(v, u)},$$

- Closeness(D) = 1/8
- $N_Closeness(D) = 6/8$
- Closeness(F) = 1/10
- $-N_Closeness(F) = 6/10$

Betweenness Centrality of a node counts the number of times that a node lies along the shortest path between two others vertices in the graph. It is defined as

$$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{g\sigma_{st}}.$$
(1)

where σ_{st} is the number of shortest paths from s to t and $\sigma_{st}(v)$ is the number of shortest paths from s to t that pass through a vertex v.

- I. For each pair of vertices (s, t), compute the shortest paths between them.
- 2. For each pair of vertices (s, t), determine the fraction of shortest paths that pass through the vertex in question (here, vertex v).
- 3. Sum this fraction over all pairs of vertices (s, t).

Answer:
– For node D:

Pairs	Shortest Paths		Via D	Fraction		
(A, F)	A-B-D-F, A-C-D-F, A-C-E-F		2	2/3		
(A, G)	A-B-D-F-G, A-C-D-F-G, A-C-E-F-G		2	2/3		
(B, C)	B-A-C, B-D-C	2	1	1/2		
(B, E)	B-D-E	1	1	1/1		
(B, F)	B-D-F,	1	1	1/1		
(B, G)	B-D-F-G	1	1	1/1		
(C, F)	C-D-F, C-E-F	2	1	1/2		
(C, G)	C-D-F-G, C-E-F-G	2	1	1/2		
CLOSENESS(D) = 2/3 + 2/3 + 1/2 + 1 + 1 + 1/2 + 1/2 = 5.833						

• Answer:

– For node F:

Pairs	Shortest Paths	Total	Via F	Fraction		
(A, G)	A-B-D-F-G, A-C-D-F-G, A-C-E-F-G	3	3	3/3		
(B, G)	B-D-F-G	1	1	1/1		
(C, G)	C-D-F-G, C-E-F-G	2	2	2/2		
(D, G)	D-F-G	1	1	1/1		
(E, G)	E-F-G	1	1	1/1		
CLOSENESS(F) = + + + + = 5						

- Normalization
 - Betweenness is normalized by 2/((n-1)(n-2)) for undirected graphs, and 1/((n-1)(n-2)) for directed graphs
 - CLOSENESS(D) = 5.833 * 2/(6*5) = 0.389
 - CLOSENESS(F) = 5 * 2/(6*5) = 0.333

5. I Isomorphism

- Two graphs G and H are said to be isomorphic, denoted by G ~ H, if there is a one-to-one correspondence, called an isomorphism, between the vertices of the graph such that two vertices are adjacent in G if and only if their corresponding vertices are adjacent in H.
- Answer: D~I, E~5, F~6, A~2, B~3, C~4

5. I Isomorphism

5.2 Eulerian Path

- In graph theory, an Eulerian path is a trail in a graph which visits every edge exactly once.
- Answer: A-E-D-A-C-F-B-C-E-F-D-B-A

5.3 Cluster Coefficient

- Graph clustering coefficient
 - Global clustering coefficient

 $C = \frac{3 \times \text{number of triangles}}{\text{number of connected triples of vertices}}$

- Average clustering coefficient

5.3 Cluster Coefficient

• The correct answer is (a). This is the only network of the three that has a significant occurrence of closed triads. Triads contribute to the clustering coefficient whether it is calculated as a the average proportion of connected neighbor pairs over all the vertices, or as (3 times the number of triangles)/ (number of connected triples) in the entire graph.

5.3 Cluster Coefficient

а

b

