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ABSTRACT
Previous semi-supervised learning (SSL) techniques usually assume
unlabeled data are relevant to the target task. That is, they follow
the same distribution as the targeted labeled data. In this paper, we
address a different and very difficult scenario in SSL, where the
unlabeled data may be a mixture of data relevant or irrelevant to
the target binary classification task. In our framework, we do not
require explicitly prior knowledge on the relatedness of the unla-
beled data to the target data. In order to alleviate the effect of the
irrelevant unlabeled data and utilize the implicit knowledge among
all available data, we develop a novel maximum margin classifier,
named the tri-class support vector machine (3C-SVM), to seek an
inductive rule to separate the target binary classification task well
while finding out the irrelevant data by-product. To attain this goal,
we introduce a new min loss function, which can relieve the impact
of the irrelevant data while relying more on the labeled data and the
relevant unlabeled data. This loss function can therefore achieve
the maximum entropy principle. The 3C-SVM can then generalize
standard SVMs, Semi-supervised SVMs, and SVMs learned from
the universum as its special cases. We further analyze the proper-
ty of 3C-SVM on why the irrelevant data can help to improve the
model performance. For implementation, we make relaxation and
approximate the objective by the convex-concave procedure, which
turns the original optimization from integral programming problem
to a problem by just solving a finite number of quadratic program-
ming problems. Empirical results are reported to demonstrate the
advantages of our 3C-SVM model.

Categories and Subject Descriptors
I.2.6 [Learning]: Induction; G.1.6 [Optimization]: Integer pro-
gramming, Quadratic programming methods

General Terms
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1. INTRODUCTION
Traditional supervised learning usually needs a large number of

labeled training samples to learn the inductive rule. However, la-
beling data is usually expansive and time consuming since it needs
experts’ knowledge. Due to the limited amount of labeled training
samples, researchers have proposed various methods, such as active
learning [20], transfer learning [17], and semi-supervised learning
(SSL) [33], to resolve this problem. Active learning requires user-
s’ additional interaction to label the data during the training pro-
cedure. Transfer learning transfers the knowledge learned from
related tasks to the target task, where the related tasks may need
sufficient labeled data. On the contrary, semi-supervised learn-
ing needs the least labeled data. It automatically learns a model
based on both labeled and unlabeled data. Currently, a variety of
SSL methods, including EM with generative mixture models, co-
training, Transductive/Semi-Supervised Support Vector Machines,
and graph-based, have been proposed in the literature [5, 13, 31,
32, 35].

Previously proposed semi-supervised learning models usually
assume unlabeled data are relevant to the target task, i.e., they fol-
low the same distribution as the target labeled data [1, 2]. This
assumption implicitly indicates that the unlabeled data are well pre-
pared [5, 33]. That is, the unlabeled data has excluded all irrelevan-
t data, which follow distributions different from the target labeled
data. However, in real world applications, without carefully prepro-
cessing, irrelevant data are easy to be included as unlabeled data.
For example, when crawling web pages as unlabeled data to help
classifying corresponding categories, it is very easy to collect some
irrelevant web pages for them. Similarly, as illustrated in Fig. 1(a)
and Fig. 1(b), when we classify the digits "5" and "8" with the
help of unlabeled digits. It is possible to include other digits into
unlabeled data. In these cases, learning from the labeled and the
mixed unlabeled data indeed do harm to the previously proposed
semi-supervised learning models [15, 21].

Hence, it is important to resolve the effect of the irrelevant da-
ta in the mixed unlabeled data. To achieve this goal and to utilize
the irrelevant data, in this paper, we propose a novel maximal mar-
gin semi-supervised classifier, named the tri-class support vector
machine (3C-SVM). The 3C-SVM can find the inductive rule to
separate the targeted binary data well while determining the irrel-
evant data as the 0-class. More specifically, we introduce a novel
min loss function to measure the empirical risk on the unlabeled
data. This loss function can take advantages of the symmetrical
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Figure 1: Illustration of two benchmark handwritten digit datasets and classifiers trained by different models on a mixed unlabeled
synthetic dataset. In Fig. 1(a) and Fig. 1(b), block digits are labeled data on the target task, while black digits are unlabeled data
mixed with other digits. The irrelevant digits affect the model in seeking optimal decision. Figure (c) illustrates that 3C-SVM (the
thin solid line) attains the best result, which is closest to the Bayesian optimal classifier (the thick solid line), among all SVM-related
classifiers and automatically distinguishes the irrelevant unlabeled data (black dots with red circles) well.

hinge loss function and the ε-insensitive loss function. More im-
portantly, our model can achieve the maximum entropy principle,
i.e., the decision function can rely more on the labeled data and the
relevant data, while maximally ignore the irrelevant data.

We highlight the main contributions of our work as follows:

• First, our 3C-SVM generalizes several popular maximum
margin classifiers, including standard SVMs, Semi-supervised
SVMs (S3VMs), and SVMs learned from universum data (U -
SVMs).

• Second, we provide theoretical analysis on 3C-SVM to in-
dicate why the irrelevant data can help the SSL, i.e., the ir-
relevant data play the role of seeking a good subspace of the
decision boundary.

• Third, the original formulation of 3C-SVM is an integer pro-
gramming problem. We relax the objective and solve it by
the concave-convex procedure (CCCP) [29]. This finally trans-
forms it by solving a finite number of quadratic programming
(QP) problems, which yields the same worst case time com-
plexity as that of S3VMs [6].

• Fourth, we conduct a series of empirical evaluation to demon-
strate the advantages of the 3C-SVM.

The rest of the paper is organized as follows: In Section 2, we
review the related work on learning from both labeled and univer-
sum data. In Section 3, the proposed 3C-SVM with its properties is
presented. In section 4, we detail how to solve 3C-SVM algorithm
through CCCP. We report the experimental comparison and results
in section 5 and conclude the paper in section 6.

2. RELATED WORK
In literature, many models have been proposed to learning a bina-

ry classifier with the help from other auxiliary data. These models
usually only work when the auxiliary data are "clean" and satisfy
the models’ assumption [5, 25].

A typical kind of methods is semi-supervised learning [5, 34],
including generative methods for SSL [12, 16], graph-based SSL
methods [2, 35], maximum margin classifiers [5, 6, 11], etc. These
methods utilize the labeled data and the unlabeled data to improve

model performance. Usually, they assume that the given auxiliary
data follow the same distribution as the labeled data [5, 35]. How-
ever, when unlabeled data are mixed with irrelevant data, they will
hurt the SSL models [21]. An illustration is shown as the dash line
in Figure 1(c).

Another line of work is the U -SVMs [27], which learns from
labeled data and the universum data, a third kind of data whose
distribution is different from neither of the positive class nor the
negative class. The universum can play the role of seeking the sub-
space for the decision function [22], but they have to be specified
explicitly and chosen carefully before the training. Hence, without
prior knowledge on the label of the given auxiliary data, e.g., data
may be mixed with universum data and relevant data, the relevant
data will also disturb the U -SVM eventually; see e.g., the dash-dot
line in Figure 1(c).

The third line of work is similar to what we consider in this pa-
per, where the unlabeled data is noisy. In [30], a graph-based semi-
supervised learning model is proposed to learn from both labeled
and unlabeled data, where the unlabeled data is assumed following
the same distribution of the targeted binary classification task and
the labeled data contain the universum data. This model needs to
explicitly indicate the label of the universum data. In [10], a semi-
supervised support vector machine is extended to learn from both
labeled and mixed unlabeled data. The proposed model is solved
by a Semi-Definite Programming (SDP) problem, whose time com-
plexity scales to O((L + U2)2(L + U)2.5) (L and U denote the
number of labeled and unlabeled data, respectively.), the same as
that of the relaxed transductive SVM by SDP [4]. In [14], the safe
semi-supervised support vector machine method is proposed to al-
leviate the effect of the noise in the unlabeled data. The proposed
method consists of two steps: 1) to train a SVM and a S3VM si-
multaneously; 2) to determine the label of a data point by the con-
fidence of the SVM or the S3VM. This method needs a postprocess
on the results and do not consider the case of mixture unlabeled
data.

In summary, previously proposed methods contain insufficien-
cy in solving the problem of semi-supervised learning with mixed
unlabeled data. Hence, in this paper, we try to alleviate the effect
of those unspecified irrelevant data and utilize them in determining
the decision function.
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Figure 2: Illustration of different loss functions, including hinge loss, symmetrical hinge loss, ε-insensitive loss, and our proposed
min loss.

3. LEARNING WITH IRRELEVANT DATA
In this section, we first define the problem setup of learning with

irrelevant data. Next, we formulate the problem and propose the
tri-class support vector machine, namely 3C-SVM. After that, we
study the properties of 3C-SVM.

3.1 Problem Statement and Formulation
Suppose we are given two sets of data, labeled data L and un-

labeled data U , where the set of labeled data consists of L labeled
samples, L = {(xi, yi)}Li=1, and the set of unlabeled data consists
of U unlabeled samples, U = {xi}L+U

i=L+1. Here, xi ∈ X ⊆ R
d,

and the label is triple, i.e., yi ∈ {−1, 0, 1}. Hence, the labeled
data consist of two sets of data, L±1 and L0, where data in L±1

follows the same distribution in the target task and they are labeled
by −1 or +1; while data in L0 are irrelevant to the target task. That
is, data with distributions different from the labeled target data are
all cast into 0-class to construct the L0 dataset. Similarly, unlabeled
data are a mixture of these data. We denote them as U = UL ∪ U0,
where data in UL follow the same distribution of ±1 data, and data
in U0 follow distributions different from the ±1 data. Normally,
the number of unlabeled data is much larger than the number of the
labeled target data, i.e., |L±1| � U , and given an unlabeled data
point, one does not know whether it comes from UL or from U0.

Here, the goal is to seek a decision boundary, fϑ(x) = w�φ(x)+
b, to classify the ±1 data well with the help of given labeled and
mixed unlabeled data, where ϑ = (w, b) and φ : Rd → R

f , is
a feature mapping function often implicitly defined by a Mercer
kernel [19, 24]. Hence, we formulate the objective as follows:

min
ϑ

λ

2
‖w‖2+

∑
xi∈L

ri�L(fϑ(xi), yi)+
∑
xi∈U

ri�U (fϑ(xi)) , (1)

where minimizing ‖w‖2 corresponds to maximizing the margin
width [24] and avoids the overfitting. The parameter λ is a trade-
off constant for the regularization term. �L(·, ·) is a loss function
to measure the empirical risk of the labeled data and �U (·) is a
loss function to measure the empirical risk of the unlabeled data.
ri, i = 1, . . . , L + U , is a ratio penalty to balance the loss on the
point xi and the regularization term.

Typically, one may choose different loss functions to measure
the empirical risk on the given data. These loss functions include

• Hinge loss: H1(u) = max{0, 1 − u}, a loss function has
been used to measure the empirical risk of labeled data in
standard SVMs [24]; see Figure 2(a).

• Symmetric hinge loss: H1(| · |), a loss function has been
applied to measure the empirical risk on unlabeled data for
S3VMs [6]; see Figure 2(b).

• ε-insensitive loss: Iε(u) = max{0, |u| − ε}, a loss func-
tion has been adopted to measure the empirical risk in Sup-
port Vector Regression [24] and the Universum data in U -
SVMs [27]; see Figure 2(c).

In our problem setup, the unlabeled data may be a mixture of da-
ta relevant or irrelevant to the target task. Actually, this assumption
matches natural to normal scenarios when the unlabeled data do
not well prepared. However, without prior knowledge, how to dis-
tinguish the relevant and irrelevant data correctly is a very difficult
task.

Here, in order to relieve the effect of irrelevant unlabeled data,
we try to utilize them based on the following two principles. First,
from logistic regression perspective [9, 18], when a data point lies
farther away from the decision boundary, the data is more likely to
be classified as data from ±1-class; while data points lie near the
decision boundary, they are less confident to be classified correctly.
Hence, ideally, data from ±1-class should lie on or outside of the
margin gap; while other irrelevant data are close to the decision
boundary. Second, the maximum entropy principle indicates that a
classifier should rely more on the labeled and relevant data, while
maximally ignore the irrelevant data. These two principles indicate
that irrelevant data should lie around the sought decision boundary.

In order to fulfill the above principles, we adopt a min loss func-
tion to measure the risk of unlabeled data, so as to separate the
unlabeled data into relevant and irrelevant data. This loss function
determines and measures the error of an unlabeled data point by
the min value of the symmetric hinge loss and the ε-insensitive loss
(see Figure 2(d)):

�min(x) = min {H1(|fϑ(xi)|), Iε(|fϑ(xi)|)} . (2)

Hence, for an unlabeled data point, when the error measured by the
ε-insensitive loss is smaller than the error measured by the sym-
metric hinge loss, we can deem it as irrelevant data; otherwise, we
set it as relevant data.

With this loss function, we can develop a novel maximum margin
classifier, named the tri-class support vector machine (3C-SVM),
as follows:

min
ϑ

λ

2
‖w‖2 +

∑
xi∈L±1

riH1(yifϑ(xi)) +
∑

xi∈L0

riIε(fϑ(xi))

+
∑
xi∈U

ri min {H1(|fϑ(xi)|), Iε(|fϑ(xi)|)} . (3)

In the above, the first two terms correspond to the formulation of
a standard SVM [24]. The third term measures the empirical risk
of L0 data, the same in U -SVMs [27]. The last term measures the
loss of unlabeled data. Hence, we can determine the class of a data
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Table 1: Relation between different models and the training data.
3C-SVM SVM S3VM U -SVM

L −1 0 1 L −1 1 L −1 1 L −1 0 1
U −1 0 1 U U −1 0 1 U

point x by the following criterion:

c(x) =

⎧⎨
⎩

+1 if fϑ(x) > 1+ε
2−1 if fϑ(x) < − 1+ε

2
0 otherwise

. (4)

The above criterion separate the data into three classes. The 0-class
data corresponds to the irrelevant data.

3.2 Properties of 3C-SVMs
We first list the generalization property of our 3C-SVM, then

outline the intuition behind 3C-SVMs through a specific case with
ri = ∞ for unlabeled data and ε = 0.

Our 3C-SVM provides a framework for the following popular
maximum margin classifiers:

1. A standard SVM formulation [24] is a special case of the 3C-
SVM. This can be attained by setting ri to zero for the third
and fourth terms in (3). When only labeled data are given in
the training set, we can adopt this formulation.

2. An S3VM formulation [5] is a special case of the 3C-SVM.
This can be achieved by setting ri to zero in the third term
and using only symmetrical hinge loss to measure the empir-
ical risk of unlabeled data in the fourth term in (3). When
only labeled data and relevant unlabeled data are given, we
can use this formulation.

3. The 3C-SVM also includes a U -SVM [27]. It can be easily
obtained by setting ri to zero in the fourth term of (3). This
formulation works when only labeled data and universum da-
ta are given.

Hence, our 3C-SVM, a general maximum margin semi-supervised
learning formulation, includes standard SVMs, S3VMs, and U -
SVMs as its special cases. A summarization is shown in Table 1.

Intuitively, our 3C-SVM may not work for all the cases since it
seems that it requires the irrelevant data falls close to the decision
function. However, we claim that we can tackle this problem by
mapping the original data to a suitable space through the kernel
trick. We then study why the 3C-SVM possibly works and give an
insight of the model in the following theorem:

THEOREM 1. A 3C-SVM with ri = ∞ for unlabeled data and
ε = 0 is equivalent to one of the following two cases: 1) training
a general S3VM to keep the unlabeled data falling on or out of
the margin gap with only one or non of the unlabeled data in the
decision boundary; or 2) separating the unlabeled data into two
sets, UL and U0 with |U0| ≥ 2, and training a general S3VM on
the training data projected onto the orthogonal complement of span
{φ(xj) − φ(x0), xj ∈ U0}, where x0 is an arbitrary data point
from U0, while keeping the unlabeled data in the set of UL falling
on or out of the margin gap.

Proof: ri = ∞ for U data and ε = 0 imply that the min term in
the fourth term of (3) vanish and the optimal solution of w and b in
(3) is attained when one of the following conditions is fulfilled: (a)
|w�φ(xj) + b| ≥ 1, or (b) w�φ(xj) + b = 0. Hence, the above
conditions set up the criterion of separating the unlabeled data into

two sets, UL and U0, where data in UL satisfy the condition of (a)
and data in U0 satisfy the condition of (b).

First, if |U0| = 0, or 1, it leads to the result of case 1) in the above
theorem. Here, a general S3VM means that it is a generalization of
the S3VM and the U -SVM.

Next, if U0 contains at least two samples. For the data xj from
U0, we have w�φ(xj) + b = 0. Hence, picking arbitrary data x0

from U0, we obtain w�(φ(xj)−φ(x0)) = 0. That is, w is orthog-
onal to span {φ(xj)− φ(x0), xj ∈ U0}. Now, let PU⊥

0
denote an

orthogonal project on the orthogonal complement of the mapped set
U0, we have w = PU⊥

0
w, w�w = w�P�

U⊥
0
PU⊥

0
w = w�w, and

w�xi = w�P�
U⊥
0
xi = w�PU⊥

0
xi. This means that the optimal

w is sought by training a general S3VM on the projected labeled
data and UL data with projection by PU⊥

0
while keeping the condi-

tion (a) valid, or other unlabeled data falling on or out the margin
gap.

Theorem 1 clearly shows that the optimization of our proposed
model eventually is to find the most suitable subspace in which the
margin is maximized while the overall empirical risk is minimized.
The irrelevant data play the role of finding the subspace.

4. SOLUTION AND COMPUTATION
Due to the non-convexity of the min loss function, the formu-

lation of the 3C-SVM in (3) is non-convex in general. Moreover,
there are two difficulties to be solved in the formulation, the min
term and the absolute operation on the unlabeled data. In the fol-
lowing, we show how to solve these two difficult problems.

4.1 Elimination of Min Terms and Absolute
Values

First, we introduce decision variables, dk ∈ {0, 1}, to remove
the min term. This trick is similar to the L1-norm S3VM in [3]. We
then transform the optimization into a mixed integer programming
problem as follows:

min
ϑ,d

λ

2
‖w‖2 +

∑
xi∈L±1

riH1(yifϑ(xi)) +
∑

xi∈L0

riIε(fϑ(xi))

+
∑

xkL∈U
rkL H1(|fϑ(xkL)|+D(1− dk))︸ ︷︷ ︸

Q1

+
∑

xkL∈U
rkL Iε(|fϑ(xkL)| −Ddk)︸ ︷︷ ︸

Q2

, (5)

where kL = k + L, D > 0 is a suitable constant making Q1 = 0
when dk = 0 and Q2 = 0 when dk = 1. That means, when
dk = 0, the error is counted from Q2 and the unlabeled data are
classified as 0-class and its error is measured by the ε-insensitive
loss function; when dk = 1, the error is incurred by Q1 and the
unlabeled data are classified as one of the ±1-class, where its error
is measured by the symmetrical hinge loss function.

Next, we deal with the absolute terms in the loss function by
considering the properties of the loss functions. The shifted sym-
metrical hinge loss function in Q1 can be abstracted as H1(|u|+a),
or H1(|u| + a) = max{0, 1 − |u| − a} = H1−a(|u|). It can be
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approximated by a symmetrical loss, which is similar to the ramp
loss used in [6, 26], as follows:

H1(|u|+ a) ≈ H1−a(u)−Hκ(u) +H1−a(−u)−Hκ(−u) .

The shifted ε-insensitive loss function in Q2 can be transformed
to another symmetrical loss as follows:

Iε(|u| − a) = H−ε−a(−u) +H−ε−a(u) .

Due to the symmetry of both loss functions, we introduce new pair-
data for the unlabeled data to simplify the expression as [6]. The
new pair-data are

xkL = xk+L, ykL = 1,

xkLU = xk+L, ykLU = −1, k = 1, . . . , U,

where kL means k + L and kLU means k + L+ U .

4.2 Concave-Convex Procedure (CCCP)
Hence, we can transform the problem in (5) into Qκ(ϑ, d),

which is the summation of two terms, Qvex(ϑ, d) and Qκ
cav(ϑ).

They are defined as follows

Qvex(ϑ, d)

=
λ

2
‖w‖2 +

∑
xi∈L±1

riH1(yifϑ(xi)) +
∑

xi∈L0

riIε(fϑ(xi))

+
U∑

k=1

rkLH1̃(ykLfϑ(xkL)) +
U∑

k=1

rkLH1̃(ykLUfϑ(xkLU ))

+

U∑
k=1

rkLHε̃(ykLfϑ(xkL)) +

U∑
k=1

rkLHε̃(ykLUfϑ(xkLU ))) ,

Qκ
cav(ϑ) = −

L+2U∑
j=L+1

rjHκ(yjfϑ(xj)) .

where 1̃ = 1−D(1− dk) and ε̃ = −ε−Ddk.
Note that the above concave term, Qκ

cav , keeps the non-convexity
of the model following from the ramp loss in approximating the Q1.
The optimization in Qκ(ϑ, d) is a summation of a convex term
and a concave term, or difference of convex programming. Hence,
it can be solved by the concave-convex procedure (CCCP) [29], a
technique has been adopted in large scale transductive SVMs [6]
and SVMs on data with missing values [23].

In the CCCP, we need to use the first order Taylor expansion to
approximate the concave term of Qκ

cav . Since the variable d does
not appear in the concave term, we only need to apply the first order
Taylor expansion of Qκ

cav at ϑt. Hence, we can seek the optimal
variables by solving a sequence of the following optimization prob-
lem:

min
ϑ,d

(
Qvex(ϑ,d) +

∂Qκ
cav(ϑ

t)

∂ϑ
· ϑ

)
, (6)

The above optimization is a mixed integer optimization problem
since d is an integer vector. Here, we adopt a standard routine
to solve the integer programming problem [28]: 1) relaxing the
integer variable to a real variable, then solve the whole optimization
together; 2) rounding the corresponding variable to get its integer
solution.

For 3C-SVM in (6), we relax the decision variable dk from {0, 1}
to [0, 1] and solve the optimization problem in (6) first. We then de-
termine the value of dk by its definition, the error incurred is less

when the data is assigned to the associated class, as follows

dk =

{
1 if ξk ≤ ξ∗k
0 otherwise

, (7)

where ξk = H1(|fϑ(xkL)|) and ξ∗k = Iε(|fϑ(xkL)|), k = 1, . . . , U .
To simplify the first order approximation of the concave term

in (6), we define

μk+s=yk+s
∂Qκ

cav(ϑ)

∂fϑ(xk+s)
=

{
rk+s if yk+sfϑ(xk+s) < κ

0 otherwise
, (8)

for those unlabeled samples xk+s with dk = 1, where k = 1, . . . , U ,
and s is L or L+U . Hence, the first order Taylor expansion of the
concave term is then expressed as

∂Qκ
cav(ϑ

t)

∂ϑ
· ϑ =

L+2U∑
j=L+1

μjyjfϑ(xj).

Now we turn to solve the relaxed optimization in (6) and sum-
marize the result in the following theorem:

THEOREM 2. The dual problem of the relaxed optimization in (6)
is a Quadratic Programming (QP) problem as follows:

max
α,α∗ − 1

2λ
[α;α∗]�Ω[α;α∗] + ��[α;α∗] (9)

s.t. 0 ≤ α,α∗ ≤ r,

Ae [α;α∗] = μ�Y•2U ,

A[α;α∗] ≤ 0 ,

where the Lagrangian multipliers [α;α∗] consists of an |L0| +
L+4U -dimensional vector. The matrix Ω on the quadratic term is

defined as Ω =

[
Q|L0|+L+2U,|L0|+L+2U Q|L0|+L+2U,2U

Q2U,|L0|+L+2U Q2U,2U

]
,

and the coefficient for the linear term is

� =
1

λ

[
Q2U,|L0|+L+2U

Q2U,2U

]
μ+

⎡
⎢⎢⎢⎣

−ε12|L0|
1L−|L0|

(1−D)12U

−ε12U

⎤
⎥⎥⎥⎦ ,

Ae = [Y;Y•2U ] and A = [0U,L, − IU , − IU , IU , IU ], Y is a
vector containing the label value of all training data including the
expanding auxiliary labels, and Y•2U denotes the last 2U -element
in Y.

The above theorem can be derived based on the standard Lagrangian
multiplier method, where Eq. (9) corresponds to the dual form of
the optimization on (6).

After solving the QP problem in (9), we obtain w as a linear
combination of the dual variables, α and α∗,

w =
1

λ

⎛
⎝ L+2U∑

i=−|L0|,i �=0

αiyiφ(xi) +

L+2U∑
i=L+1

(α∗
i − μi)yiφ(xi)

⎞
⎠ ,

(10)
and the variable b corresponds to the dual variable of the equality
constraint. The form of the weight we obtained is similar to that
in [2]. We can also define the corresponding support vectors. They
are those labeled data xi’s with non-zero αi values and unlabeled
data xj’s with non-zero (αj + α∗

j − μj) values.
Hence, we obtain Algorithm 1 to solve the 3C-SVM algorithm.

Recalling Theorem 1, we can know that, intuitively, the Algorith-
m 1 works in the following way: 1) first finding out those unla-
beled data which are certainly outside the margin gap, removing
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them from the training set; 2) then training a U -SVM model on the
labeled data with the rest unlabeled data.

Moreover, the convergence of Algorithm 1 is guaranteed by the
following theorem:

THEOREM 3. The algorithm 1 converges in a finite number of
iterations.

Proof: First, we prove that the objective Qκ decreases in each
iteration. From the CCCP, we have

Qvex(ϑ
t+1,d)+∂Qκ

cav(ϑ
t) · ϑt+1

≤Qvex(ϑ
t,d) + ∂Qκ

cav(ϑ
t) · ϑt (11)

Qκ
cav(ϑ

t+1)≤Qκ
cav(ϑ

t)+∂Qκ
cav(ϑ

t) · (ϑt+1−ϑt), (12)

where ∂Qκ
cav defines the partial derivative of Qκ

cav with respect to
ϑ. Hence, summing (11) and (12) together, we get Qκ(ϑt+1,d) ≤
Qκ(ϑt,d) for the same d.

After rounding, the objective value Qκ is Qκ(ϑt+1,dt+1). It
may be greater than Qκ(ϑt,dt). In order to avoid this case, we
restore dt+1 to dt and seek ϑt+1 again by minimizing Qκ with
fixed d. This additional step guarantees to decrease the objective
of Qκ at each step.

Second, the variable μ can only take a finite number of distinct
values. The algorithm converges in several steps since Qκ decreas-
es in each iteration and the inequality (12) is strict unless μ remains
unchanged.

Algorithm 1 CCCP for 3C-SVMs
Initialization:
t = 0

Calculate ϑ0 = (w0, b0) from a U -SVM solution on the la-
beled/unlabeled data
Compute

μ0
i =

{
ri if yifϑ0 (xi) < κ and i ≥ L+ 1

0 otherwise
repeat

t← t+ 1
Solve the optimization in (9) to obtain ϑt

Update dt from (7)
Update μt from (8)
while Qκ(ϑt,dt) > Qκ(ϑt−1,dt−1) do

Restore dt to dt−1

Update μt−1 from (8) with ϑt

Solve the optimization in (9) to obtain ϑt

Update dt from (7)
Update μt from (8)

end while
until |μt+1 − μt| ≤ ε

Remark Note that the local optimal issue of the 3C-SVM has
been alleviated by its initialization and the additional step to avoid
increasing the rounded objective function is not needed usually.
Our observation from the experimental results shows that our 3C-
SVM works well using current initialization and the rounded ob-
jective function, Qκ(ϑt,dt), actually decreases in each step; see
empirical study in Section 5.

Complexity Analysis Algorithm 1 has to solve a sequence of
QPs in (9). In practice, we find that the number of iteration steps is
a constant, usually less than 10; see Figure 4. Thus, training a 3C-
SVM is equivalent to solving a constant number of QP problems
with |L0| + L + 4U variables. Therefore, the 3C-SVM algorith-
m has a worst case complexity of O((|L0| + L + 4U)3) [8, 19].
Possible tricks may be applied to speed up the 3C-SVM algorithm
in a quadratic scale [6, 19]. Furthermore, by exploring the sparsity
structure among the dual variables, we can reduce the number of

variables to the number of non-zero variables. This can reduce the
computation cost of 3C-SVM largely.

4.3 Balance Constraint
In the formulation of (3), we do not consider the balance con-

straint for the unlabeled data. Actually, balance constraint can be
easily incorporated in our formulation.

There are two observations: 1) Data from UL need the balance
constraint [25]; 2) Data from UL0 do not need the balance con-
straint. By Theorem 1, ideally, the decision values of UL0 data
approach to zero. Hence, summarizing the decision values of all
unlabeled data, we can obtain the same balance constraint as that
used in [7],

1

U

L+U∑
t=L+1

fϑ(xt) =
1

L

L∑
i=1

yi. (13)

This constraint can be easily included in the optimization of (6) and
rewrite into kernel form in (9) similar to the trick in [7].

It is noted that the balance constraint in (13) is affected by the
summation of yi. A possible better setting for the balance con-
straint is 1

U

∑L+U
t=L+1 fϑ(xt) = c, where c is a user-specified con-

stant related to the portion of the number of the unlabeled data
assigning to the positive class [5]. However, it again introduces
another hyperparameter. Actually, our empirical evaluation find-
s that balance constraint is insensitive to the model performance.
One reason may be that the U0 data has played the role of balance
constrant in the model.

5. EXPERIMENTS
In this section, we evaluate our proposed 3C-SVM algorithm on

both synthetic and real-world datasets and compare it with SVM,
S3VM [6], and U -SVM [27]. Our 3C-SVM algorithm is imple-
mented in Matlab 7.3 and the QP problem is solved by a general
optimization toolbox, MOSEK1. In the experiments, we try to in-
vestigate the following questions: (1) What is the performance of
3C-SVM comparing with other three maximum-margin based al-
gorithms? (2) What is the trade-off on the parameters D and ε on
3C-SVM? (3) What is the convergence of 3C-SVM?

Table 2: Description of data
Dataset d L U U0

Synthetic 50
20, 50

500 Two designed cases
200, 500

USPS 256 10 100, 1000 Except "5" and "8"

MNIST 784 10 100, 1000 Except "5" and "8"

5.1 Synthetic Datasets
The synthetic data is a 50-dimensional dataset. The ±1-class

are generated following the scheme of [22], where the means are
c±i = ±0.3 for i = 1, . . . , 50 and variance values are σ2

1,2 = 0.08
and σ2

3,...,50 = 10. In this setting, we can generate two Gaussians
with the Bayes risk being approximately 5%. Two kinds of U0 data
similar to those in [22] are generated:

• For the first kind, it is a zero mean with σ2
1,2 = 0.1 and

σ2
3,...,50 = 10. It contains a zero mean, where the optimal

Bayesian decision boundary passes through it, but it contains
larger variances on the first two dimensions of the data than
those of the ±1-class data.

1http://www.mosek.com
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Figure 3: The performance of four algorithms on toy datasets with different combinations of mixed unlabeled data. The results of
3C-SVMs outperform the corresponding models with 95% significant level on paired t-test are marked by circles.

• For the second kind, the variance values are the same as the
±1-class data, but the mean is t

2
· (c+ − c−) (t = 0.5),

shifted a little bit from the origin, where the optimal Bayesian
classifier passes through.

It is noted that the optimal decision boundary is a linear classifier
for the synthetic datasets. Hence, we employ the linear kernel in
fitting the data.

As reported in Table 2, we test the number of labeled data from
{20, 50, 200, 500} and vary the proportion of the mixed unlabeled
data by (τU, (1− τ)U), where τU data are randomly chosen from
±1-class and (1− τ)U data are randomly chosen from U0 data. τ
is tested in {0.1, 0.5, 0.9}. We then evaluate the performance of
the model on a separated test data with 500 data samples.

In the comparison, there are different parameters for different
models need to be tuned. They include:

• the soft-margin hyperparameter C for SVM [24];

• the soft-margin hyperparameter, C, the trade-off constant for
the loss of unlabeled data, CU , and the parameter for the ε-
insensitive loss function, ε, in U -SVM [22, 27];

• the soft-margin hyperparameter, C, the trade-off constant for
the loss of unlabeled data CU , and the approximate parame-
ter for ramp loss, κ, in S3VM.

A problem of 3C-SVM is that its parameters are large and they
will affect the model performance. These parameters in 3C-SVM
not only include C in SVM, CU in U -SVM and S3VM, ε in U -
SVM and κ in S3VM, but also include the parameter D. It is ter-
rible to tune all the parameters, e.g., by cross validation, togeth-
er. To resolve this problem, we adopt a simple way to tune them.
More specifically, we first tune the parameters in SVM, U -SVM,
and S3VM on the test set, individually. Next, we set the parameter-
s of our 3C-SVM based on the obtained optimal parameters from
other models. That is, λ is set to 1

C
, ri = 1 for labeled data and

ri =
CU
C

for unlabeled data, where C and CU are the optimal one
corresponds to U -SVM since this set of parameters obtains better
performance than that of S3VM. The parameters ε and κ are set the
same as the optimal value from the U -SVM and S3VM, respective-
ly. D is set to 2 for simplicity since the results have shown that our
3C-SVM can achieve very good performance.

Figure 3 reports the average performance (10 runs) of all four
algorithms in the above all cases. It is shown that 3C-SVMs con-
sistently attain the best results. U -SVM achieves similar perfor-
mance as 3C-SVM when the number of U0 data is large. However,
its performance decreases when the number of U0 data decreases
and cannot beat SVM when the size of the labeled training data
is 500. Similar trend is obtained for S3VM. On the contrary, our
3C-SVMs keep nearly the same accuracies and outperform U -SVM
and S3VM when the number of labeled training data is large.

Convergence Study. We also study the convergence of 3C-SVM
on the synthetic dataset with different settings (L = 20/200, U =
500). Figure 4 shows the one trial result on the objective function
value and test errors at each CCCP iteration. The figures show that
the 3C-SVM algorithm decreases the objective function value and
the test error rates decrease correspondingly at each iteration. At
the same time, 3C-SVM tends to converge in only a few iterations,
less than 10.

5.2 Results on Real-World Handwritten Digit
Datasets

The USPS dataset and the MNIST dataset are two popular bench-
mark handwritten digit datasets which have been used in litera-
ture to validate the corresponding classification models [6, 19].
As reported in Table 2, each image in USPS was normalized and
centered with the size of 16 × 16, which forms 256-dimensional
data (see examples in Figure 1(a)). This dataset contains 9,298
grayscale handwritten digit images, 7,291 of which are used as the
training set, while the remaining 2,007 are used as the test set. The
MNIST dataset consists of a training set of 60,000 digits and a test

943



0 2 4 6 8
0

20

40

60

80

100

21

27

33

39

45

52

T
es

t E
rr

or
s

# of Iterations

O
bj

ec
tiv

e 
V

al
ue

s
20 Labeled Data

 

 
Objective Values
Test Errors (%)

0 2 4 6 8 10
50

60

70

80

90

100

8

17

25

33

42

50

T
es

t E
rr

or
s

# of Iterations

O
bj

ec
tiv

e 
V

al
ue

s

200 Labeled Data

 

 
Objective Values
Test Errors (%)

Figure 4: One trial result on the value of the objective function and test error during the CCCP iterations of training 3C-SVM on
synthetic dataset with different number of labeled data. 3C-SVM converges only by a few iterations, less than 10.

set of 10,000 digits (see examples in Figure 1(b)). The digits are
grayscale handwritten images normalized and centered in 28× 28,
which forms 784-dimensional data. We have normalized each pixel
value in an image to the range of −1 and 1.

Similar to the setup in [22, 27], we employ digits "5" and "8" to
construct the ±1-class data, but differently, we utilize all other dig-
its as 0-class. In the evaluation, we test the number of labeled data
in 10 and the number of unlabeled data is 100 and 1000, while the
proportion of the mixed unlabeled data is set as (τU, (1− τ)U),
where where τU data are randomly chosen from digits "5" and "8"
and (1− τ)U data are randomly chosen from other digits. τ is test-
ed in {0.1, 0.5, 0.9}. The performance of the models is evaluated
on the test set of digits "5" and "8".

Here, since the data are linearly nonseparable in the original fea-
ture space [19], we employ the RBF kernel on all the models. That
is, K(x,y) = exp(−γ‖x− y‖2), is adopted as the kernel, where
γ is the width of the RBF kernel. Since we also need to tune an
additional parameter, this makes it more difficult in tuning the pa-
rameters for 3C-SVM, and for other three models. Similar to the
procedure in [5], we seek the optimal parameters on a separate val-
idation set by maximizing the performance on the test set. More
specifically, the parameters are sought as follows:

• For SVM, C is selected from {10−1, 1, 10, 102, 103}. The
width of the RBF kernel is set to γ = δ× 1

d
as [19], where d

is the number of data dimension, i.e., 256 for USPS and 784
for MNIST. δ is selected from { 1

32
, 1
16
, 1
8
, 1
4
, 1
2
, 1, 2, 4, 8}.

• For U -SVM, C is tested in the same range of SVM and CU
is tested from {10−1, 1, 10, 102}, where we find that when
CU is greater than 100, the model performance cannot be
increased. The kernel parameter, γ, is tested as the same
cases of SVM. ε is test in {0.01, 0.1, 0.2, 0.5, 0.8, 1}.

• For S3VM, C, CU , and γ are tested the same as U -SVM. κ
is tested in {0.01, 0.1, 0.2, 0.5}.

• For 3C-SVM, we first fix ε as the optimal one obtained from
U -SVM and κ as the optimal one obtained from S3VM. We
then set D = 2 and test 3C-SVM by the optimal parameters
from U -SVM and by those from S3VM. Our objective is to
see which set of parameters can attain better performance.
The empirical study indicates that adopting the parameters
C, CU , and γ from U -SVM, our 3C-SVM can achieve better
results. Hence, we employ C, CU , and γ, which corresponds
to the optimal ones from U -SVM, in the experiment. In addi-
tion, we find that κ does not affect the result too much when

it is around 0.1. So we do not specifically tune it in the ex-
periment. After that, we tune ε in the same cases of U -SVM
and D in {1, 2, 10} simultaneously.

Table 3 reports the average (10 runs) accuracies of four algorithms
on the two handwritten digit datasets. 3C-SVM consistently attains
better results in all cases. By examining the details of the results,
we have the following observations:

• For SVM, since the model is optimized on the test datasets,
it achieves satisfactory results. In practical, when we has
limited number of labeled data, it is usually difficult to obtain
good performance without the help of unlabeled data.

• For S3VM, it is interesting to find that it is less sensitive to
the proportion of the UL data and U0 data. For USPS, the
performance of S3VM does not change when the number of
unlabeled data increases from 100 to 1000; while for MNIST,
the performance of S3VM is even worse in the case of U =
1000 than the case of U = 100. This indicates that the mixed
unlabeled data actually hurts S3VM.

• For U -SVM, the performance decreases slightly as the num-
ber of U0 data decreases. This indicates that the U0 data ac-
tually plays the effect on helping U -SVM. Similar to S3VM
on MNIST, U -SVM also achieves worst performance when
the number of unlabeled data increases in the USPS dataset.
The decay may be due to the effect of the UL data.

• For 3C-SVM, it attains the best results and outperforms SVM
for all cases, S3VM for five cases on USPS and two cases on
MNIST, and totally seven cases on U -SVM for both datasets.
It is observed that the performance of 3C-SVM also decreas-
es slightly as the number of U0 data decreases. The reason
lies that we employ the same regularization parameters of
U -SVM in the experiment.

5.3 Sensitivity Analysis
In the experiment, we also conduct sensitivity analysis on two

parameters, ε and D, in 3C-SVM. The analysis of the hyperparam-
eter, e.g., C, CU , γ, can be referred to [6, 19]. For κ, since it is
insensitive when it is about 0.1, we do not study its effect in this
section.

In the test, we change ε in {0, 0.01, 0.1, 0.2, 0.5, 0.8, 1.0} and
D in {1, 2, 10} and test on the case of balance mixed unlabeled
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Table 3: The average (10 runs) accuracies (%) of SVMs, S3VMs, U -SVMs, and 3C-SVMs on the USPS and the MNIST ("5" vs "8")
datasets for different combinations of mixed unlabeled data. The p-values of paired t-test on 3C-SVMs against other algorithms are
given in brackets. Significant improvement with 95% confidence level and the best accuracy are in bold.

Dataset Setting Algorithm τ = 0.1 τ = 0.5 τ = 0.9

USPS

SVM 87.1±1.7 (0.5) 87.1±1.7 (1.2) 87.1±1.7 (0.8)

L = 10 S3VM 87.6±4.2 (4.4) 87.6±4.2 (5.1) 87.6±4.2 (5.0)

U = 100 U -SVM 88.9±3.1 (17.1) 88.8±3.1 (25.1) 88.6±3.1 (10.2)

3C-SVM 89.2±2.6 88.8±3.1 88.8±3.2

USPS

SVM 87.1±1.7 (0.4) 87.1±1.7 (0.9) 87.1±1.7 (0.9)

L = 10 S3VM 87.6±4.2 (4.8) 87.6±4.2 (4.2) 87.6±4.2 (4.1)

U = 1000 U -SVM 88.9±2.7 (6.7) 88.0±3.2 (4.9) 87.2±3.3 (3.2)

3C-SVM 89.3±2.7 89.1±2.9 89.1±3.0

MNIST

SVM 71.0±9.3 (0.5) 71.0±9.3 (0.8) 71.0±9.3 (0.9)

L = 10 S3VM 76.3±8.0 (17.8) 76.3±8.0 (22.1) 76.3±8.0 (30.2)

U = 100 U -SVM 74.0±8.6 (3.7) 73.4±8.2 (2.9) 73.2±8.2 (2.2)

3C-SVM 76.8±8.4 76.7±8.0 76.3±7.6

MNIST

SVM 71.0±9.3 (0.1) 71.0±9.3 (0.2) 71.0±9.3 (0.6)

L = 10 S3VM 75.9±7.9 (4.8) 75.9±7.9 (7.8) 75.9±7.9 (0.6)

U = 1000 U -SVM 74.0±8.4 (1.7) 73.9±8.1 (1.5) 73.3±7.9 (9.2)

3C-SVM 77.0±7.4 76.9±7.9 76.5±8.0

data (i.e., τ = 0.5). Figure 5 shows the changing trend with ε and
D, respectively. It should be noted that the best results in Figure 5
also refer to the results in fifth column in Table 3. By examining
these results, we have the following observations:

• 3C-SVM achieves the best performance on USPS when ε =
1.0, D = 2 and on MNIST when ε = 0.5, D = 2, respec-
tively.

• For USPS dataset, when ε increases, the performance of 3C-
SVM increases gradually and it achieves the best result when
ε = 1.0, i.e., taking all unlabeled data as irrelevant data.
For MNIST data, the performance increases gradually until
ε = 0.5, then it decreases gradually.

• In terms of the effect of D, for both datasets, the performance
of 3C-SVM increases gradually as D increases and decreases
dramatically when D = 10. The best results are obtained
when D = 2 for both datasets.

6. CONCLUSION
In this paper, we have proposed a novel maximum margin semi-

supervised classifier, named the tri-class support vector machine,
to learn from mixed unlabeled data. More specifically, we intro-
duce a new min loss function to distinguish the mixed unlabeled
data into relevant and irrelevant data based on which error occurred
is smaller when assigning the data to the associated class. The min
loss function can therefore achieve the maximum entropy princi-
ple and force the irrelevant data close to the decision boundary. In
generalization, 3C-SVM includes several popular maximum mar-
gin classifiers, such as SVMs, S3VMs, and U -SVMs, as its spe-
cial cases. Furthermore, we provide detailed theoretical analysis to
show the role of irrelevant data and why the model works. More-
over, in implementation, we transform 3C-SVM from an integer
programming problem to a sequence of QP problems. The approx-
imation by the concave-convex procedure has speeded up the model

largely and finally yielded the same worst case time complexity as
that of S3VMs.

This work opens several interesting research issues. One worthy
direction is to further speed up the model by warm-starting or by
exploiting the sparsity structure of the solution. The other direction
is to design an efficient way to tune the model parameters or to de-
sign a scheme to automatically learn the model parameters. We will
also consider to extend the model to solve multi-class classification
tasks and verify its performance.
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