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Information and more Information!	
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Information Overload	
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Consumer	
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Company	
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Real Life Examples	
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Real Life Examples	


Five scales rating	

                          I hate it	

                          I don’t like it	

                          It’s ok	

                          I like it	

                          I love it	
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Real Life Examples	
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5-scale Ratings	
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5-scale Ratings	
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•  Introduction	


•  Basic Techniques	


•  Collaborative filtering	


•  Matrix factorization	


•  Different Models	


•  Social graph	


•  Social ensemble	


•  Social distrust	


•  Website recommendation	


On The Menu	
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Basic Approaches	

•  Content-based Filtering 	


•  Recommend items based on key-words	


•  More appropriate for information retrieval	


•  Collaborative Filtering (CF)	


•  Look at users with similar rating styles	


•  Look at similar items for each item	


Underling assumption: personal tastes are correlated-- 
Active users will prefer those items which the 

similar users prefer!	
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Framework	

                                        Items	


	


Users	


• The tasks	


•  Find the unknown rating!	


•  Which item(s) should be recommended?	
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Collaborative Filtering	


•  Memory-based (Neighborhood-based)	


•  User-based	


•  Item-based	


•  Model-based	


•  Clustering Methods	


•  Bayesian Methods	


•  Matrix Factorization	


•  etc.	
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User-User Similarity	


5

4
3

32

?	


Q1: How to measure 
the similarity?	


Q2: How to 
select 

neighbors?	


target	
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User-based Collaborative Filtering	
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User-based Collaborative Filtering	

                                       Items	


Users	
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User-based Collaborative Filtering	
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User-based Collaborative Filtering	
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User-based Collaborative Filtering	
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User-based Collaborative Filtering	

•  Predict the ratings of active users based on the ratings of 

similar users found in the user-item matrix	


•  Pearson correlation coefficient	


•  Cosine measure	
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Nearest Neighbor Approaches	


•  Identify highly similar users to the active one	


•  All with a measure greater than a threshold	


•  Best K ones	


•  Prediction	


[Sarwar, 00a]	
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Collaborative Filtering	


•  Memory-based Method (Simple)	


•  User-based Method [Xue et al., SIGIR ’05]	


•  Item-based [Deshpande et al., TOIS ’04]	


•  Model-based (Robust)	


•  Clustering Methods [Hkors et al, CIMCA ’99]	


•  Bayesian Methods [Chien et al., IWAIS ’99]	


•  Aspect Method [Hofmann, SIFIR ’03]	


•  Matrix Factorization [Sarwar et al., WWW ’01]	
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Collaborative Filtering	


•  Memory-based (Neighborhood-based)	


•  User-based	


•  Item-based	


•  Model-based	


•  Clustering Methods	


•  Bayesian Methods	


•  Matrix Factorization	


•  etc.	
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Item-Item Similarity	


•  Search for similarities among items	


•  Item-Item similarity is more stable than user-user 
similarity	
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Correlation-based Method	

•  Same as in user-user similarity but on item vectors	


•  Pearson correlation coefficient	


•  Look for users who rated both items	


•  u: users rated both items	
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[Sarwar, 2001]	
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Correlation-based Method	

•  Calculate item similarity, then determine its k-most 

similar items	


•  Predict rating for a given user-item pair as a weighted 
sum over similar items that he rated	


 ua	
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i

[Sarwar, 2001]	
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Collaborative Filtering	


•  Memory-based (Neighborhood-based)	


•  User-based	


•  Item-based	


•  Model-based	


•  Clustering Methods	


•  Bayesian Methods	


•  Matrix Factorization	


•  etc...	
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Matrix Factorization	
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Matrix Factorization	

•  Matrix Factorization in Collaborative Filtering	


•  To fit the product of two (low rank) matrices to the 
observed rating matrix.  	


•  To find two latent user and item feature matrices.	


•  To use the fitted matrix to predict the unobserved ratings. 	
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Matrix Factorization	


•  Optimization Problem	


•  Given a m x n rating matrix R,  to find two matrices���
                 and                 , ���
���
���
���
where                      , is the number of factors	
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Matrix Factorization	


•  Models	


•  SVD-like Algorithm	


•  Regularized Matrix Factorization (RMF)	


•  Probabilistic Matrix Factorization (PMF)	


•  Non-negative Matrix Factorization (NMF)	
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SVD-like Algorithm	


•  Minimizing	


•  For collaborative filtering���
���
���
���
where     is the indicator function that is equal to 1 if user 
ui rated item vj and equal to 0 otherwise. ���
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Regularized Matrix Factorization	

•  Minimize the loss based on the observed ratings with 

regularization terms to avoid over-fitting problem���
���
���
���
���
���
���
where                 . 	


•  The problem can be solved by simple gradient descent 
algorithm.	


Regularization terms	
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•  Algorithm for RMF	


•  Not convex & local optimal	


•  Gradient-decent algorithm	


•  Gradient computation with randomly initialized U and V���
���
���
���
	


•  Update U and V alternatively���
���
���
���
���
���
	


Regularized Matrix Factorization	
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•  PMF	


•  Define a conditional distribution over the observed ratings 
as:	


Regularized Matrix Factorization	
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•  PMF	


•  Assume zero-mean spherical Gaussian priors on user and 
item feature:	


Regularized Matrix Factorization	
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•  PMF	


•  Bayesian inference	


Regularized Matrix Factorization	
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RMF and PMF	


•  PMF is the probabilistic interpretation of RMF	


•  PMF and RMF have the same optimization objective 
function	
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•  NMF	


•  Non-negative constraints on all entries of matrices U and V	


Non-negative Matrix Factorization	
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•  NMF	


•  Given an observed matrix Y, to find two non-negative 
matrices U and V	


•  Two types of loss functions	


•  Squared error function	


•  Divergence	


•  Solving by multiplicative updating rules���
���
	


Non-negative Matrix Factorization	
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•  Multiplicative updating rules	


•  For divergence objective function���
���
���
���
���
���
	


Non-negative Matrix Factorization	



