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Abstract

We consider the problem of how to improve
the efficiency of Multiple Kernel Learning
(MKL). In literature, MKL is often solved by
an alternating approach: (1) the minimization
of the kernel weights is solved by compli-
cated techniques, such as Semi-infinite Lin-
ear Programming, Gradient Descent, or Level
method; (2) the maximization of SVM dual
variables can be solved by standard SVM
solvers. However, the minimization step in
these methods is usually dependent on its
solving techniques or commercial softwares,
which therefore limits the efficiency and ap-
plicability. In this paper, we formulate a
closed-form solution for optimizing the ker-
nel weights based on the equivalence between
group-lasso and MKL. Although this equiva-
lence is not our invention, our derived variant
equivalence not only leads to an efficient algo-
rithm for MKL, but also generalizes to the case
for Lp-MKL ( p ≥ 1 and denoting theLp-norm
of kernel weights). Therefore, our proposed al-
gorithm provides a unified solution for the en-
tire family of Lp-MKL models. Experiments
on multiple data sets show the promising per-
formance of the proposed technique compared
with other competitive methods.

1. Introduction

Multiple kernel learning (MKL) has been an at-
tractive topic in machine learning (Lanckriet et al.,
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2004b; Ong et al., 2005). It has been regarded as
a promising technique for identifying the combina-
tion of multiple data sources or feature subsets and
been applied in a number of domains, such as
genome fusion (Lanckriet et al., 2004a), splice site
detection (Sonnenburg et al., 2006), image annotation
(Harchaoui & Bach, 2007) and so on.

Multiple kernel learning searches for a combination of
base kernel functions/matrices that maximizes a gener-
alized performance measure. Typical measures studied
for multiple kernel learning, include maximum margin
classification errors (Lanckriet et al., 2004b; Bach et al.,
2004; Argyriou et al., 2006; Zien & Ong, 2007), kernel-
target alignment (Cristianini et al., 2001), Fisher dis-
criminative analysis (Ye et al., 2007), etc.

There are two active research directions in multiple
kernel learning. One is to improve the efficiency of
MKL algorithms. Following the Semi-Definite Program-
ming (SDP) algorithm proposed in the seminal work
of (Lanckriet et al., 2004b), in (Bach et al., 2004), a
block-norm regularization method based on Second Or-
der Cone Programming (SOCP) was proposed in order to
solve medium-scale problems. Due to the high compu-
tation cost of SDP and SOCP, these methods cannot pro-
cess more kernels and more training data. Recent studies
suggest that alternating approaches (Sonnenburg et al.,
2006; Rakotomamonjy et al., 2008; Xu et al., 2009a) are
more efficient. These approaches alternate between
the optimization of kernel weights and the optimiza-
tion of SVM classifiers. In each step, given the cur-
rent solution of kernel weights, it solves a classical
SVM with the combined kernel; then a specific pro-
cedure is used to update the kernel weights. The ad-
vantage of the alternating scheme is that SVM solvers
can be very efficient due to recent advances in large
scale optimization (Bottou & Lin, 2007). However, the
current approaches for updating the kernel weights are



still time consuming and most of them depend on
commercial softwares. For example, the well-known
Shogun (www.shogun-toolbox.org/ ) toolbox of
MKL employs CPLEX for solving the linear program-
ming problem.

The second direction is to improve the accuracy of MKL
by exploring the possible combination ways of base ker-
nels. L1-norm of the kernel weights, also known as
the simplex constraint, is mostly used in MKL meth-
ods. The advantage of the simplex constraint is that
it leads to a sparse solution, i.e., only a few base ker-
nels among manys carry significant weights. However,
as argued in (Kloft et al., 2008), the simplex constraint
may discard complementary information when base ker-
nels encodes orthogonal information, leading to subop-
timal performance. To improve the accuracy in this
scenario, anL2-norm of the kernel weights, known as
a ball constraint, is introduced in their work. A nat-
ural extension to theL2-norm is theLp-norm, which
is approximated by the second order Taylor expansion
and therefore leads to a convex optimization problem
(Kloft et al., 2009). Another possible extension is to ex-
plore the grouping property or the mixed-norm combi-
nation, which is helpful when there are principle com-
ponents among the base kernels (Saketha Nath et al.,
2009; Szafranski et al., 2008). Other researchers also
study the possibility of non-linear combination of kernels
(Varma & Babu, 2009; Cortes et al., 2009b). Although
the solution space has been enlarged, the non-linear com-
bination usually results in non-convexoptimization prob-
lem, leading to even higher computational cost. More-
over, the solution of nonlinear combination is difficult to
interpret. It is important to note that the choice of com-
bination usually depends on the composition of base ker-
nels and it is not the case that a non-linear combination
is superior than the traditionalL1-norm combination.

To this end, we first derive a variation of the equiv-
alence between MKL and group lasso (Yuan & Lin,
2006). Based on the equivalence, we transform the re-
lated convex-concave optimization of MKL into a joint-
minimization problem. We further obtain a closed-form
solution for the kernel weights, which therefore greatly
improves the computational efficiency. It should be
noted that although the consistency between MKL and
group lasso is discussed in (Rakotomamonjy et al., 2008;
Bach, 2008), our obtained variational equivalence leads
to a stable optimization algorithm. On the other hand, the
proposed optimization algorithm could also be instruc-
tive to the optimization of group-lasso. We further show
thatLp-norm formulation for MKL is also equivalent to
an optimization function with a different group regular-
izer, which does not appear in literature. Compared to
the approach in (Kloft et al., 2009), our approach directly

solves the related optimization problem without a Tay-
lor approximation. Experimental results on multiple data
sets show the promising performance of the proposed op-
timization method.

The rest of this paper is organized as follows. Section
2 presents the related work on multiple kernel learning.
Section 3 first presents the variational equivalence be-
tween MKL and group lasso, followed by the optimiza-
tion method and its generalization toLp-norm MKL.
Section 4 shows the experimental results and Section 5
concludes this paper.

2. Related Work

Let X = (x1, . . . ,xn) ∈ R
n×d denote the collection

of n training samples that are in ad-dimensional space.
Let y = (y1, y2, . . . , yn) ∈ {−1, +1}n denote the bi-
nary class labels for the data points inX. Multiple ker-
nel learning is often cast into the following optimization
problem:

min
f∈Hγ

1

2
‖f‖2

Hγ
+ C

n
∑

i=1

`(yif(xi)), (1)

whereHγ is a reproducing kernel Hilbert space parame-
terized byγ and`(·) is a loss function.Hγ is endowed
with kernel functionκ(·, ·; γ) =

∑m
j=1 γjκj(·, ·).

When the Hinge loss is employed, the dual problem of
MKL (Lanckriet et al., 2004b) is equivalent to:

min
γ∈∆

max
α∈Q

1>α −
1

2
(α ◦ y)>





m
∑

j=1

γjKj



 (α ◦ y), (2)

where∆ is the domain ofγ andQ is the domain ofα. 1

is a vector of all ones,{Kj}
m
j=1 is a group of base kernel

matrices associated withH′
j , and◦ defines the element-

wise product between two vectors. The domainQ is usu-
ally defined as:

Q = {α ∈ R
n : α>y = 0, 0 ≤ α ≤ C}. (3)

It is interesting to discuss the domain ofγ. Whenγ ∈ ∆
lies in a simplex, i.e.,∆ = {γ ∈ R

m
+ :

∑m

j=1 γj =
1, γj ≥ 0}, we call itL1-norm of kernel weights. Most
MKL methods fall in this category. Correspondingly,
when∆ = {γ ∈ R

m
+ : ‖γ‖p ≤ 1, γj ≥ 0}, we call

it Lp-norm of kernel weights and the resulting model
Lp-MKL. A special case isL2-MKL (Kloft et al., 2008;
Cortes et al., 2009a).

It is easy to verify that the overall optimization problem
(2) is convex onγ and concave onα. Thus the above op-
timization problem can be regarded as a convex-concave
problem.

www.shogun-toolbox.org/


Based on the convex-concave nature of the above prob-
lem, a number of algorithms have been proposed, which
alternate between the optimization of kernel weights and
the optimization of the SVM classifier. In each step,
given the current solution of kernel weights, they solve
a classical SVM with the combined kernel; then a spe-
cific procedure is used to update the kernel weights.
For example, the Semi-Infinite Linear Programming
(SILP) approach, developed in (Sonnenburg et al., 2006;
Kloft et al., 2009), constructs a cutting plane model for
the objective function and updates the kernel weights by
solving a corresponding linear programming problem.
Although the SILP approach can be employed for large
scale MKL problems, it often suffers from slow con-
vergence. In (Rakotomamonjy et al., 2008), the authors
address the MKL problem by a simple Subgradient De-
scent (SD) method, which is also known as simpleMKL.
However, since the SD method is memoryless, it does
not utilize the gradients computed in previous iterations,
which could be very useful in boosting the efficiency of
the search. More recently, a level set method has been
proposed in (Xu et al., 2009a;b) to combine cutting plane
models and a regularization method based on a projec-
tion to level sets. Most alternating methods for MKL can
be summarized in Algorithm 1.

Algorithm 1 Alternating approach for solving MKL

1: Initialize a valid solutionγ0
∈ ∆ andt = 0

2: repeat
3: Solve the dual of SVM with kernelK =

∑m

j=1
γt

jKj

and obtain optimal solutionαt

4: Update kernel weights via cutting plane methods, sub-
gradient descent or level set projection.

5: Updatet = t + 1

6: until Convergence

Despite the success of the alternating algorithms in a
number of applications, they are usually inefficient in
updating kernel weights. More specifically, these meth-
ods require solving a sub-problem of linear program-
ming that usually resorts to commercial softwares, such
as CPLEX and MOSEK, which limits their applications.
To alleviate the dependency on the commercial softwares
and to further accelerate the optimization, in the follow-
ing section, we will present an alternative procedure for
updating kernel weights.

3. Efficient MKL Algorithms

Instead of casting the optimization ofs kernel weight into
a complex linear programming problem, we derive a
closed-form solution for updating kernel weights based
on an alternative formulation of MKL using group lasso.
It is important to note that although the equivalence be-

tween MKL and group lasso is not our invention (Bach,
2008), the variational formulation derived in this work
is more effective in motivating an efficient optimization
algorithm for MKL. Furthermore, the alternative formu-
lation will lead to the equivalence betweenLp-MKL
(p ≥ 1) and group regularizer.

3.1. Connection between MKL and Group Lasso

For convenience of presentation, we first start from the
setting ofL1-norm for kernel weights. To show the con-
nection between MKL and group lasso, we first trans-
form (1) by Theorem 1.

Theorem 1. The optimization problem of (1) is equiva-
lent to the following optimization problem (4):

min
γ∈∆

min
{fj∈Hj}m

j=1

1

2

m
∑

j=1

γj‖fj‖
2
Hj

+ C
n
∑

i=1

`





m
∑

j=1

yiγjfj(xi)



 . (4)

Proof. It is important to note that problem in (4) is non-
convex, and therefore we cannot deploy the standard ap-
proach to convert the problem in (4) into its dual form.
To transform (4) into (1), first, we rewriteC`(z) =
max

α∈[0,C]
α(1 − z). Then the optimization problem (4) can

be transformed as follows

min
γ∈∆

min
{fj∈Hj}m

j=1

max
α∈[0,C]n

1

2

m
∑

j=1

γj‖fj‖
2
Hj

+

n
∑

i=1

αi



1 −

m
∑

j=1

yiγjfj(xi)



 .

Since the problem is convex infj and concave inα, we
can then switch the minimization offj with the maxi-
mization ofα, i.e.,

min
γ∈∆

max
α∈[0,C]n

min
{fj∈Hj}m

j=1

n
∑

i=1

αi

+

m
∑

j=1

γj

(

1

2
‖fj‖

2
Hj

−

n
∑

i=1

αiyifj(xi)

)

.

By taking the minimization offj, we have

fj(x) =

n
∑

i=1

αiyiκj(xi,x). (5)

Then the resulting optimization problem becomes

min
γ∈∆

max
α∈[0,C]n

1>α −
1

2

m
∑

j=1

γj(α ◦ y)>Kj(α ◦ y),



which is exactly the same dual problem of (1) as shown
in (2).

To further show the connection between group lasso
and MKL, we need to decouple the interaction between
weightsγ and classification functionsfj , j = 1, . . . , m.

Based on the result of Theorem 1, we define

f̃j = γjfj . (6)

We then have the problem in (4) rewritten as

min
γ∈∆

min
{f̃j∈Hj}m

j=1

1

2

m
∑

j=1

1

γj

‖f̃j‖
2
Hj

+ C

n
∑

i=1

`



yi

m
∑

j=1

f̃j(xi)



 . (7)

By taking the minimization overγ, we obtain:

γj =
‖f̃j‖Hj

∑m

j=1 ‖f̃j‖Hj

, j = 1, . . . , m. (8)

Based on the equations (5) and (6),‖f̃j‖Hj
can be calcu-

lated as:

‖f̃j‖
2
Hj

= γ2
j (α ◦ y)>Kj(α ◦ y). (9)

The following theorem below allows us to rewrite (4) in
another form that is clearly related to group lasso.

Theorem 2. The optimization problem in (4) is equiva-
lent to the following optimization problem

min
{fj}m

j=1

1

2





m
∑

j=1

‖fj‖Hj





2

+ C

n
∑

i=1

`



yi

m
∑

j=1

fj(xi)



 ,

wherefj ∈ Hj for j = 1, . . . , m.

The above theorem can be easily obtained by substituting
the equation (8) into the optimization problem (7).

Remark 1. The regularizer in the above can be regarded
as a group-lasso regularizer forf (Bach, 2008). Theorem
2 states that the classical formulation of MKL essentially
uses a group-lasso type regularizer, which is not obvious
from the optimization problem in (1).

Remark 2. The formulation in (7) provides an alterna-
tive approach for solving MKL. Unlike the typical for-
mulation that cast MKL into a convex-concave optimiza-
tion problem, (7) cast MKL into a simple minimization
problem. As a result, we could solve (7) by alternating
optimization: optimizeγ with fixed f̃j , j = 1, . . . , m

and optimizef̃j , j = 1, . . . , m with fixedγ. It is impor-
tant to note that the calculation of‖fj‖Hj

has the same
computational complexity as the subgradient calculation
as used in the simpleMKL (Rakotomamonjy et al., 2008)
and Shogun (Sonnenburg et al., 2006) toolboxes. There-
fore, due to the closed-form solution toγj , the overall
optimization could be very efficient compared with the
complicated semi-infinite programming and subgradient
descent in these toolboxes.

We summarize the alternating optimization discussed in
the above into Algorithm 2. It is important to note that
the optimization problem (7) is joint-convex inγ andf̃j,
which continuously decreases the objective. Therefore
Algorithm 2 ensures that the final solution converges to
the global one. Since the dual problem is convex, the
optimality of the solution can be guaranteed.

Remark 3. Joint minimization techniques are also used
in feature scaling (Grandvalet & Canu, 2002). As dis-
cussed in (Rakotomamonjy et al., 2008), the minimiza-
tion over the scaling vector (similar to the kernel weights
in our context) may suffer from instability especially
when some elements approach0. We however argue that
this is not the case for Algorithm 2. This is because al-
though1/γj appears in (7), which could lead to singu-
larity whenγj approaches 0,γj is updated by (8), which
does not have any source of singularity. This is further
confirmed by our empirical study.

Algorithm 2 The Group-Lasso Minimization for Multi-
ple Kernel Learning

1: Initialize γ0 = 1/m
2: repeat
3: Solve the dual problem of SVM withK =

∑m
j=1 γjKj to obtain the optimal solutionα

4: Calculate‖fj‖Hj
andγj according to (9) and (8),

respectively
5: until Convergence

3.2. Generalization toLp-MKL

Given the equivalence between group-lasso andL1-
MKL, we then generalize the formulation of MKL by
replacing

∑m
j=1 γj ≤ 1 with

∑m
j=1 γp

j ≤ 1 with p > 0.

Theorem 3. The MKL problem with the general con-
straint‖γ‖p ≤ 1, wherep ≥ 1, i.e.,

min
‖γ‖p≤1

min
f∈Hγ

1

2
‖f‖2

Hγ
+ C

n
∑

i=1

`(yif(xi)),

is equivalent to the following optimization problem

min
{fj∈Hj}m

j=1

1

2





m
∑

j=1

‖fj‖
q
Hj





2
q

+C

n
∑

i=1

`





m
∑

j=1

yifj(xi)



 ,



with q = 2p
1+p

.

Proof. Similar to the proof of Theorem 1, we can rewrite
the generalized MKL, which is originally in the form of

min
‖γ‖p≤1

min
f∈Hγ

1

2
‖f‖2

Hγ
+ C

n
∑

i=1

`(yif(xi)),

into the following form

min
‖γ‖p≤1

min
{fj∈Hj}m

j=1

1

2

m
∑

j=1

1

γj

‖fj‖
2
Hj

+ C

n
∑

i=1

`





m
∑

j=1

yifj(xi)



 .(10)

By taking the minimization overγ, we have

γj =
‖fj‖

2
1+p

Hj

(

∑m
k=1 ‖fk‖

2p
1+p

Hκk

)
1
p

, (11)

and

m
∑

j=1

‖fj‖
2
Hj

γj

=

(

m
∑

k=1

‖fk‖
2p

1+p

Hκk

)
1
p m
∑

j=1

‖fj‖
2p

1+p

Hj

=

(

m
∑

k=1

‖fk‖
2p

1+p

Hκk

)
p+1

p

.

Define q = 2p
1+p

with the constraintq ≤ 2, we have

the regularizer
(

∑m
k=1 ‖fk‖

q
Hκk

)
q
2

, which leads to the

result in the theorem.

It is important to note when mapping the original MKL
formulation to anLq regularizer,q is in the range be-
tween1 and2. However, using the regularizer frame-
work, q is allowed to have any value larger or equal to
1. TheLp-MKL can also be similarly solved by Algo-
rithm 2.

4. Experiments

In this section, we conduct experiments with two objec-
tives: (1) to evaluate the efficiency of the proposed MKL
algorithm, and (2) to evaluate the effectiveness of theLp-
MKL when varying the value ofp. It is important to note
that although the algorithm scalability is also our con-
cern, we will not focus on this perspective in the current
version of this paper.

We denote by MKLGL our proposed MKL algo-
rithm based on group lasso. We compare MKLGL

with several state-of-the-art efficient MKL algo-
rithms including: Semi-infinite Programming (SIP)
(Kloft et al., 2009; Sonnenburg et al., 2006), the sub-
gradient descent approach used in the SimpleMKL
toolbox (Rakotomamonjy et al., 2008), and the level
method (Xu et al., 2009a). It is important to note
that the SIP involves sub-problems of linear program-
ming (for L1-MKL) or sub-problems of second order
cone programming (forLp-MKL and p ≥ 2) and
the level method involves sub-problems of quadratic
programming. For all the above convex programming
problems, we adopt two implementations: the CVX
package (www.stanford.edu/ ˜ boyd/cvx ) and
the MOSEK package (http://www.mosek.com ).

4.1. Comparison with SimpleMKL

We randomly select four UCI datasets, i.e., “iono”,
“breast”, “sonar”, and “pima”, to evaluate the efficiency
of the proposed MKL algorithm. We adopt the follow-
ing settings in (Rakotomamonjy et al., 2008; Xu et al.,
2009a) to construct the base kernel matrices, i.e.,

• Gaussian kernels with10 different widths
({2−3, 2−2, . . . , 26}) on all features and on
each single feature

• Polynomial kernels of degree1 to 3 on all features
and on each single feature.

Each base kernel matrix is normalized to unit trace. We
repeat all the algorithms20 times for each data set. In
each run,80% of the examples are randomly selected
as the training data and the remaining data are used
for testing. The training data are normalized to have
zero mean and unit variance, and the test data are then
normalized using the mean and variance of the train-
ing data. The regularization parameterC in SVM is
chosen by cross-validation. The duality gap defined in
(Rakotomamonjy et al., 2008) is used as the stopping cri-
terion for all algorithms. Other settings are the same as
the simpleMKL toolbox.

We report the results of simpleMKL and MKLGL in Ta-
ble 1. It can be observed that MKLGL greatly improves
the computational time of simpleMKL. It is important
to note that we omit the results of SIP and Level meth-
ods since both of them significantly slower than MKLGL
no matter what optimization package, either MOSEK or
CVX, is employed. Generally, the MOSEK implementa-
tion is more efficient than the CVX implementation for
both algorithms. Take the “Iono” dataset as an exam-
ple, under the MOSEK implementation, the SIP method
spends12 times of training time of MKLGL; and un-
der the CVX implementation, the number is20. For
the level method, its computational cost is2 times of
MKLGL’s under the MOSEK implementation; and more

www.stanford.edu/~boyd/cvx
http://www.mosek.com


Table 1. The performance comparison of simpleMKL and
MKLGL algorithms. Heren andm denote the size of train-
ing samples and the number of kernels, respectively.

Acc. (%) Time(s) #SVM

Iono n = 280 m = 442
SimpleMKL 91.5±3.0 79.9±13.8 826.8±220.9
MKLGL 92.0±2.9 12.0±2.2 72.1±19.4

Breast n = 546 m = 117
SimpleMKL 96.5±1.2 110.5±18.6 542.0±131.1
MKLGL 96.6±1.2 14.1±1.9 40.0±8.2

Sonar n = 166 m = 793
SimpleMKL 82.0±6.5 57.0±4.6 687.6±135.4
MKLGL 82.0±6.8 5.7±1.1 53.6±16.1

Pima n = 614 m = 117
SimpleMKL 73.4±2.3 94.5±18.1 294.3±67.4
MKLGL 73.5±2.5 15.1±1.9 15.1±1.9

than5 times under the CVX implementation.

To better understand the properties of the algorithms, we
plot the evolution of the objective value and the kernel
weights into Figure 1 and Figure 4.1, respectively. First,
from Figure 1, we observe that the MKLGL algorithm
converges overwhelmingly faster than simpleMKL. This
is because that MKLGL uses a closed-form to update the
kernel weights, which has the same cost as the gradi-
ent computation in simpleMKL. However, simpleMKL
additionally requires a large number of function evalua-
tions in order to compute the optimal stepsize via a line
search. Note that every function evaluation in the line
search of simpleMKL requires solving an SVM prob-
lem. This phenomenon can also be observed from the
4-th column of Table 1. Second, to understand the evo-
lution of kernel weights (i.e.,γ), we plot the evolution
curves of the five largest kernel weights in Figure 4.1. We
observe that the values ofγ computed by simpleMKL
fluctuates significantly through iterations. In contrast, for
the proposed MKLGL algorithm, the values ofγ change
smoothly through iterations. The instability phenomenon
discussed in (Rakotomamonjy et al., 2008) does not ap-
pear in our case.

4.2. Experiment onLp-MKL

In this section, we examine the scenarios whereLp-MKL
is more effective thanL1-MKL. ThoughLp-MKL usu-
ally discards the sparse property whenp ≥ 2, it helps
keep the complementary information among base ker-
nels.

To see this, we design a synthesized dataset with 400
data points and 34 features satisfying thaty = sign(X̄)
whereX̄ is the mean of randomly generated dataX. We
employ50% of data for training and the rest for testing.

Table 2. The performance comparison ofLp-MKL algorithm
on the simulation data.

Norm Algo. Accuracy (%) Time(s)
sumKer 80.4±2.8 1.9±0.1

p=1 SimpleMKL 83.4±2.0 9.2±3.6
p=2 MKLGL 89.7±1.2 3.1±0.5

MKLSIP 89.7±1.3 42.2±4.8
p=3 MKLGL 91.1±1.6 2.1±0.2

MKLSIP 91.1±1.5 27.3±3.7
p=4 MKLGL 91.4±1.8 1.8±0.2

MKLSIP 91.4±1.8 28.4±2.1
p=10 MKLGL 92.2±1.6 1.4±0.1

MKLSIP 92.2±1.4 17.2±1.6
p=100 MKLGL 92.6±1.8 1.1±0.1

MKLSIP 92.6±1.9 13.1±0.8
p=1000 MKLGL 92.8±2.0 0.8±0.0

MKLSIP 92.8±2.0 6.8±0.1

For kernel composition, each kernel matrix is defined as
a linear kernel on a single feature. Therefore, the kernels
are complementary with each other. The other settings
are similar to the previous experiments.

To see how the value ofp affects the classification accu-
racy, we vary the value ofp from 2 to 1000. We show
the accuracy and computational time in Table 2. We also
show the results ofLp-MKL with the SIP implementa-
tion, noted as MKLSIP, and the result ofL1-MKL with
the simpleMKL implementation. As a baseline, the re-
sult of SVM using the summation of the base kernels,
denoted by sumKer, is also reported.

It can be observed that a largerp leads to a better ac-
curacy since the kernels are all complementary to each
other. On the other hand, although MKLSIP achieves al-
most the same accuracy, it takes significantly more com-
putational time than MKLGL. This experiment suggests
that our proposed MKLGL algorithm withLp-norm can
be both effective and efficient for the scenario that the
base kernels are complementary to each other.

We further evaluate the proposed algorithm for
Lp-MKL on three real-world datasets, i.e., “Bci”,
“Usps”, and “Coil”, from the benchmark repository
(www.kyb.tuebingen.mpg.de/ssl-book/ ).
Here the datasets of “Usps” and “Coil” are both with
1500 instances and 241 features, and “Bci” has 400
instances and 117 features. For kernel formation, we
only adopt the base kernels which are calculated on all
features. For each dataset,50% of the data are used for
training and the remaining are used for testing. Each
kernel matrix is normalized with its trace being 1. Other
settings are the same as in previous experiments. We
report the accuracy ofLp-MKL for different settings of
p in Table 3. For comparison, we also show the result
of the summation of all base kernels. Note that due to

www.kyb.tuebingen.mpg.de/ssl-book/
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Figure 1.Evolution of objective values over time (seconds) for datasets “Iono”, “Breast”, “Sonar” , and “Pima”. The objective
values are plotted on a logarithm scale (base 10) for better comparison.
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Figure 2.The evolution curves of the five largest kernel weights for datasets “Iono”, “Breast”, “Sonar” and “Pima” computed by
the two MKL algorithms

Table 3. The accuracy of the MKLGL algorithm when varying
the value ofp for real-world datasets.

Algo. Bci Usps Coil
SumKer 52.9±3.8 80.5±1.1 78.1±2.1
SimpleMKL 55.1±5.8 87.2±1.3 84.8±1.5
MKLGL
p=2 66.4±3.6 90.2±0.9 88.9±1.2
p=3 68.0±3.0 91.8±0.7 90.8±1.3
p=4 68.6±3.0 92.3±0.7 91.6±1.3
p=10 69.4±3.2 93.3±0.6 93.2±1.1
p=100 70.0±3.4 93.7±0.6 94.2±1.2
p=1000 70.1±3.4 93.7±0.6 94.3±1.2

space limit, we do not include the result of MKLSIP, as
it obtains almost the same result as MKLGL but takes
more time. From Table 3, we observe thatLp-MKL
(p ≥ 2) improves the classification accuracy when
compared toL1-MKL. Similar to the toy experiment, we
find that the largerp corresponds the better classification
accuracy.

In summary, our proposed MKLGL is an efficient algo-

rithm for solving Lp-MKL that usually leads to better
performance thanL1-MKL.

5. Conclusion

In this paper, we have presented an efficient algorithm
for multiple kernel learning by discussing the connec-
tion between MKL and group-lasso regularizer. We cal-
culate the kernel weights by a closed-form formulation,
which therefore leverages the dependency of previous al-
gorithms on employing complicated or commercial op-
timization softwares. Moreover, in order to improve
the accuracy of traditional MKL methods, we naturally
generalize MKL toLp-MKL that constrains thep-norm
(p ≥ 1) the kernel weights. We show that our algorithm
can be applied to the whole family ofLp-MKL models
for all p ≥ 1 without extra Taylor approximation. Ex-
perimental results on a number of benchmark datasets
indicate the promising results of the proposed algorithm.

For the future work, we plan to employ our pro-
posed algorithm to solve the real-world applications



(http://mkl.ucsd.edu ). In addition, it is mean-
ingful to find approaches to automatically determine the
value of p in Lp-MKL. It is also desirable to derive
MKL models which have sparse solutions and also keep
the complementary or other structural information about
data.
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Bottou, Léon and Lin, Chih-Jen. Support vector machine
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