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SCALE-FREE NETWORKS
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Scale-Free Networks

® A scale-free network is a network G with degree sequence
distribution g’ obeying a power law of the form h(k) ~ k-,

where k is degree (1<k<<c) and q is an exponent (typically
2<g<3)

® Power-law distributions are not exponential distributions

® The tail of an exponential distribution vanishes much faster

Comparison:
Power Law v. Exponential

100% ¢ —O—exp %
90%
—e—power %
80%
70%
‘g 60%
Y 50%
[
& 40%
30%
20%
10%
0%
1 2 3 4 5 6 7 8 9 10
Degree k
Figure Comparison of y = 3 exp(—gk), versus y = 1/K¥, for ¢ = 1.1, shows the fat tail

of the power law.
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Generation

® The Barabasi—Albert (BA) Network

® Sample from the degree sequence distribution of network G

at timestep t

The probability of a high-degreed node obtaining a
subsequent link continues to rise, and vice versa

® Procedure

(1) Growth: Starting with a small number (m,) of vertices, at every time step we add a
new vertex with m(<my) edges (that will be connected to the vertices already present in
the system).

(2) Preferential attachment. When choosing the vertices to which the new vertex con-
nects, we assume that the probability P that a new vertex will be connected to vertex
i depends on the connectivity k; of that vertex, such that P(k;) = ﬁ

i

(3) After f time steps the model leads to a random network with N = t 4+ my, vertices and
mt edges.”
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BA Generative Procedure

1. Inputs: Am = number of links to add to each new node; n = network size.
2. Initialize: Designate nodes by enumerating them as 0,1,2,..., (n — 1).
a. Given the ultimate number of nodes n > 3, initially construct a
complete network with nNodes = ny = 3 nodes and nLinks = 3 links. The
degree sequence of this complete network is g=[2,2,2], and the degree

sequence distribution is g’ = [1] because each node is connected to the
other two.

3. While nNodes < n:
a. New node: Generate a new tail node v.
b. #New links: Set n_links = minimum (Am, n). Cannot add more links than
existing nodes.
c. Repeat n_links times:

1. Preferential attachment—select an existing head node u by sampling
from the degree sequence cumulative distribution function CDEF(i)
defined by

' decree(n;
CDE(j) = chth:llj) where k_total = 2nNodes

ii. Let r be a uniform random number from [0,1). Then u« is a random variate
sampled from CDEF(7) as follows:

CDF(u — 1) < r < CDF(u); u = r nNodes

iii. Connect v ~ u, taking care to avoid duplicate links. -
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BA Network Entropy

Scale-Free Properties vs. Size
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Figure Comparison of BA scale-free network properties versus size, n, for Am = 2. Note
the scale factors on entropy, average path length, and cluster coefficient.

Entropy remains constant as network size increases

I = ro h(k) log, (h(k))dx = —1.443 l‘oo h(k) In(h(k))Sx
JAm JAm

Substitution of (x) =Ax ™3, where A = 2Am (Am + 1) into the integral,

® /In(A) — 3 In(x 1.1645 — log, (Al
[— —1.443A[ (n( ) 33 n(ﬂ)ax — Am4 0g, (4=t) )
JAm X Am |

'mr,'," s b

The Chinese University of Hong Kong, CSCI5070 Advanced Topics in Social Computing, Irwin King



Hub Degree versus Density

Hub Degree vs. Density Hub Degree vs. Density
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Figure Comparison of hub degree of networks for fixed and variable n: (a) scale-free and

random networks versus density, for constant size, n = 200, (b) variable number of links m;
and hub degree with variable density and size, n, but fixed Am.

Degree(hub) ~ 0(log2(density)); 1% < density < 20%

m Am

2

n(n—l): n

Density(scale-free) = 2

Extremely high hub degree is the predominant property of a scale-free network

Hub degree grows logarithmically with density for both random and scale-free
networks, but the rate of increase is much greater for a scale-free network 5
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Average Path Length

Path Length vs. Density
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Figure Comparison of average path length of BA scale-free and ER random networks
versus density, n = 200. The average path length of a scale-free network is slightly less

then that of an equivalent random network.

avg_ path_length(BA network) =
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Average Path Length
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Figure Average path length declines linearly as hub degree increases in a scale-free
network of size n =200 and density 2% (Am = 2). Least-squares curve fit to these

data yields A = 3.58 and slope equal to
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Closeness(ER, SW, SF) vs Density
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Figure Average closeness versus density for random, small-world, and scale-free net-
works shows that scale-free networks have weaker intermediaries on average.

TABLE Number of Paths per Node Through Closest Node

Network Number of Paths n
Random 0-10
Small world 0-20
Scale-free 0-38
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Cluster Coefficient

SW, SF Cc and Hub Degree v. Density
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Figure Cluster coefficient versus density of small-world and scale-free networks for

small values of density, small rewiring probabilities, and n ~ 200, rewiring probability
~ 4% (small world).

Scale-Free CC. 100(CC(scale-free)) ~ O(density), 1% < density < 10%.
Alternatively, 100(CC(scale-free))~ O(Am) because density = 2(Am/n);n > 1.

Small-World CC. 100(CC(small-world)) =A — B exp(C density); 1% <
density < 10%, where A = 60; B = 158.5; C = — 100, for n = 200.
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Comparison
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Figure Kiviat graph comparing ring, random, WS small-world, and BA scale-free
network properties.
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DYNAMIC NETWORKS
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Definitions

A dynamic network, G(t) = [N(t), L(t), f(t):R], is a time-
varying 3-tuple consisting of a set of nodes N(t), a set of
links L(t), and a mapping function  f(t): L(t) ->

N(t) X N(t), which maps links into pairs of nodes

If G reaches a final state, G(t), and remains there for all t
> t; G is said to be convergent

G(ty is a fixed point

If G(s) converges for all initial states s, G is strongly
convergent
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Emergence

In a static network, the properties of nodes, links, and
mapping unction remain unchanged over time

In a dynamic network, the number of nodes and links, the
shape of the mapping function, and other properties of
the graph change over time

Time-varying changes leading to structural reorganization
in 2 network—is called emergence

An emergent network is formed by starting at some
predefined initial state and then transitioning through a
series of small changes into an end state
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Open-loop & Feedback-loop

Microrules

'

Dynamic
Network

(a)

Next State
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Feedback

Microrules : |

Dynamic
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® Next State >

Figure Emergence in a dynamic network: (a) open-loop emergence, typical of intrinsic
or genetic evolution; (b) feedback-loop emergence, typical of external or environmental

forces shaping a network.
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Hub Emergence

® Initially, G(0) is a random network with n nodes and m
links

® At each time-step, select a node and link at random

® The randomly selected node is selected if its degree is higher
than that of the randomly selected link’s head node

® Rewire the link

public void NW doIncreaseDegree (){
//Rewire network to increase node degrees

int random node = (int) (nNodes * Math.random()); //A random node
int random link = (int) (nLinks * Math.random()); //A random link
int to node = Link[ random link] .head; //Link’ s to _node
int from node = Link[ random link] .tail; //BAnchor node
if (nodel random node] .degree > nodel to node] .degree){
if (NW_doAddLink (node[ from node] .name, node[ random node] .name) )
NW_doCutLink (random_1link) ; //Replace random link
else DMessage = “Warning: Duplicate Links Not Allowed.”;

}

}//NW_doIncreaseDegree
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Hub Emergence
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Figure Emergence of a network with high-degreed hubs from a random network: (a)
random network, G(0)—the degree sequence distribution before emergence; (b) hub emerged
network, G(160,000)—the degree sequence distribution after emergence. The initial network,
G(0), n =200, m = 1000, was generated by the Erdos—Renye procedure.
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Cluster Emergence

Select a2 random link and random node

Rewire the link to point to the new (random) node, if
the overall cluster coefficient remains the same or is
increased

If the cluster coefficient decreases as a result of rewiring,
revert to the topology of the previous time-step

Repeat this microrule indefinitely, or until stopped
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Cluster Emergence

Cluster Coefficient vs. Time
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Figure Cluster coefficient versus time for n = 100, m = 249 (5%), m = 500 (10%), and
m = 1000 (20%).
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Epidemics

® A network epidemic is a process of widespread and rapid
propagation of a contagion through a network

® Typically, the contagion is a condition of network nodes
(working, failing, dormant, active, etc.) brought about by
adjacent nodes through propagation along one or more links
°

Infection rate: the probability that propagation of the
contagion at node v successfully infects adjacent nodes
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Kermack—McKendrick Model

® Assumes homogeneous and a very large population

® Everyone has an equal chance of contracting the disease from
anyone else

® nis unbounded

® Each node is classified to one of four states

® Susceptible: it can possibly become infected

® Infected: it has contracted the contagion

Recovered: it has recovered from the infection and is now
immune to future infection

Removed: it has died from the effects of the infection

,
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Infection i(t)
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Kermack—McKendrick Equations

We define vy as the rate of infection, A as the rate of removal or recovery, and . as the
duration of a node’s infected state before transition to a removed or recovered state.

Let 5(¢) be the number of susceptible actors, /() the number of infected actors, and
R(¢) the number of actors removed from the population as a result of death or immu-
nity after recovering from the illness, at time 7. In a finite population, n = S(7) +
I(t) + R(¢). The Kermack—McKendrick equations relate S, /, and R to one another
through their time rate of change and initial conditions, as follows:

Infection % vs. Time 65
Ty) = —yS(O)I(1); S(0) =S )
ol
T(t[) = YS(OI(1) — Al(2); 1(0) = Iy (1)
OR
1 2 3 4 5 6 7 8 9 10 %:r_\](z); R(0) = Ry (I1I)
S(t)y+ I(t) + R(t) =n (1V)
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Other Models

® Susceptible-Infected—Removed (SIR) Model
® Susceptible—Infected—Susceptible (SIS) Model

2:Infect
1:(1-Infect)

W: Susceptible

R: Infected

5: deathrate

4: (1-deathrate)

(@)

2:Infect

1:(1-Infect)

W: Susceptible

Figure Models of epidemics: (a) SIR; (b) SIS (color code : W—susceptible = white;
R—infected = red; B—removed = black; Y-—recovered = yellow).

R: Infected

4: (recover)

(b)
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Synchrony

® A network is said to synchronize if the values of all of its
nodes converge to some constant as the time rate of
change of all of its node values approaches zero

® A dynamic network is

® stable if the value of its nodes synchronize

® transient if its node values oscillate
bistable if its nodes oscillate between fixed values

unstable or chaotic, otherwise
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Chaotic Maps

A dynamic network is said to sync if, starting at some initial state G(0), it
evolves in finite time to another state, G(t*), and stays there, forever.

G(t*) is called a strange attractor

Networks that appear to bounce around from one state to another in no
apparent pattern are considered chaotic

Networks that oscillate between two or more strange attractors are
called oscillators

Strange Attractor
Attractor

Attractor

(a) (b) (c)

Figure Chaotic maps: trajectories of (a) a stable node as it reaches its strange attractor, (b)
a bistable node as it oscillates between two attractors, and (c) a chaotic node as it wanders
around in state space.
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Network Stability

® Stability describes nodes and networks that recover from
disruptions in their state

® A stable network will recover—perhaps very slowly—
while an unstable network will not

® Two general techniques used for analyzing the stability of
a dynamic system

® The Laplace or Z-transform (Lyapunov) method (Lago-
Fernandez, 1999)

® The Laplacian eigenvalue (spectral decomposition) method
(Wang, 2002)
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TABLE Sync Results for Regular and Nonregular Networks

Network Bistable? Comments

Barbell No Bistable oscillator

Line No 50%—-50% oscillations
2-Regular Yes Odd-sized cycles
Complete Yes Odd-sized cycles

Toroid Yes Odd-sized cycles

Binary tree No No cycles

Hypercube No Even-sized cycles
Random Nearly always Likely has odd-sized cycle
Small-world Yes Has clusters

Scale-free Nearly always Likely has odd-sized cycle
Star No No cycles

Ring N = odd number Odd-sized cycle
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Influence Networks

An influence network is a (directed or undirected)
network, G = { N, L, f'} containing nodes N; directed,
weighted links L; and mapping function f: N X N that
defines the topology

Nodes are called actors
Links are called influences
Two major types

® Undirected networks such as the buzz network (Rosen,

2000)

directed networks such as the social networks formed by
negotiating parties in a human group
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A Buzz Network

® Let S(t) be the state vector representing an actor’s
position (a product, idea, political belief, etc.)

® S(t) = -1 if the position is negative

® S(t) = 0 if neutral

® S(t) = +1 if positive
1<SH <1

T

S(t) = [s1, 82, 83,..., Sp]° = state vector of G; §;(r) = row jof S(r)

Buzz State Equation

S;(1)
J~idegree(i)

St+1)=dSO+ 1 =)

where the summation > _;; is over the neighbors of node i, specifically, j ~ i and s5; =
(-1, 1L, i=12,...,n. 0< ¢ <1 is the stubbornness factor.
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Properties

® Each seed actor spreads his or her product endorsement
to adjacent neighbors, which in turn is spread to their
neighbors, and so forth, much like the spread of an
infection

The state of each actor depends on the strength of the
individual’s convictions and ¢bie positions of adjacent
neighbors

® Stability

® Buzz networks reach a consensus that is influenced by the
dominant (hub) node

® Consensus: all nodes reach the same final state
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Two-Party Negotiation

0:Us 0d:33% 1:Them
S =-0.00% S =-0.00%
INC: [+]0]- 0d:50% INC: [+ o[-

Figure I-net representation of a two-party negotiation: actor Us versus actor Them, and
. ~ l p l .
influences of 3 and 3, respectively.

compromise

Two-party negotiation is a process of interactive

The two actors must narrow the difference in positions as

perceived by each other if the network is to reach a

consensus

For example, after one timestep:
Us(1) = Us(0) 4+ 50%(Them(0) — Us(0)) = 1 +50%(—2) =0
Them(1) = Them(0) + 33%(Us(0) — Them(0)) = —1 + 33%(2) = —33% ‘@
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Two-Party Negotiation

s+ D) =50+ ) 15i0) = 501", J;

Us(2) = Us(1) + 50%(Them(1) — Us(1)) = 0 4+ 50%(—0.33) = —0.167
Them(2) = Them(1) 4 33%(Us(1) — Them(1)) = —0.33 4 33%(0.33) = —22%

Us(3) = Us(2) + 50%(Them(2) — Us(2)) = 0.167 + 50%(—0.056) = —19%
Them(3) = Them(2) + 33%(Us(2) — Them(2)) = —22 + 33%(0.056) = —20%

The two actor’s states converge in the end

Differences drop to zero and both actors reach a

consensus state equal to negative 20%, which favors the
initial position of Them

Therefore, |:Them is more influential than actor 0:Us.

%
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