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Abstract

We consider the problem of how to improve
the efficiency of Multiple Kernel Learning
(MKL). In literature, MKL is often solved by
an alternating approach: (1) the minimization
of the kernel weights is solved by compli-
cated techniques, such as Semi-infinite Lin-
ear Programming, Gradient Descent, or Level
method; (2) the maximization of SVM dual
variables can be solved by standard SVM
solvers. However, the minimization step in
these methods is usually dependent on its
solving techniques or commercial softwares,
which therefore limits the efficiency and ap-
plicability. In this paper, we formulate a
closed-form solution for optimizing the ker-
nel weights based on the equivalence between
group-lasso and MKL. Although this equiva-
lence is not our invention, our derived variant
equivalence not only leads to an efficient algo-
rithm for MKL, but also generalizes to the case
for L,-MKL (p > 1 and denoting thé&,-norm

of kernel weights). Therefore, our proposed al-
gorithm provides a unified solution for the en-
tire family of L,,-MKL models. Experiments
on multiple data sets show the promising per-
formance of the proposed technique compared
with other competitive methods.

[2004b; [Ong et &l.|_20D5). It has been regarded as
a promising technique for identifying the combina-

tion of multiple data sources or feature subsets and
been applied in a number of domains, such as

genome fusion all,_2004a), splice site
detection [(Sonnenbur aEbOG) image annotation
(Harchaoui & Bad 7) and so on.

Multiple kernel learning searches for a combination of
base kernel functions/matrices that maximizes a gener-
alized performance measure. Typical measures studied
for multiple kernel learning, include maximum margin
classification errord (Lanckriet efldl., 20D%b; Bach &t al.,
2004 Argyriou et al.._2006; Zien & Oh 07), kernel-
target alignment|(Cristianini et lal 01), Fisher dis-
criminative analysi@hmm), etc.

There are two active research directions in multiple
kernel learning. One is to improve the efficiency of
MKL algorithms. Following the Semi-Definite Program-
ming (SDP) algorithm proposed in the seminal work
of (Lanckriet et al.,l 2004b), in_(Bach etlal., 2004), a
block-norm regularization method based on Second Or-
der Cone Programming (SOCP) was proposed in order to
solve medium-scale problems. Due to the high compu-
tation cost of SDP and SOCP, these methods cannot pro-
cess more kernels and more training data. Recent studies
suggest that alternating a:)proacHgs (Sonnenburg et al.,
ﬁmakolomammmla @8; Xu et AL, 2009a) are
more efficient. These approaches alternate between
the optimization of kernel weights and the optimiza-

tion of SVM classifiers.

. In each step, given the cur-
1. Introduction rent solution of kernel weights, it solves a classical
Multiple kernel learning (MKL) has been an at- SVM with the combined kernel; then a specific pro-

tractive topic in machine Iearninm al.. cedure is used to update the kernel weights. The ad-
vantage of the alternating scheme is that SVM solvers

Appearing inProceedings of the7!" International Conferencecan be very efficient due to recent advances in large
on Machine LearningHaifa, Israel, 2010. Copyright 2010 by thgcale optimization_(Bottou & LIn, 2007). However, the
author(s)/owner(s). current approaches for updating the kernel weights are




still time consuming and most of them depend onsolves the related optimization problem without a Tay-
commercial softwares. For example, the well-knownlor approximation. Experimental results on multiple data
Shogun vww.shogun-toolbox.org/ ) toolbox of  sets show the promising performance of the proposed op-
MKL employs CPLEX for solving the linear program- timization method.

ming problem. The rest of this paper is organized as follows. Section

The second direction is to improve the accuracy of MKL 2 presents the related work on multiple kernel learning.
by exploring the possible combination ways of base kerSection 3 first presents the variational equivalence be-
nels. L;-norm of the kernel weights, also known as tween MKL and group lasso, followed by the optimiza-
the simplex constraint, is mostly used in MKL meth- tion method and its generalization t0,-norm MKL.

ods. The advantage of the simplex constraint is thaSection 4 shows the experimental results and Section 5
it leads to a sparse solution, i.e., only a few base kereoncludes this paper.

nels among manys carry significant weights. However,

as argued inmlﬁb&, the simplex constraintz. Related Work

may discard complementary information when base ker-

nels encodes orthogonal information, leading to suboptet X = (xi,...,x,) € R"*? denote the collection
timal performance. To improve the accuracy in thisof n training samples that are incadimensional space.
scenario, anLs-norm of the kernel weights, known as Lety = (y1,v2,...,yn) € {—1,+1}" denote the bi-

a ball constraint, is introduced in their work. A nat- nary class labels for the data pointsXn Multiple ker-

ural extension to thd.,-norm is theL,-norm, which  nel learning is often cast into the following optimization

is approximated by the second order Taylor expansiomproblem:

and therefore leads to a convex optimization problem "
Eb) Another possible gxtensmn is to ex- min 1||f||§17 i CZK(yif(xi)), 1)

plore the grouping property or the mixed-norm combi- feHy 2

nation, which is helpful when there are principle com- ] ] .

ponents among the base kernels_(Saketha Nath et ay_\{hereHV is a reproducing kernel Hilbert space parame-

[2009;[Szafranski et AL, 2008). Other researchers alsirized byy and/(-) is a loss function.}, is endowed

study the possibility of non-linear combination of kernels With kernel functions(-, s v) = 370, vk, (-, ).

(Varma & Babli, 2009; Cortes etlal., 2009b). Although\when the Hinge loss is employed, the dual problem of

the solution space has been enlarged, the non-linear comk L (Lanckriet et al. [2004b) is equivalent to:
bination usually results in non-convex optimization prob-

lem, leading to even higher computational cost. More- 1 m
over, the solution of nonlinear combination is difficult to min max 1'a — =(aoy)’ Z v K; | (aoy), (2)
interpret. It is important to note that the choice of com- e8 g 2 j=1
bination usually depends on the composition of base ker-

nels and it is not the case that a non-linear combinatioﬁNhereA is the domain ofy andQ is the domain ofx. 1

Amo
is superior than the traditionél -norm combination. 'S a yector of aII_onesﬂI_{] },Fl IS agroup of base kernel
matrices associated Wlﬂ‘lj, ando defines the element-

To this end, we first derive a variation of the equiv- wise product between two vectors. The dom@iis usu-
alence between MKL and group Iasdm(?un, ally defined as:
). Based on the equivalence, we transform the re- I

lated convex-concave optimization of MKL into a joint- Q = {aeR":ay=0,0<a<C} @)
minimization problem. We further obtain a closed-form
solution for the kernel weights, which therefore greatly It is interesting to discuss the domainafWheny € A
improves the computational efficiency. It should belies in a simplex, i.e. A = {y € R} : 37" v; =
noted that although the consistency between MKL andl, v; > 0}, we call it Z;-norm of kernel weights. Most

roup lasso is discussed in (Rakotomamoniy &t al.,|2008VIKL methods fall in this category. Correspondingly,
m,@&, our obtained variational equivalence leadgvhenA = {y € R} : [|v]l, < 1, v; > 0}, we call
to a stable optimization algorithm. On the other hand, thét L,-norm of kernel weights and the resultin%odel
proposed optimization algorithm could also be instruc-L,-MKL. A special case i€L,-MKL (Kloft et all, ;
tive to the optimization of group-lasso. We further show/Cortes et gl 200Da).

that L,-norm formulation for MKL is also equivalent to s a5y 1o verify that the overall optimization problem
an optimization function with a different group regular- @) is convex ony and concave on. Thus the above op-

izer, which dqes not appear in literature. Compgred Qimization problem can be regarded as a convex-concave
the approachi 9), our approach dlrectlypromem

i=1



www.shogun-toolbox.org/

Based on the convex-concave nature of the above proliween MKL and group lasso is not our inventi@ach,
lem, a number of algorithms have been proposed, Whic), the variational formulation derived in this work
alternate between the optimization of kernel weights ands more effective in motivating an efficient optimization
the optimization of the SVM classifier. In each step, algorithm for MKL. Furthermore, the alternative formu-
given the current solution of kernel weights, they solvelation will lead to the equivalence betwedr),-MKL

a classical SVM with the combined kernel; then a spe{p > 1) and group regularizer.

cific procedure is used to update the kernel weights.

For example, the Semi-Infinite Linear Programming3.1. Connection between MKL and Group Lasso

ESILPE aEproach, developed in_(Sonnenburg b 2006;

m) constructs a cutting plane model for For convenience of presentation, we first start from the

the objective function and updates the kernel weights by?€tting ofLi-norm for kernel weights. To show the con-
solving a corresponding linear programming problem.neCt'O” between MKL and group lasso, we first trans-
Although the SILP approach can be employed for large®™ @) by Theorerfil1.

scale MKL problems, it often suffers from slow con- Theorem 1. The optimization problem dfl(1) is equiva-
vergence. Inl(Rakotomamonjy ef al., 2008), the authordent to the following optimization problerl (4):

address the MKL problem by a simple Subgradient De- m

scent (SD) method, which is also known as simpleMKL. min  min 1 Z il fill3.

However, since the SD method is memoryless, it does YEA{fiEH; L, 2 = !

not utilize the gradients computed in previous iterations,

which could be very useful in boosting the efficiency of n C if zm: i fi(x0) | - (@)

the search. More recently, a level set method has been } B
proposed in(Xu et & Qh;b) to combine cutting plane =t

models and a regularization method based on a proje
tion to level sets. Most alternating methods for MKL can
be summarized in Algorithiid 1.

Broof. Itis important to note that problem ikl(4) is non-
convex, and therefore we cannot deploy the standard ap-
proach to convert the problem il (4) into its dual form.
To transform [() into[[L), first, we rewrit€?(z) =

Algorithm 1 Alternating approach for solving MKL max_a(1 — z). Then the optimization probleril(4) can
1: Initialize a valid solutiony® € A andt = 0 a€[0,0]
2. repeat be transformed as follows
3:  Solve the dual of SVM with kemeK = 37", 7/K; 1
and obtain optimal solution’ min min max — Z Y5l £ ||gij
4 Update kernel weights via cutting plane methods, sub- 7S48 {fi€H}L,  acl0,.C]" 2 =
gradient descent or level set projection.
5. Updatet =¢+1 n m
6: until Convergence + Z | 1- Z Yiv;fi (%)

i=1 j=1

Despite the success of the alternating algorithms in aSlnce the prgblem IS convex 'ﬁ and concave I, we
can then switch the minimization of; with the maxi-

number of applications, they are usually inefficient in mization ofa. L.e
updating kernel weights. More specifically, these meth- & 18

ods require solving a sub-problem of linear program- n

ming that usually resorts to commercial softwares, such %12 aéﬁf’g]n {f.é%i%m Z @i

as CPLEX and MOSEK, which limits their applications. ' =

To alleviate the dependency on the commercial softwares m 1 ) "

and to further accelerate the optimization, in the follow- T > Sl = > awifi(xi)

ing section, we will present an alternative procedure for J=1 =1

updating kernel weights. By taking the minimization off;, we have

3. Efficient MKL Algorithms £i(x) = aiirj(xi,x). (5)
=1

Instead of casting the optimization ofs kernel weight into

a complex linear programming problem, we derive aThen the resulting optimization problem becomes
closed-form solution for updating kernel weights based m

onan alternative formulation of MKL using group lasso.  in max 1o — 1 Z vi(aoy) K (aoy),
It is important to note that although the equivalence be- €4 ag[0,C]" 2 =



which is exactly the same dual problem Bf (1) as showrand optimizef,-,j =1,...,

in @). O

m with fixed~. It is impor-
tant to note that the calculation §f;|/+, has the same
computational complexity as the subgradient calculation

To further show the connection between group lassas used in the simpleMKIL (Rakotomamonijy €tlal.. 2008)
and MKL, we need to decouple the interaction betweerand Shogurl.(Sonnenburg el al., 2006) toolboxes. There-

weightsy and classification functiong;, j = 1,...,m.

Based on the result of Theordin 1, we define
fi=li (6)
We then have the problem il (4) rewritten as

Tes1, -
EZ—,I\J%'II%
=1

min _ min
VEA {feH

+ Oy tlwid fitk)|. (M
i=1 =1

By taking the minimization ovey, we obtain:

- 145117 i
J 3 v T
> 5l

Based on the equatiorfd (5) afitl (6} ||+, can be calcu-
lated as:

1£5113, =7} (aoy)TK;(aoy). 9)

m. (8)

P

The following theorem below allows us to rewrifg (4) in

another form that is clearly related to group lasso.

Theorem 2. The optimization problem iil4) is equiva-

lent to the following optimization problem

2
(i ZnyHHJ +CY 0w fixi) |
! i=1 j=1

wheref; € Hjforj=1,...,m

The above theorem can be easily obtained by substituting

the equation[{8) into the optimization problefh (7).

Remark 1. The regularizer in the above can be regarde

as a group-lasso regularizer ff)m IEB). Theorem
[ states that the classical formulation of MKL essentially
uses a group-lasso type regularizer, which is not obviou

from the optimization problem if}(1).

Remark 2. The formulation in[[I7) provides an alterna-
tive approach for solving MKL. Unlike the typical for-
mulation that cast MKL into a convex-concave optimiza-
tion problem, [¥) cast MKL into a simple minimization
problem. As a result, we could solMd (7) by alternating

optimization: optimizey with fixed fj,j =1,....,m

fore, due to the closed-form solution 19, the overall
optimization could be very efficient compared with the
complicated semi-infinite programming and subgradient
descent in these toolboxes.

We summarize the alternating optimization discussed in
the above into Algorithn]2. It is important to note that
the optimization probleni]7) is joint—convexénandf,-,
which continuously decreases the objective. Therefore
Algorithm[2 ensures that the final solution converges to
the global one. Since the dual problem is convex, the
optimality of the solution can be guaranteed.

Remark 3. Joint minimization techniqgues are also used
in feature scalingl(Grandvalet & Carlu, 2002). As dis-
cussed inl(Rakotomamonjy ef al., 2008), the minimiza-
tion over the scaling vector (similar to the kernel weights
in our context) may suffer from instability especially
when some elements approdchVe however argue that
this is not the case for Algorithiid 2. This is because al-
though1/~; appears in[{7), which could lead to singu-
larity when-y; approaches 0y; is updated by[{8), which
does not have any source of singularity. This is further
confirmed by our empirical study.

Algorithm 2 The Group-Lasso Minimization for Multi-
ple Kernel Learning
1: Initialize v° = 1/m
2: repeat
3:  Solve the dual problem of SVM witlK =
Z "~ , v;K; to obtain the optimal solution
4: Calculate||fj|\H and~y; according to[(P) and18),
respectively
5: until Convergence

3.2. Generalization toL,,-MKL

Given the equivalence between group-lasso dnd

KL, we then generalize the formulation of MKL by
eplacingd 7" | v; < 1with 377 | v7 < 1with p > 0.
Theorem 3. The MKL problem with the general con-
gtraint||'y||p < 1,wherep > 1, i.e.,

min — +C Ly f(x;)
i, o, Hf””” Z el (x

is equivalent to the following optimization problem

ZnyHHJ +CZ€ Zyifj(xi) ;
=1 \j=1

min
{fiem;



with ¢ = prp. with several state-of-the-art efficient MKL algo-

rithms including: Semi-infinite Programming (SIP)
Proof. Similar to the proof of Theorefd 1, we can rewrite ﬁb a 06), the sub-
the generalized MKL, which is originally in the form of gradient descent approach used in the SimpleMKL

toolbox ' I,_2008), and the level
. R . method l. a). It is important to note
= Cy Uyif(xi)), ‘ S -
||ﬂ\lir§1 j@%ﬁ 2”f”H7 * Z (i f (1)) that the SIP involves sub-problems of linear program-

= ming (for L;-MKL) or sub-problems of second order

into the following form cone programming (forL,-MKL and p > 2) and
m the level method involves sub-problems of quadratic
min min lz i”fng{_ programming. For all the above convex programming
IVllp<t{fjeH;}7, 2371 Vi ! problems, we adopt two implementations: the CVX
package Myww.stanford.edu/ ~boyd/cvx ) and
n C if zm: vif;(xi) | (10) the MOSEK packagéh{tp://www.mosek.com ).
i=1 =1

4.1. Comparison with SimpleMKL

By taking the minimization ovey, we have . .
y 9 i We randomly select four UCI datasets, i.e., “iono”,

s e “breast”, “sonar”, and “pima”, to evaluate the efficiency
N = T, 7 (11) of the proposed MKL algorithm. We adopt the follow-
ing settings in [(Rakotomamonjy eflal., 2008; Xu €t al.,

m e
P
(Zk—l ||fk|an) ) to construct the base kernel matrices, i.e.,

=

and e Gaussian kernels with10 different widths

({273,272,...,25}) on all features and on
"7, ~ 2
A~ (LI

1 .
2 each single feature
=1

U 2p
Z ||fj|\7lfj.P e Polynomial kernels of degreketo 3 on all features
J=1 and on each single feature.

pt1

- 2\ 7 Each base kernel matrix is normalized to unit trace. We
- Z ”kamk : repeat all the algorithm0 times for each data set. In

k=1 each run,80% of the examples are randomly selected
Defineq = 12Tp with the constraing < 2, we have as the training data and the remaining data are used

1 for testing. The training data are normalized to have
the r99U|afizef(ZZL1 Il frclly, ) , which leads to the zero mean and unit variance, and the test data are then
result in the theorem. § O normalized using the mean and variance of the train-
ing data. The regularization paramet€rin SVM is

It is important to note when mapping the original MKL chosen by cross-validation. The duality gap defined in
formulation to anZ, regularizer,q is in the range be- (Rakotomamoniy etal.. 2008)is used as the stopping cri-
tween1 and2. However, using the regularizer frame- terion for all algorithms. Other settings are the same as
work, ¢ is allowed to have any value larger or equal to the simpleMKL toolbox.

1. The L,-MKL can also be similarly solved by Algo- \ye report the results of simpleMKL and MKLGL in Ta-

rithm2. ble. It can be observed that MKLGL greatly improves
the computational time of simpleMKL. It is important
4. Experiments to note that we omit the results of SIP and Level meth-

. ] ] ] ~ods since both of them significantly slower than MKLGL
In this section, we conduct experiments with two objec-o matter what optimization package, either MOSEK or
t|ves:_ (1) to evaluate the efficiency of th_e proposed MKL CVX, is employed. Generally, the MOSEK implementa-
algorithm, and (2) to evaluate the effectiveness offthe o is more efficient than the CVX implementation for
MKL when varying the value op. Itis importanttonote  poth algorithms. Take the “lono” dataset as an exam-
that although the algorithm scalability is also our coNn-ple, under the MOSEK implementation, the SIP method
cern, we will not focus on this perspective in the currentspend512 times of training time of MKLGL: and un-
version of this paper. der the CVX implementation, the number 8. For

We denote by MKLGL our proposed MKL algo- the level method, its computational costlstimes of
rithm based on group lasso. We compare MKLGL MKLGL's under the MOSEKimplementation;and more


www.stanford.edu/~boyd/cvx
http://www.mosek.com

Table 1. The performance comparison of simpleMKL and Table 2. The performance comparison 6f,-MKL algorithm
MKLGL algorithms. Heren andm denote the size of train- on the simulation data.

ing samples and the number of kernels, respectively. Norm |  Algo. Accuracy (%)  Time(s)

| Acc. (%) Time(s) #SVM sumKer 80.42.8 1.90.1

I — 930 — i p=1 SimpleMKL 83.4:2.0 9.2t3.6

. ono.n = m= p=2 MKLGL 89.7f12  3.105

SlmpIeMKL 91.5£3.0 79.9:13.8 826.8:-220.9 MKLSIP 89.7+1.3 42.2+4.8

MKLGL 92.0£2.9 12.0:2.2 72.1+19.4 p=3 MKLGL 91.1+1.6 2 1.0.2

Breast n =546 m — 117 MKLSIP 91.1£1.5  27.3:3.7

SimpleMKL | 96.5+1.2 110.5-18.6 542.6:131.1 p=4 m&g; 9911‘233 218811%21

MKLGL 96.6+1.2 14.%1.9 40.0:8.2 b=10 NVIKLGL 929116 12501

_ Sonar n =166 m =793 MKLSIP 922614  17.2:16

SimpleMKL | 82.0£6.5 57.0t4.6  687.6:135.4 p=100 | MKLGL 926518 TH01

MKLGL 82.0£6.8 5.7t1.1 53.6:16.1 MKLSIP 92.6:1.9  13.1:0.8

Pima n =614 m— 117 p=1000| MKLGL 92.812.0 0.8£0.0

SimpleMKL | 73.4£2.3 94.5:18.1  294.3-67.4 MKLSIP 92.8:20  6.8:01
MKLGL 73.5t25 15.11.9 15.11.9

_ . _ For kernel composition, each kernel matrix is defined as
than5 times under the CVX implementation. alinear kernel on a single feature. Therefore, the kernels

To better understand the properties of the algorithms, wé'€ complementary with each other. The other settings
plot the evolution of the objective value and the kernel@'€ Similar to the previous experiments.

weights into Figuré&ll and FiguEe®.1, respectively. First,To see how the value gfaffects the classification accu-
from Figure[l, we observe that the MKLGL algorithm racy, we vary the value g from 2 to 1000. We show
converges overwhelmingly faster than simpleMKL. This the accuracy and computational time in TdBle 2. We also
is because that MKLGL uses a closed-form to update thghow the results of,-MKL with the SIP implementa-
kernel weights, which has the same cost as the gradijon, noted as MKLSIP, and the result 6f-MKL with

ent computation in simpleMKL. However, simpleMKL  the simpleMKL implementation. As a baseline, the re-
additionally requires a large number of function evalua-sult of SVM using the summation of the base kernels,
tions in order to compute the optimal stepsize via a linedenoted by sumKer, is also reported.

search. Note that every function evaluation in the line

search of simpleMKL requires solving an SVM prob- It can bg observed that a largereads to a better ac-
lem. This phenomenon can also be observed from th€Uracy since the kernels are all complementar)_/ to each
4-th column of Tabl€ll. Second, to understand the evoother. On the other hand, although MKLSIP achieves al-
lution of kernel weights (i.e.3), we plot the evolution MOSt the same accuracy, it takes significantly more com-
curves of the five largest kernel weights in Figira 4.1. wePutational time than MKLGL. This experiment suggests
observe that the values of computed by simpleMkL that our proposed MKLGL algorithm witfi,,-norm can
fluctuates significantly through iterations. In contrast, f P& Poth effective and efficient for the scenario that the
the proposed MKLGL algorithm, the values-pthange base kernels are complementary to each other.

smoothly through iterations. The instability phenomenonwe further evaluate the proposed algorithm for
discussed inl(Rakotomamonjy ef al.. 2008) does not apr, -MKL on three real-world datasets, i.e., “Bci’,

pear in our case. “Usps”, and “Coil", from the benchmark repository
(www.kyb.tuebingen.mpg.de/ssl-book/ ).
4.2. Experiment onL,-MKL Here the datasets of “Usps” and “Coil” are both with

1500 instances and 241 features, and “Bci” has 400
is more effective tharl;-MKL. Though Z,-MKL usu- instances and 117 features. Fpr kernel formation, we
ally discards the sparse property whers 2, it helps only adopt the base kernels which are calculated on all
. . -~ features. For each datase®% of the data are used for
keep the complementary information among base ker: . L .
nels training anql t_he remaining are .used for te_stmg. Each
' kernel matrix is normalized with its trace being 1. Other
To see this, we design a synthesized dataset with 408ettings are the same as in previous experiments. We
data points and 34 features satisfying that sign(X) report the accuracy af,-MKL for different settings of
whereX is the mean of randomly generated dXtaWe  p in Table[3. For comparison, we also show the result

employ50% of data for training and the rest for testing. of the summation of all base kernels. Note that due to

In this section, we examine the scenarios whgréVIKL
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Figure 2.The evolution curves of the five largest kernel weights fdadats “lono”, “Breast”, “Sonar” and “Pima” computed by
the two MKL algorithms

rithm for solving L,-MKL that usually leads to better

Table 3. The accuracy of the MKLGL algorithm when varying performance thar ,-MKL.

the value ofp for real-world datasets.

Algo. | Bai Usps Coil

SumKer 52.9F3.8 80.5f1.1 78121 5. Conclusion

SimpleMKL | 55.1+5.8 87.2t1.3 84.8t1.5

MKLGL In this paper, we have presented an efficient algorithm
p=2 66.4£3.6 90.2:0.9 88.9:1.2 for multiple kernel learning by discussing the connec-
p=3 68.0:3.0 91.8:0.7 90.8:1.3 tion between MKL and group-lasso regularizer. We cal-
p=4 68.6:3.0 92.3t0.7 91.6t1.3 late the k | iahts b | d-f f |ati
p=10 69.4:32 93.3-0.6 93.2-11 culate the kernel weights by a closed-form formulation,
p=100 70.0:3.4 937206 94.2-1.2 which therefore leverages the dependency of previous al-
p=1000 70.143.4 93.A40.6 94.3:1.2 gorithms on employing complicated or commercial op-

timization softwares. Moreover, in order to improve
the accuracy of traditional MKL methods, we naturally
space limit, we do not include the result of MKLSIP, as 9eneralize MKL tol,-MKL that constrains the-norm
it obtains almost the same result as MKLGL but takes( = 1) the kernel weights. We show that our algorithm
more time. From Tablgl3, we observe thia-MKL can be apphed.to the whole family ah‘p—M_KL models
(p > 2) improves the classification accuracy when for ?."p > 1 without extra Taylor approximation. Ex-
compared td.,-MKL. Similar to the toy experiment, we perimental results on a number of benchmark datasets

find that the largep corresponds the better classification indicate the promising results of the proposed algorithm.
accuracy. For the future work, we plan to employ our pro-
In summary, our proposed MKLGL is an efficient algo- posed algorithm to solve the real-world applications



(nttp://mKI.ucsd.edu ). In addition, it is mean- in Neural Information Processing Systems 22 (NIR%).
ingful to find approaches to automatically determine the 997-1005. 2009.

value of p in LP_'MKL' It is also des_lrable to derive Lanckriet, Gert R. G., Bie, Tijl De, Cristianini, Nello, Jtan,
MKL models which have sparse solutions and also keep Michael I., and Noble, William Stafford. A statistical fram
the complementary or other structural information about work for genomic data fusiorBioinformatics 20(16):2626—
data. 2635, 2004a.
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