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ABSTRACT

The research issue of recommender systems has been treated as
a classical regression problem over the decades and has obtained
a great success. In the next generation of recommender systems,
multi-criteria recommendation has been predicted as an important
direction. Different from traditional recommender systems that
aim particularly at recommending high-quality items evaluated by
users’ ratings, in multi-criteria recommendation, quality only serves
as one criterion, and many other criteria such as relevance, cover-
age, and diversity should be simultaneously optimized. Although
recently there is work investigating each single criterion, there is
rarely any literature that reports how each single criterion impacts
each other and how to combine them in real applications. Thus
in this paper, we study the relationship of two criteria, quality and
relevance, as a preliminary work in multi-criteria recommendation.
We first give qualitative and quantitative analysis of competitive
quality-based and relevance-based algorithms in these two crite-
ria to show that both algorithms cannot work well in the opposite
criteria. Then we propose an integrated metric and finally investi-
gate how to combine previous work together into an unified model.
In the combination, we introduce a Continuous-time MArkov Pro-
cess (CMAP) algorithm for ranking, which enables principled and
natural integration with features derived from both quality-based
and relevance-based algorithms. Through experimental verifica-
tion, the combined methods can significantly outperform either sin-
gle quality-based or relevance-based algorithms in the integrated
metric and the CMAP model outperforms traditional combination
methods by around 3%. Its linear complexity with respect to the
number of users and items leads to satisfactory performance, as
demonstrated by the around 7-hour computational time for over
480k users and almost 20k items.
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1. INTRODUCTION

With the explosive growth of resources on the Web, recommender
system is to suggest items (products, movies, etc.) according to
users’ past behaviors, in order to filter information. Usually, the
quality of items is rated by users. For example, the ratings can be
a score from 1 to 5 with higher value indicating the better qual-
ity. During the recent decades, the research issue of recommender
systems has been formulated as a classical regression problem of
predicting the quality ratings and has been explored deeply by both
research and industry community [1, 5]. Typical approaches in-
clude factorization models and neighborhood models. The former
focus on a global view of all users and items for predicting user’s
ratings on different items; and on the other hand, the latter con-
cern a local view of the nearest similar users and items. Among the
hybrid methods, the work of [17] has been demonstrated the most
effective in a well refined Netflix competition. Other competitive
work include [20, 28, 36, 39].

In the next generation of recommender systems, multi-criteria
recommendation has been predicted as an important direction [1].
The concept “multi-criteria" here refers to some other recommen-
dation criteria besides quality evaluated from ratings. Typical cri-
teria include relevance, coverage, diversity, etc. For example, the
work of [7] and the tasks in the KDD-cup 2007 [18, 27, 33] empha-
size on optimizing for recommending items with more relevance or
user interests, which are relevance-based algorithms. Relevance is
a different criterion from the criterion of quality. For example, in
movies recommendation, quality refers to a user’s evaluation on
a movie’s plot, acting, special effects; while relevance refers to a
user’s interests to see a movie. In books recommendation, quality
refers to a book’s content worthiness; while relevance refers to a
book’s attractiveness to a user. A user may give a high rating to
a classical movie for its good quality, but he/she might be more
likely to watch a recent one that is more relevant and interesting to
their lives, though the latter might be worse in quality. Different
from quality-based recommendation that focuses on recommend-
ing items that will likely to obtain high ratings from users, rele-
vance is reflected by whether a user will hit (or visited/rated) an
item and therefore, relevance-based recommendation focuses on
recommending items that will be likely to be hit by a user in the
future. Coverage and diversity are other criterion examples. Cov-



erage means to what extend the recommendation can cover all the
items [34]; and diversity means how different the recommended
items are from each other [11]. Although one may argue that the
evaluation of relevance, coverage, and diversity might also be con-
tained in ratings, from previous work [7, 15], ratings reflect mainly
for quality rather than other criteria. A recommender system’s suc-
cess in multi-criteria recommendation should consider all the crite-
ria besides quality.

The concept of multi-criteria recommendation is also different
from most ensemble ideas in recent work. The ensemble in recent
literatures is mainly refer to utilize more features for optimizing
a single criterion. For example, in the work of [17], both ratings
(explicit feature) and hits history (implicit feature) are utilized to
optimize the criterion of quality; and in the work of [7], both user
behavior features and content features are utilized to optimize the
criterion of relevance. But in multi-criteria recommendation, the
optimization goal should combine multiple criteria. It should si-
multaneously optimize all the factors of quality, relevance, cover-
age, and diversity.

Intuitively some conflicts might happen from different criteria,
thus in multi-criteria recommendation it is important to investigate
how each criterion impacts each other, how to combine multiple
criteria and how to combine previous algorithms together. For ex-
ample, if a user’s neighbor has given a very low rating to a movie
A, in quality-based algorithms, A might not be recommended to
this user because it is likely to obtain low rating indicated from
his/her neighbor’s rating records; in relevance-based algorithms,
however, A might be recommended because the neighbor at least
has shown interest to see it. Although multi-criteria recommenda-
tion is obviously practical in real applications and might even have
already been integrated in many online systems, to the best of our
knowledge, there is rarely any reports in literature on these research
issues, which motivates our work in this paper.

In this paper, we study the interplay relationship of different cri-
teria and investigate how to combine previous single criterion ap-
proaches in multi-criteria recommendation. Specifically, we inves-
tigate the criteria of quality and relevance as a preliminary work be-
cause they are more practical and both have enough previous work.
We give both qualitative and quantitative analysis of competitive
quality-based and relevance-based algorithms in these two crite-
ria. As the first ever solution for considering both quality and rel-
evance in multi-criteria recommendation, we propose a combined
metric and investigate methods to fuse competitive quality-based
and relevance-based algorithms together. In the fusing, fundamen-
tal combination methods suffer from the integration-unnatural and
quantity-missing problems. To address this limitation, we propose
to extend the random walk theory from previous work of Discrete-
time Markov Process (DMP) to Continuous-time MArkov Process
(CMAP) for combining additional features. Consequently, the com-
bination is an unified models having an intuitive interpretation with
quantity information retained; and the accuracy is better than base-
line methods through experiment justification. The CMAP algo-
rithm scales linearly with the number of users and items. Thus it
can be employed in applications with large-scale data.

The main contributions in this paper lie in that we justify that
both quality-based algorithms and relevance-based algorithms can-
not work well in the opposite criteria through both qualitative and
quantitative analysis. We propose an integrated metric and intro-
duce a large scalable framework CMAP to fuse the criteria of qual-
ity and relevance in multi-criteria recommendation. It can signif-
icantly outperform single quality-based and relevance-based algo-
rithms in the integrated metric and can outperform traditional com-
bination methods by around 3% by empirical study on two real
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world datasets. We hope that such work will be helpful from a tech-
nical standpoint in improving real recommendation applications.
The remainder of this paper is organized as follows. In Section
2, we introduce our analysis on the relationship of quality criterion
and relevance criterion in recommendation. In Section 3, we de-
scribe an integrated metric proposed for considering multi-criteria.
In Section 4, we investigate how to combine previous work into an
unified model in order to optimize integrated metric. Experimen-
tal results and analysis are shown in Section 5. Related work is
presented in Section 6, and we conclude the paper in Section 7.

2. QUALITY VS. RELEVANCE

In this section, we study the relationship of quality criterion and
relevance criterion in current recommender systems. The goal is to
investigate whether quality-based algorithms can achieve good rel-
evance performance and whether relevance-based algorithms can
achieve good quality performance. To verify this, we conduct both
quantitative and qualitative analysis. We mainly show the quali-
tative analysis for an intuitive impression first and will detail the
quantitative analysis in experimental section.

The qualitative analysis is designed as follows. We study the
data of Netflix!, a famous large-scale dataset for movie recommen-
dation. Since qualitative analysis should focus on the whole view,
we utilize an item’s average rating score to describe its quality and
an item’s hitting count to describe its relevance. The assumption is
that if an item is well evaluated by many users, it is a high-quality
item to most users; and if an item is visited by many users, it is a
high-relevance item to most users. Fig. 1 shows the distribution of
all 17,770 items on the measure of quality and relevance. From this
figure, we can observe that there are four types of items: A) normal-
quality and high-relevance; B) high-quality and high relevance;
C) normal-quality and normal-relevance; and D) high-quality and
normal-relevance. Typical example of each type is shown in the
right part of the figure. A success recommendation should con-
tain type A B and D. We choose user/item-based Pearson Corre-
lation Coefficient (PCC) [4, 29], Aspect Model (AM) [16], PMF
[28] and EigenRank [20] as quality-based algorithms; and within
relevance-based algorithms, an association-based method [7] and
a hitting-frequency-based method [33] are chosen. We randomly
choose 40,000 users for training and 10,000 users (given their first
10 ratings) for testing. We make statistics of the top five recom-
mended items by both kinds of algorithms. Fig. 2 shows the dis-
tributions of these items on the measure of quality and relevance.
Due to space limitation, only results of EigenRank (quality-based)
and the association-based method (relevance-based) are shown as
representatives; and similar results can be obtained for other meth-
ods within the same type. In this figure, the color of a small area
denotes the log value of the total recommended items’ occurrence
count within the quality and relevance metrics.

It can be obtained that for quality-based algorithms, most rec-
ommended items belong to Type B and D; items of Type A are al-
most missing. For relevance-based algorithms, most recommended
items belong to Type A and B; and items of Type D are almost miss-
ing. In quantitative analysis, the same problem can be found, which
will be detailed in experimental section. Thus from these analysis,
we can conclude that both quality-based methods and relevance-
based methods cannot perform well in the opposite criteria. Thus
both quality-based and relevance-based methods are recommend-
ing incomplete items.

But the missing items are important in recommendations. Items
of Type A are especially concerned by commercial companies in

"http://www.netflixprize.com
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Figure 2: Distribution of recommended results

advertising or selling business [30], because it reflects the predic-
tions of hitting counts or sales, which directly influence their rev-
enue. Items of Type D, on the other hand, have been demonstrated
valuable in recent long tail research [9]. These high-quality items
are only attractive to a limited number of particular users; but if
we cumulate the effect of all these items, great potential can be ex-
plored [10]. Therefore, items in both Type A and D are important
and should not be ignored. In addition, for most users, for cases that
two items with the same quality, the more relevant one will be more
likely to satisfy most users, and so are the opposite cases. However,
in current recommendation methods, quality-based algorithms miss
the factor of relevance. Consequently, users may not show interests
to visit some of the recommended items. Relevance-based algo-
rithms, on the other hand, miss the factor of quality. Thus users
will suffer from normal-quality recommended results. This is also
the reason why multi-criteria recommendation is important.

3. INTEGRATED METRIC

For considering both quality and relevance for multi-criteria rec-
ommendation, we linearly combine quality-based and relevance-
based metrics as an integrated evaluation measure. Quality-based
metrics measure the closeness of a recommender system’s predicted
ratings to the users’ real ratings. Classical metric is Mean Absolute
Error (MAE), root mean squared error (RMSE), etc. Relevance-
based metrics, on the other hand, measure the likelihood that an
item will be hit. Classical metrics include precision/recall, Receiver
Operating Characteristic (ROC) curve, etc. In application systems,
a rank list is the final output for users. Thus normalized discount
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cumulated gain (NDCG) has been recently employed to evaluate
recommendation results including both quality-based NDCG [20]
and relevance-based NDCG [13]. In fact, there are many ways for
the integrated metric; however, the comparisons of metrics are be-
yond the scope of this paper. We specifically propose the follow-
ing NDCG metric as a first ever solution. We are also awared that
NDCG is not the most widely used metric in recommender sys-
tems, but there are two supportive reasons for this: 1) NDCG is a
ranking-oriented metric, which is more practical in application sys-
tems. Comparing other ranking-oriented metrics, NDCG is a posi-
tion dependent metric. It assigns top positions more weight, which
is more reasonable. 2) Both quality-based NDCG and relevance-
based NDCG are accepted as practical measures in previous work
of recommender systems [13, 20]. It is also convenient for the inte-
gration because the values have similar meanings in both tasks and
are compatible for combination.

Given the rank of recommended results, quality-based NDCG at
position P is defined as (referring to [20])

p

2Muwp — 1
U Z Z log(1+p)’
where U is the number of users, Z,, is a normalization factor of user
u, and 74,p is the ground truth rating score by user v on the item
at position p. Since only a limited number of items rated by users
are selected as ground truth, by following [20], uncertain ones in

the rank are removed before calculation. Relevance-based NDCG
at position P, on the other hand, is defined as (refering to [13])

NDOGPfquality = (1)

2hur 1

log(l +p)’ @

NDCGP relevance — U Z Z

where h,, p is a binary value function indicating whether user « has
hit the item at position p. In this paper, we follow the same idea
in [7]: a hit is defined by whether the user has rated the item. In
both metrics, NDCG value is scaled from O to 1 with higher value
indicating better results. We linearly integrate these two metrics as

3

A scales from O to 1 and can be set in different applications by par-
ticular users. When A\ = 0, it is single relevance-based NDCG;
when A = 1, it is single quality-based NDCG; in other cases,
when A increases, the evaluation will emphasize more on quality-
based performance and when decreases, it will emphasize more on

NDCGi—iinear = A% NDCGg + (1 — X\) *x NDCGRr.



relevance-based performance. In our experiments, we evaluate per-
formances of recommendation algorithms on all the scale of A from
0 to 1 with the interval of 0.1. Thus different configurations for the
balance from users can be adapted.

4. COMBINED FRAMEWORK

In this section, we introduce our methodology for optimizing
the integrated metric. We first present our rationale of basic ap-
proaches selection from competitive quality-based and relevance-
based methods. Then for the combination, we propose three meth-
ods. The first one is LinearComb, a linear combination of differ-
ent algorithms’ values. Nevertheless, as we will show later, fea-
tures contain incompatible values in different basic methods, thus
a linear combination will be unnatural and will make the accuracy
decrease [12]. The second method is RankComb, a rank-based in-
tegration, which is to combine the rank results of different recom-
mendation algorithms linearly by Borda count [8]. Yet this means
the quantity information from recommendation results will be lost.
Thus it will also make the accuracy decrease. Therefore, we pro-
pose the third method based on CMAP, to solve above problems.
By further employing queueing system theory, CMAP has a intu-
itive interpretation without losing quantity information.

4.1 Rationale of Basic Approaches Selection

Within quality-based algorithms, we choose EigenRank as the
fundamental method for its advantage of modeling user preference
order directly. Currently, state-of-the-art quality-based methods are
divided into rating-value-oriented (e.g., PMF [28]) and ranking-
oriented (e.g., EigenRank [20]). Rating-value-oriented methods
first predict ratings, and then produce the rank. The disadvantage is
that rating values are predicted independently without considering
the preference order of two items, thus the accuracy of recommen-
dation will decrease. Ranking-oriented methods, on the other hand,
predict the rank of recommended items based on directly mod-
eling the preference order of arbitrary two items “without going
through the inter-meditate step of rating prediction" [20]. Thus this
kind of method is more effective in practical E-Commerce applica-
tions. This model is proven to outperform many classical methods
[20]; and we have also demonstrated that it outperform PMF in
relevance-based NDCG through experiments. EigenRank model is
based on random walk theory, which is a special case of DMP. A
stationary distribution of the DMP is employed to decide the prefer-
ence score of an item. Formally, let 7" = {0, 1, 2, ...} be a discrete
time set, and S = {1,2,..., N} be a state set. The process can
be formulated by a stochastic variable sequence {X¢,t € T'}. For
arbitrary 4o, 1, ..., i+, it+1 € S, we have

P{Xty1 = it41| X0 = i0, X1 =41, ..., Xt =i} =

P{Xt+1 - it+1|Xt - ’Lt} (4)
The stationary distribution of this DMP is defined as
T=mx*xP, Q)

where P is probability transition matrix, and 7 is the stationary
distribution vector. P is built as

ReR)

pij = p(jli) = T, s 00 (6)

where (i, ) is a preference function defined for each user u on
two arbitrary items ¢ and 5 as

ZUEN&J Su,v * (rv,i - Tv,j)

A
ZUEN,DJ u,v

¥(i,j) = )
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In this equation, N7 is the set of u’s neighbors, and s,, , is the
Kendall Rank Correlation Coefficient (KRCC) [24] similarity.
Within relevance-based algorithms, we choose an association-
based method [7] and a hitting-frequency-based method [33]. As-
sociation and hitting frequency have been demonstrated as two com-
petitive features in relevance-based approaches. Therefore, in our
framework, we combine association and hitting frequency into the
EigenRank model to form an unified recommendation framework.
Association feature describes the number of users who have hit the
same two items. The fundamental assumption of this method is that
frequent co-occurrence items in the past are also likely to appear
together in the future. In other words, if a large number of users
hit both Item M and Item [V; another user hit only one of them;
then he/she is likely to hit the other one. This feature has been
demonstrated effective as a state-of-the-art relevance-based algo-
rithm in [7]. Hitting-frequency feature describes an item’s recent
total hitting count. The fundamental assumption of this method is
that popular items are likely to interest users. In other words, for
two items, a user is likely to hit the one with more hitting count.
This feature has been demonstrated effective in recent relevance-
based recommendation competition KDD-cup 2007 [18, 33].

4.2 LinearComb

LinearComb method is to linearly combine the results, which is
the most intuitive and direct way for combination. In this method,
the final recommendation score (SLinearcomb) for each item is de-
fined as

SLinearcomb = w1 F (EigenRank) + w2 F(Assoc)

+wsF(Hit — freq). (8)

F'is anormalization function to convert different scales of variables
into O to 1, which is defined as

F(z) =1/(1 + exp(—z)). ©)

w is function weight vector to be tuned for each sub-methods. In
the three results to be combined, the score of EigenRank is a sta-
tionary probability value ranging from O to 1; and the scores of as-
sociation and hitting-frequency are integer count values from 1 to
maximum. Thus the values to combine are incompatible, which
makes the fusion unnatural. Even we have converted them into the
same scale, previous work has also indicated that the accuracy will
decrease in such cases [12].

4.3 RankComb

To solve the problem of LinearComb, we propose another funda-
mental combination method RankComb, which combines the ranks
from different methods by employing Borda count [8]. The main
advantage of this method is the values in the combination are com-
patible. Given a recommended rank of an algorithm, RankComb
first calculates a Borda count (BC) value for each item defined as

BCitem = 1/position(item). (10)

Then, the item’s BC values from different algorithms can be lin-
early combined as a new recommendation score as

BCRankComb = wlBCEigenRank + w2 * BC4ssoc

+ws * BCHit— freq- (11)

The final results will refer to this new BC value. Although this
method solve the integration-unnatural problem of LinearRank, dur-
ing the process of converting a rank to BC values, the quantity in-
formation of these results from different methods are missing. This
will also make the recommendation accuracy decrease.
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To attack the integration-unnatural and quantity-missing prob-
lems in fundamental combination methods, we propose the CMAP
model, which retains the quantity information and has an intuitive
interpretation.

CMAP is a general framework which can integrate both rela-
tional and local features. In this work, we show examples of inte-
grating the association feature (a relational feature) and the hitting
frequency feature (a local feature). Other features can be integrated
into CMAP similarly by linear combination.

4.4.1 Association Feature Combination

Since association is a relational feature of two items, we can em-
ploy a similar idea with the random walk process in EigenRank to
model and integrate it. The difference is that the transition matrix
is determined by association feature instead of rating information.
The questions are how to define neighbors and the transition matrix.

In defining neighbors, we utilize cosine-based similarity for sim-
plicity. The similarity of two users w and v is defined as

— —
’ Ry*x Ry
u,v

= ety (12)
[Rull | Rol
- . . . .
where R, is the hitting history vector of user u. We set a threshold
to select similar users as the current user’s neighbors. In build-
ing the transition matrix, following the idea in [7], we define a co-
occurrence function of two items ¢ and j as

_ Freq(ij)
" Freq(i) * Freq(j)?’

£(1,7) 13)
where F'req(x) is the occurrence times and 3 is a control parameter
ranging from O to 1. When 3 equals 0, the formula is the probability
of co-occurrence of 7 and j on the condition of occurrence of i.
In this case, these is a limitation that frequent items will obtain
excessive bias [4, 7]. Thus the term Freq(j)? is added following
the idea of inverse document frequency [25] to adjust the weight.
Therefore, the transition matrix P’ can be defined as

/ s £(4,4)

phi = 9 (11i) = = (14)
N > jes &(4,4)

Since the transition matrix P’ includes compatible values to P in

EigenRank, we can combine association feature to this model by

linear combination as

Pnew:P*onrP/*(lfa). (15)
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4.4.2 Hitting Frequency Combination

Different from relational features like previous association fea-
ture, hitting-frequency is a local feature and it is difficult to be lin-
early combined into probability transition matrix. The main prob-
lem is that DMP in EigenRank cannot model local features. Thus
we propose to extend it to CMAP, by which a new variable will
be added to model local features, making the combination have
an intuitive interpretation. Different from DMP where the ran-
dom walk is in discrete steps, in CMAP it is a continuous process.
This means the staying time at each state is considered as shown in
Fig. 3. Frequent items should have longer staying time. Formally,
let S = {1,2,..., N} denote the state set. The stochastic vari-
able sequence in CMAP is denoted as {X;,¢ > 0}. For arbitrary

0<ty <t <..<tph<tpnti1,ix €S,0<k<n+1,
P{X: = int1]| Xty = G0, Xty =01, .00, Xtp, =in} =

P{th+1 = in+1|th = ’Ln} (16)

n41

For simplicity, we assume it is a time-homogenous Markov Pro-

cess, thus it has the following property

CMAP is described by Q-matrix instead of the transition matrix in
DMP. Q-matrix is defined as

{

Under such description, it can be proven [32] that the staying time
at each state follows an exponential distribution

pij(t)
t

ij = pi;(0) = limy_o 0 F T

. 1—pui(t
qii = —limy_o —pt”’( ),

(18)

P(1 > t|Xpre = 1) = exp(giit), (19)

where X .. denotes the previous state and 7 is the staying time
defined as:

T=inf{t:t>0,X: # Xpre}- (20)
It can also be proven [32] that
PIX, = j|Xo =1i] = _qu 1)

From Eq. (19) and Eq. (21), we obtain formulations of the two
determining factors of a CMAP, staying time distribution and tran-
sition probabilities. As we have utilized the transition matrix to
model relational features before, the staying time distribution, an
exponential distribution, is just the one to model local feature of
hitting frequency.



Algorithm 1 CMAP Algorithm

Inputs: Rating information of current user and users in training set
Outputs: The ranked list of unrated items for each user as the rec-
ommendation results

1: Estimate g;; for each item 7 based on recent hitting count of
each item according to Eq. (24)

2: for each user do

3:  Calculate KRCC and cosine similarities between current
user and users in training set

4:  Select its neighbors based on the similarities

5:  Build probability transition matrix from Eq. (15)

6:  Calculate stationary distribution of CMAP according to Eq.
(25)

7:  Rank the items based on the probabilistic score of a station-
ary distribution of CMAP

8:  Remove the rated items

9: end for

We propose to utilize the following formulation to model local
feature by employing queueing theory. Because it makes the stay-
ing time have a practical meaning of waiting time in a queueing
system in addition to its effectiveness in accuracy. As shown in the
bottom-left part in Fig. 3, we suppose that there is a ticket selling
window for each item, and the users who recently hit the item are
costumers buying tickets. We assume that the temporal sequence of
the costumers’ arrival follows the time-homogenous Poisson Pro-
cess, with v as the costumer-arriving rate. The services at the ticket
selling windows have the same speed to process a deal. The time
for each deal follows an exponential distribution with the same ser-
vice rate u. To make the system stable, we set ©v > v. In such a
queueing system, for each item, let T; denote the waiting time of a
customer buying its ticket, then it can be concluded [2] that

PTy<z)=1- gexp_(“_”)x. (22)

Specifically, on the condition that there is a queue, we fortunately
obtain an exponential distribution that fits the requirement.

P(T, < z|the queue exists) = 1 — exp "~ ")*, (23)
Thus we propose to model hitting frequency using
qii = 7(u — ’UZ’). (24)

If w is larger, the variance of waiting time conditions becomes
smaller, which means the staying time has a weaker impact on the
final stationary distribution. If w is small, then the opposite is true.

4.4.3 Algorithms

We still employ stationary distribution to decide the preference
score of an item. According to [21, 32], the stationary distribution
7 of CMAP can be solved using the following equations:

i
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™ )

:ZS J

J=1 —aqj;

Ux

(25)

T = EiES Ti :1;7 :

The details of the algorithm are shown in Algorithm 1.

The main computation of our algorithm comes from two aspects:
1) probability transition matrix building; and 2) stationary distri-
bution calculation. The main part for the first calculation is the
similarity of current user to other users in the training set. In both
KRCC and cosine similarities defined in our model, the complex-
ity is O(n), where n is the number of common items between the
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Table 1: Statistics of MovieLens and Netflix

Statistics MovieLens | Netflix
Avg. Num. of Ratings/User 106.04 209.25
Avg. Num. of Ratings/Item 59.45 5654.50
Min. Num. of Ratings/User 20 1
Min. Num. of Ratings/Item 1 3
Max. Num. of Ratings/User 737 17653
Max. Num. of Ratings/Item 583 232944
Density of User/Item Matrix 6.3% 1.18%

users. For the second aspect, we can conclude from Eq. (25) that it
is a linear function of the stationary distribution of DMP. Thus the
complexity is approximately the same with the one of DMP’s sta-
tionary distribution calculation, which is O(m) (m is the number
of items) by utilizing the iterative power method. Therefore, the
computation complexity scales linearly with respect to the num-
ber of items and users, indicating that our algorithm can be applied
to very large datasets. In our experiments, the testing hardware
environment is on two Windows workstations with four dual-core
2.5GHz CPU and 8GB physical memory each. The approximate
total time for calculation in Netflix dataset is around 7 hours.

S. EXPERIMENTS

In this section, we will first introduce the datasets. The exper-
iments are conducted for three parts. The first part is an empiri-
cal study of quality-based and relevance-based algorithms, which
serves as a quantitative analysis for the relationship of the two cri-
teria in recommendations. The second part is to evaluate the rec-
ommendation performance of our proposed framework. The third
part is to do the sensitivity analysis of CMAP.

5.1 Datasets

In this paper, we choose two datasets, MovieLens> and Netflix
for experimental verification. In MovieLens, there are 100,000 rat-
ings for 1,682 movies from 943 users. In Netflix, the size is much
larger. It contains about 100,000,000 ratings from over 480,000
users for 17,770 movies. In both datasets, ratings are given as an
integer value on the scale of 1 to 5, with higher value indicating
better satisfaction. More statistics are shown in Table 1. In Movie-
Lens, referring to the experimental setup in [22, 38], we randomly
choose 600 users for training and the remaining 343 users for test-
ing. In Netflix, we randomly divide the users into 10 groups. In
each group, 80% users are randomly selected as training and the
remaining 20% for testing. The average is calculated as the final
result. To observe the performances when the active users have dif-
ferent number of ratings as history, experiments are conducted by
selecting 5, 10 and 15 ratings as rating history for each active user
respectively in MovieLens and 5, 10, and 20 in Netflix. We name
them Given5, Givenl0, Givenl5, and Given20. Users whose rating
number is less than the configuration are not included in evalua-
tions. Before experiments, a pre-processing is conducted to rank
all the ratings of a user in ascent order according to the rating time
stamp.

5.2 Quantitative Analysis of Quality and
Relevance

In this section, quantitative analysis of competitive quality-based
and relevance-based algorithms on multiple criteria is conducted.

“http://www.cs.umn.edu/Research/GroupLens



Table 2: Performance on quality-based NDCG

Methods Given5 GivenlO Givenl5
NDCG1 | NDCG3 | NDCGS5 || NDCG1 | NDCG3 | NDCGS5 || NDCG1 | NDCG3 | NDCG5
PMF 0.635 0.612 0.623 0.644 0.646 0.654 0.696 0.689 0.698
EigenRank 0.698 0.685 0.679 0.699 0.696 0.698 0.713 0.707 0.719
Assoc 0.529 0.542 0.560 0.597 0.593 0.595 0.615 0.610 0.627
Freq 0.642 0.600 0.596 0.636 0.607 0.610 0.638 0.618 0.632

Table 3: Performance on relevance-based NDCG

Methods Given5 GivenlO Givenl5
NDCG1 | NDCG3 | NDCGS5 || NDCG1 | NDCG3 | NDCGS5 || NDCG1 | NDCG3 | NDCG5
PMF 0.333 0.325 0.309 0.241 0.227 0.212 0.198 0.194 0.186
EigenRank 0.326 0.306 0.304 0.279 0.282 0.285 0.274 0.276 0.275
Assoc 0.518 0.484 0.467 0.466 0.459 0.449 0.455 0.426 0.430
Freq 0.539 0.489 0.477 0.478 0.429 0.412 0.428 0.377 0.364

The purpose is to evaluate quality-based algorithms’ performances
on relevance-based metric and relevance-based algorithms’ perfor-
mances on quality-based metric. In the experiments, two quality-
based algorithms and two relevance-based algorithms are chosen.
Quality-based algorithms include PMF [28] and EigenRank [20].
Relevance-based algorithms include the association-based method
(Assoc) [7] and a hitting-frequency-based method (Freq) [33]. The
experiments are conducted on both MovieLens and Netflix. We
only report the results for MovieLens in Table 2 and Table 3 due
to space limitation. Similar results can be observed from Netflix.
From the experimental results, we can conclude that both quality-
based and relevance-based methods do not perform well in the
opposite metric. For configuration of "Given5,NDCG1", quality-
based algorithms outperform relevance-based algorithms by 8.7%
in quality-based NDCG and relevance-based algorithms outperform
quality-based algorithms by 65.3% in relevance-based NDCG. This
can quantitatively support the importance of fusing quality-based
and relevance-based algorithms together in recommender systems.
In quality-based NDCG metric, EigenRank outperforms PMF in al-
most all the configurations which also supports the reason to choose
EigenRank as a fundamental quality-based algorithm to combine.

5.3 Recommendation Performance

The experiments conducted for overall performance aim at the
following three issues: 1) Quantitatively, how about the perfor-
mances of the three combination methods comparing to compet-
itive quality-based and relevance-based algorithms? 2) Qualita-
tively, whether the incompleteness problem in each single-criteria
approach can be solved by our framework? 3) How can CMAP out-
perform traditional combination methods? For Issue 1, we compare
results of the three combination methods with the quality-based
and relevance-based baselines; for Issue 2, we make statistics of
our CMAP framework on the quality-relevance balance study dis-
cussed before; and for Issue 3, we make comparisons among the
three combination methods.

Within quality-based methods, according to previous study, we
choose EigenRank [20] as baseline method, because it outperforms
PMF in almost all the configurations in both quality-based and
relevance-based NDCG metrics. Within relevance-based methods,
as the assoication-based method [7] and the hitting-frequency-based
method [33] have their own advantages in different cases as shown
before, we choose the best result from them as our baseline method.

Fig. 4(a) shows the overall performance on MovieLens; and Fig.
4(b) shows the overall performance on Netflix. In these two fig-
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ures, the experimental configuration is: Given5, NDCGI. In other
configurations, similar results can be obtained (See Table 4 and Ta-
ble 5.). In both these two figures, we can observe that the three
combination methods outperform the two single-criteria methods
in almost all the settings of A. If we average results from A\ = 0.6
to A = 1 as quality-bias metric, and average results from A = 0 to
A = 0.4 as relevance-bias metric. In quality-bias metric, the com-
bination method outperforms quality-based algorithm by 8.2% in
MovieLens and 6.2% in Netflix; in relevance-bias metric, our ap-
proach outperforms relevance-based algorithm by 4.1% in Movie-
Lens and 4.9% in Netflix.

Fig. 5 shows the distribution of recommended results of the top
five items by CMAP. The parameters are adapted for A = 0.8
(quality-bias) in the left, and A = 0.2 (relevance-bias) in the right.
It can be obtained that in both figures, there is a quantity of items
for both Type A and D, indicating that the framework is effective
in solving the incompleteness limitation of single-criteria methods.
In addition, in quality-bias CMAP, recommended items are likely
to have high ratings; and in relevance-bias CMAP, they are likely
to have high hitting count. This indicates that the recommended re-
sults of CMAP can adapt for different balance requests from users
in practical applications.

Among the three combination methods, CMAP performs the best
in almost all the settings of A. In average of all the A configura-
tion, for Given5 and NDCG1, the CMAP model outperforms Lin-
earComb by 2.0% in MovieLens and 2.0% in Netflix; and it also
outperforms RankComb by 3.0% in MovieLens and 2.7% in Net-
flix. RankComb performs the worst, because it misses quantity
information. The advantage of our approach comparing to Lin-
earComb is that the latter unnaturally combines probability and
count value linearly, which are incompatible scores; while in CMAP,
the combination has an practical interpretation explained before.

At first, we expect that the accuracy of relevance-based algo-
rithm will decrease when A increases, which is not true according
to experimental results. There are two reasons. 1) Although quality
and relevance are emphasizing different aspects, there is some cor-
relative relation between them. In these two datasets, if an item is
relevant to a user, it will have great chance to have good quality; but
the opposite is not true that many high-quality items do not attract
that many users. 2) In experiments, we approximately utilize the
rating record as visited record. In fact, it is more practical to use
the real visited record. Because many users will not take time to
rate an item after they visit them. Thus our experiments will cause
some bias to quality.
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5.4 Sensitivity Analysis

There are two important parameters in our approach: « in Eq.
(15) and u in Eq. (24). « balances CMAP’s probability transition
matrix between rating preference order and association feature. It
scales from 0 to 1. When « = 1, the transition matrix is built
from quality-based information only; when o = 0, it is built from
relevance-based information only; in other cases, it is a fusion of
two kinds of information. w is the service rate at ticket windows
which controls the influence of staying time of states. As discussed
before, when w is small, the staying time will have greater impact
on the stationary distribution; and when w« is large, the transition
probability will have greater impact. Fig. 6(a) shows the impact
of o on MovieLens, given 10 ratings as history, with A = 0.8 and
u = 20 and Fig. 7(a) shows the impact of o on Netflix, given
10 ratings as history, with A = 0.2 and v = 40. This is a general
example, and similar results can be obtained in other configurations
in both Netflix and MovieLens. Fig. 6(b) shows the impact of u on
MovieLens, given 10 ratings as history, with A = 0.8 and o = 0.6.
Fig. 7(b) shows the impact of u on Netflix, given 10 ratings as
history, with A = 0.2 and o = 0.4.

6. RELATED WORK

Recommendation has been treated as a classical regression prob-
lem to predict ratings over the decades. Collaborative filtering
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methods are widely employed for this problem with two categories,
neighborhood models and factorization models. The idea of neigh-
borhood methods is to predict ratings from similar users and items.
Thus approaches are naturally divided into user-based [4, 14] and
item-based [19, 29], together with some combined approaches [35].
The short coming is that when no similar neighbor exits, it is hard
to get accurate prediction. Alternatively, factorization methods [16,
28, 31, 23] are from a whole perspective of all the users and items.
Usually, it build a latent feature space for all the items and users
from training data. Thus to some extent, it will solve the disad-
vantages of neighborhood methods. But it cannot utilize the strong
association pattern among similar neighbors, which is just the ad-
vantage of neighborhood methods. There are also some ensem-
ble methods that combine neighborhood methods and factorization
methods. [26, 38, 37] combine the results of them together and
[17] propose to build an unified model, which has been demon-
strated the most effective in the Netflix competition. Other recent
competitive methods include [20, 28, 36, 40, 41].

Apart from traditional recommendation in the criterion of qual-
ity, there are some work emphasize on more other criteria, include
relevance [7], coverage [34], diversity [11], etc. Relevance-based
recommendations mainly depend on association feature [7, 30] and
hitting frequency feature [3, 18, 33]. The basic assumption of the
former is that frequent co-occurrence items in the past are also
likely to appear together in the future. Thus a statistical analysis is
made on each item pair, and the recommendation results are based
on the co-occurrence frequency. An intuitive interpretation of the
latter is that popular items are likely to interest users. In “Who Rate
What" task of KDD-cup 2007, the weight of this feature is much
larger than others [18].

Metrics for recommender systems contain both quality-based and
relevance-based. Quality-based metrics measure the closeness of
a recommender system’s predicted ratings to the users’ real rat-
ings. Classical metric is Mean Absolute Error (MAE), which has
been widely used in previous work [4, 16, 29]. Some variances of
MAE include mean squared error (MSE), root mean squared error
(RMSE), etc. Relevance-based metrics, on the other hand, mea-
sure the likelihood that an item will be hit. Classical metrics used
in previous work include precision/recall [7], Receiver Operating
Characteristic (ROC) curve, etc. In application systems, a rank list
is the final output for users. Thus normalized discount cumulated
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gain (NDCG), a metric to evaluate rank problem [6], has been re-
cently employed to evaluate recommendation results. These met-
rics include both quality-based NDCG [20] and relevance-based
NDCG [13] in recommendations.

7. CONCLUSIONS

In this paper, we make a preliminary work on multi-criteria rec-
ommendation. We take quality and relevance as two criteria in rec-
ommender system for analysis. We study the interplay relationship
of they impact each other and show that both quality-based and
relevance-based methods cannot perform well in the opposite cri-
teria. As the first ever solutions, we propose an integrated met-
ric considering both criteria. Then we investigate how to com-
bine previous work to adjust the new metric under the concept
of multi-criteria recommendation. We propose a CMAP frame-
work that enables principled and natural integration with features
derived from both quality-based and relevance-based algorithms.
Through empirical study on two real world datasets, we demon-
strate that the combined approach can significantly outperform tra-
ditional quality-based and relevance-based algorithms. The frame-
work has linear computational complexity. Thus from a technical
standpoint, we believe the work in this paper will be helpful in im-
proving recommender system in real applications.
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Table 4:

Opverall performance for other settings on MovieLens

Table 5: Overall performance on other settings on Netflix

a [00 [ 01 [ 02 ] 03 ] 04 ] 05 ] 06 07 ] 08 09 10 a [00 [ O [ 02 03 04 [ 05 ] 06 ] 07 ] 08 | 09 | 1.0
Given5,NDCG3 Given5,NDCG3
EigenRank | 0.306 | 0.344 | 0.381 | 0.419 | 0.456 | 0.493 | 0.531 | 0.568 | 0.605 | 0.643 | 0.680 EigenRank | 0.155 | 0.215 | 0.275 | 0.335 | 0.395 | 0.456 [ 0.516 [ 0.576 | 0.636 | 0.696 | 0.756
Assoc+Freq | 0.489 | 0.500 | 0.511 [ 0.522 ] 0.533 | 0.544 | 0.555 | 0.567 | 0.578 | 0.589 | 0.600 Assoc+Freq | 0.456 | 0.463 | 0.469 | 0.486 | 0.504 | 0.523 | 0.541 | 0.560 | 0.578 | 0.597 | 0.615
LinearComb | 0.502 | 0.511 | 0.528 | 0.538 | 0.559 | 0.568 | 0.587 | 0.598 | 0.617 | 0.648 | 0.678 LinearComb | 0.455 | 0.464 | 0.472 | 0.493 | 0.521 | 0.551 | 0.575 | 0.600 | 0.649 [ 0.701 | 0.763
RankComb | 0.503 | 0.516 | 0.524 | 0.533 | 0.552 | 0.567 | 0.583 | 0.596 | 0.613 | 0.637 | 0.681 RankComb | 0.456 | 0.464 | 0471 | 0.492 | 0.522 | 0.543 | 0.575 | 0.601 | 0.648 | 0.691 | 0.756
CMAP 0.514 | 0.525 | 0.541 | 0.553 | 0.566 | 0.580 | 0.596 | 0.607 | 0.624 | 0.651 | 0.685 CMAP 0.459 [ 0.469 [ 0.487 | 0.506 [ 0.527 [ 0.559 | 0.593 | 0.624 [ 0.658 | 0.706 | 0.766
Given5,NDCG3 Given5,NDCG5
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Assoc+Freq | 0.477 | 0.489 | 0.501 | 0.513 | 0.524 | 0.537 | 0.548 | 0.560 | 0.572 | 0.584 | 0.596 Assoc+Freq | 0.420 | 0.450 | 0.460 | 0.480 | 0.500 | 0.520 | 0.540 | 0.560 | 0.580 | 0.600 | 0.620
LincarComb | 0.484 | 0.498 | 0.513 | 0.531 | 0.546 | 0.561 | 0.576 | 0.593 [ 0.608 | 0.645 | 0.682 LinearComb | 0.421 | 0.454 | 0.471 | 0.487 | 0.516 | 0.551 | 0.585 | 0.618 | 0.650 [ 0.700 | 0.759
RankComb | 0.487 | 0.500 | 0.511 | 0.524 | 0.537 [ 0.554 | 0.571 | 0.588 | 0.606 | 0.639 | 0.681 RankComb | 0.421 | 0.450 | 0.464 | 0.485 | 0.518 | 0.552 | 0.583 | 0.617 | 0.648 | 0.698 | 0.755
CMAP 0.499 | 0.511 | 0.523 | 0.538 | 0.556 | 0.569 | 0.585 | 0.598 | 0.623 | 0.655 | 0.685 CMAP 0.440 | 0.457 [ 0.478 | 0.498 | 0.523 | 0.554 | 0.588 | 0.624 | 0.659 | 0.705 | 0.765
Givenl0O,NDCGI Givenl0,NDCGI
EigenRank | 0.279 [ 0.321 | 0.363 | 0.404 [ 0.446 | 0.487 | 0.528 [ 0.570 [ 0.611 | 0.653 | 0.694 EigenRank | 0.163 | 0.224 | 0.285 | 0.346 | 0.407 | 0.469 [ 0.530 [ 0.591 [ 0.652 | 0.713 | 0.774
Assoc+Freq | 0.478 | 0.493 | 0.500 | 0.525 | 0.541 | 0.557 | 0.572 | 0.588 | 0.604 | 0.620 | 0.636 Assoc+Freq | 0.452 | 0.456 | 0.466 | 0.485 | 0.505 | 0.525 | 0.545 | 0.565 | 0.584 | 0.604 | 0.624
LincarComb | 0.510 | 0.527 | 0.540 | 0.560 | 0.581 | 0.600 | 0.620 | 0.640 [ 0.660 | 0.680 | 0.710 LinearComb | 0.460 | 0.464 | 0.482 | 0.502 | 0.531 | 0.560 | 0.588 | 0.626 | 0.669 | 0.719 | 0.778
RankComb | 0.479 | 0.495 | 0.516 | 0.536 | 0.556 | 0.578 | 0.607 | 0.633 | 0.659 | 0.683 | 0.701 RankComb | 0.460 | 0.463 | 0.473 | 0.498 | 0.527 | 0.558 | 0.588 | 0.625 | 0.665 | 0.718 | 0.777
CMAP 0.526 | 0.544 | 0.559 | 0.578 | 0.597 | 0.611 | 0.628 | 0.648 | 0.664 | 0.683 | 0.716 CMAP 0.477 | 0.494 [ 0.509 | 0.528 | 0.544 | 0.574 | 0.607 | 0.643 | 0.678 | 0.725 | 0.785
Givenl0,NDCG3 Givenl0,NDCG3
EigenRank | 0.282 | 0.323 | 0.364 | 0.405 | 0.446 | 0.487 | 0.527 | 0.568 | 0.609 | 0.650 | 0.691 EigenRank | 0.163 [ 0.224 | 0.284 | 0.345 [ 0.405 | 0.466 | 0.526 | 0.587 | 0.647 | 0.707 | 0.768
Assoc+Freq | 0.459 | 0.472 | 0.485 [ 0.499 | 0.513 | 0.526 | 0.539 | 0.553 | 0.571 | 0.589 | 0.607 Assoc+Freq | 0.439 | 0.448 | 0.461 | 0.482 | 0.503 | 0.524 | 0.544 | 0.565 | 0.586 | 0.607 | 0.628
LinearComb | 0.457 [ 0.479 [ 0.500 [ 0.519 [ 0.538 [ 0.568 | 0.589 [ 0.608 | 0.629 | 0.659 [ 0.700 LinearComb | 0.441 | 0.456 | 0.470 | 0.501 | 0.532 | 0.559 | 0.588 | 0.619 | 0.660 | 0.709 | 0.771
RankComb | 0.462 | 0.483 | 0.500 | 0.519 | 0.528 | 0.557 | 0.584 | 0.608 | 0.636 | 0.661 | 0.703 RankComb | 0.442 | 0.455 | 0.469 | 0.498 | 0.530 | 0.559 | 0.584 | 0.613 | 0.654 | 0.705 | 0.770
CMAP 0.465 | 0.488 [ 0.509 | 0.532 [ 0.555 | 0.576 | 0.598 | 0.620 | 0.643 | 0.666 | 0.705 CMAP 0446 | 0468 | 0.487 | 0.505 | 0.535 | 0.568 | 0.599 | 0.632 | 0.666 | 0.717 | 0.778
Givenl0,NDCG5 Givenl0,NDCG5
EigenRank [ 0.285 [ 0.326 [ 0.366 | 0.407 | 0.447 | 0.488 ] 0.528 | 0.569 [ 0.609 [ 0.650 | 0.690 EigenRank | 0.184 | 0.241 | 0.298 | 0.355 | 0.412 | 0.469 | 0.525 | 0.582 | 0.639 | 0.696 | 0.753
Assoc+Freq | 0.449 | 0.463 | 0.478 [ 0.493 | 0.507 | 0.522 [ 0.536 | 0.551 | 0.570 | 0.590 | 0.610 Assoc+Freq | 0.408 | 0.420 | 0.455 | 0.478 | 0.500 | 0.523 | 0.545 | 0.568 | 0.590 | 0.612 | 0.635
LinearComb | 0.439 | 0.459 | 0.478 | 0.509 | 0.527 | 0.558 | 0.579 | 0.608 | 0.629 | 0.648 | 0.701 LinearComb | 0.426 | 0.439 | 0.458 | 0.491 | 0.525 | 0.547 | 0.581 | 0.625 | 0.660 | 0.703 | 0.764
RankComb | 0.452 | 0.470 [ 0.491 | 0.512 | 0.523 | 0.549 | 0.574 | 0.608 | 0.635 | 0.656 | 0.703 RankComb | 0.426 | 0.448 [ 0.456 | 0.489 | 0.522 | 0.548 | 0.578 | 0.624 | 0.658 | 0.703 | 0.763
CMAP 0.449 | 0.473 [ 0.496 | 0.519 | 0.543 | 0.565 | 0.589 | 0.613 | 0.637 | 0.659 | 0.703 CMAP 0.433 | 0.455 | 0.477 | 0.497 | 0.527 | 0.558 | 0.599 | 0.634 | 0.668 | 0.716 | 0.775
Givenl5,NDCG1 Given20,NDCGI
EigenRank | 0.274 | 0.316 | 0.358 | 0.400 | 0.443 | 0.485 | 0.527 | 0.569 | 0.611 | 0.653 | 0.695 EigenRank | 0.147 | 0.210 | 0.272 | 0.335 | 0.398 | 0.461 [ 0.523 | 0.586 | 0.648 | 0.711 | 0.774
Assoc+Freq | 0455 | 0471 | 0.487 | 0.503 | 0519 | 0,535 | 0.554 | 0.575 | 0.596 | 0.617 | 0.638 Assoct+Freq | 0.430 | 0.450 | 0.470 | 0.490 | 0.510 | 0.530 | 0.550 | 0.570 | 0.590 | 0.610 | 0.630
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