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•  Introduction	


•  Collaborative Filtering	


•  Trust-aware Recommender Systems	


•  Social-based Recommender Systems	


•  Web Site Recommendation	


Social Recommender Systems	
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Social Recommendation Using 
Probabilistic Matrix Factorization	


[Hao Ma, et al., CIKM2008]	
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Challenges	

• Data sparsity problem	


My Blueberry Nights (2008) 
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Challenges	

My Movie Ratings 
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Number of Ratings per User	


Extracted From Epinions.com	

114,222 users, 754,987 items and 13,385,713 ratings	
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Challenges	

• Traditional recommender systems ignore the social 

connections between users	

Which one 

should 
I 

choos
e?	


Recommendations 
from friends	
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Motivations	

• “Yes, there is a correlation - from social networks to 

personal behavior on the web” 

• Parag Singla and Matthew Richardson (WWW’08)	


•  Analyze the who talks to whom social network over 10 
million people with their related search results	


•  People who chat with each other are more likely to share the 
same or similar interests	


• To improve the recommendation accuracy and solve the 
data sparsity problem, users’ social network should be 
taken into consideration	
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Social Trust Graph User-Item Rating Matrix 

Problem Definition	
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R. Salakhutdinov and A. Mnih (NIPS’08) 

User-Item Matrix Factorization	
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SoRec 

SoRec	
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SoRec	
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SoRec	
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• For the Objective Function	


• For     , the complexity is 	


• For     , the complexity is	


• For     , the complexity is  	


• In general, the complexity of our method is linear with the 
observations in these two matrices	


Complexity Analysis	
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Experimental Analysis	

•  Table: MAE comparison with other approaches (A 

smaller MAE value means a better performance)	


Epinions: 40,163 users who rated 139,529 
items with totally 664,824 ratings	


MMMF:	

J.D.M Rennie and N. Srebro 	

(ICML’05)	


PMF & CPMF:  	

R. Salakhutdinov and A. 

Mnih	

(NIPS’08)	
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• Lack of interpretability	


• Does not reflect the real-world                           recommendation 
process	


SoRec	


Disadvantages of SoRec	




The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King	


Learning to Recommend with ���
Social Trust Ensemble	


[Hao Ma, et al., SIGIR2009]	
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1st Motivation	
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 1st Motivation	
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1st Motivation	

• Users have their own characteristics, and they have 

different tastes on different items, such as movies, 
books, music, articles, food, etc.	
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Where to have 
dinner?	
 Ask	


Ask	


Ask	


Goo
d	


Very 
Goo

d	


Cheap & 
Delicious 	


2nd Motivation	
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2nd Motivation	

• Users can be easily influenced by the friends they trust, 

and prefer their friends’ recommendations.	


Where to have 
dinner?	
 Ask	


Ask	


Ask	


Good	


Very Good	


Cheap & Delicious 	
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• Users have their own characteristics, and they have 
different tastes on different items, such as movies, books, 
music, articles, food, etc.	


• Users can be easily influenced by the friends they trust, and 
prefer their friends’ recommendations.	


• One user’s final decision is the balance between his/her 
own taste and his/her trusted friends’ favors.	


Motivations	
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[R. Salakhutdinov, et al., NIPS2008]	


User-Item Matrix Factorization	
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Recommendations by ���
Trusted Friends	
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Recommendation with Social Trust 
Ensemble	
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Recommendation with Social Trust 
Ensemble	
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• In general, the complexity of this method is linear with the 
observations the user-item matrix	


Complexity	




The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King	


• 51,670 users who rated 83,509 items with totally 631,064 
ratings	


• Rating Density 0.015%	


• The total number of issued trust statements is 511,799	


Epinions Dataset	
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• Mean Absolute Error and Root Mean Square Error	


Metrics	
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NMF --- D. D. Lee and H. S. Seung (Nature 1999)	

PMF --- R. Salakhutdinov and A. Mnih (NIPS 2008)	


SoRec --- H. Ma, H. Yang, M. R. Lyu and I. King (CIKM 2008)	

Trust, RSTE --- H. Ma, I. King and M. R. Lyu (SIGIR 2009)	


Comparisons	
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• Group all the users based on the number of observed 
ratings in the training data	


• 6 classes: “1 − 10”, “11 − 20”, “21 − 40”, “41 − 80”, “81 − 
160”, “> 160”,	


Performance on Different Users	
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Performance on Different Users	
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Impact of Parameter Alpha 	
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90% as Training Data	


MAE and RMSE Changes ���
with Iterations	
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• Improving Recommender Systems Using Social Tags	


MovieLens Dataset	

71,567 users,  10,681 movies,  	

10,000,054 ratings, 95,580 tags	


Further Discussion of SoRec	
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• MAE	


Further Discussion of SoRec	
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• RMSE	


Further Discussion of SoRec	
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• Relationship with Neighborhood-based methods	


• The trusted friends are actually the 
explicit neighbors	


• We can easily apply this method to 
include implicit neighbors	


• Using PCC to calculate similar users for 
every user	


Further Discussion of RSTE	
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• Propagation of trust	


What We Cannot Model Using 
SoRec and RSTE?	


• Distrust	
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•  Introduction	


•  Collaborative Filtering	


•  Trust-aware Recommender Systems	


•  Social-based Recommender Systems	


•  Web Site Recommendation	


Social Recommender Systems	
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Recommend with Social Distrust	


[Hao Ma, et al., RecSys2009]	
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Trust vs. Social	


•  Trust-aware	


•  Trust network: unilateral relations	


•  Trust relations can be treated as “similar” relations	


•  Few datasets available on the Web	


•  Social-based	


•  Social friend network: mutual relations	


•  Friends are very diverse, and may have different tastes	


•  Lots of Web sites have social network implementation	
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• Users’ distrust relations can be interpreted as the 
“dissimilar” relations	


• On the web, user Ui distrusts user Ud indicates that user Ui 
disagrees with most of the opinions issued by user Ud.	


• What to do if a user distrusts many people?	


• What to do if many people distrust a user?	


Distrust	
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Distrust	
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• Users’ trust relations can be interpreted as the “similar” 
relations	


• On the web, user Ui trusts user Ut indicates that user Ui agrees 
with most of the opinions issued by user Ut.	


Trust	
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Trust	
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Trust Propagation	




The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King	


Distrust Propagation?	
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• Dataset - Epinions	


• 131,580 users, 755,137 items, 13,430,209 ratings	


• 717,129 trust relations, 123,670 distrust relations	


Experiments	
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Data Statistics	
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RMSE	


Experiments	
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Alpha = 0.01 will get the best performance!	

Parameter beta basically shares the same trend!	


Impact of Parameters	
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Social Recommender Systems	


•  Introduction	


•  Collaborative Filtering	


•  Trust-aware Recommender Systems	


•  Social-based Recommender Systems	
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Comparison	


•  Trust-aware Recommender systems	


•  Trust network	


•  Trust relations can be treated as “similar” relations	


•  Few dataset available on the web	


•  Social-based Recommender Systems	


•  Social friend network, mutual relations	


•  Friends are very divers, and may have different tastes	


•  Lots of web sites have social network implementation	
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Social Recommender Systems	
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Web Site Recommendation	

[Ma et al., SIGIR 2011]	
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Traditional Search Paradigm	
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“Search” to “Discovery”	
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Challenges	


•  Infeasible to ask Web users to explicitly rate Web site	


•  Not all the traditional methods can be directly applied to 
the Web site recommendation task	


•  Can only take advantages of implicit user behavior data	
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Motivations	


•  A Web user’s preference can be represented by how 
frequently a user visits each site	


•  Higher visiting frequency on a site means heavy 
information needs while lower frequency indicates less 
interests	


•  User-query issuing frequency data can be used to refine a 
user’s preference	
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Using Clicks as Ratings	
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Matrix Factorization	
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•  GaP [Canny, SIGIR 2004]	


•  Linear topic model	


•  NMF	


•  No Gamma distribution on X	


Probabilistic Factor Model	
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Probabilistic Factor Model	
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Probabilistic Factor Model	
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Collective Probabilistic ���
Factor Model	
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Dataset	

•  Anonymous logs of Web sites visited by users who 

opted-in to provide data through browser toolbar	


•  URLs of all the Web sites are truncated to the site level	


•  After pruning one month data, we have 165,403 users, 
265,367 URLs and 442,598 queries	


•  User-site frequency matrix has 2,612,016 entries, while in 
user-query frequency matrix has 833,581 entries	
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Performance Comparison	
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Impact of Parameters	
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Impact of Parameters	
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Concluding Remarks	


•  Social recommendation extends traditional models and 
techniques by using social graphs, ensembles, distrust 
relationships, clicks, etc.	


•  Fusing of social behavior information, e.g., social 
relationships, personal preferences, media consumption 
patters, temporal dynamics, location information, etc. 
provides better models for social recommendations	
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