
CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

CSCI2100B Data Structures
Heaps

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering
The Chinese University of Hong Kong

mailto:king@cse.cuhk.edu.hk
mailto:king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king
http://www.cse.cuhk.edu.hk/~king

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Introduction

• In some applications, a simple queue may not be the
best strategy to complete jobs.

• Printer queue

• Multiprocessing queue

• Problems

• Sometimes it seems that small jobs take longer

• Important jobs can’t be done first

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Priority Queues (Heaps)

• Different from a simple queue where one
adds an entry at the end and takes an entry
at the front,

• A priority queue takes an entry that
satisfies some special properties among all
the entries and place it at the front so to
be taken out first.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• In a job queue, there are many algorithms that
can be implemented to accomplish tasks.

• first-come-first-serve

• shortest-job-first

• longest-job-first

• priority-first

• combination of the above

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Priority Queue

• A priority queue consists of entries, each of which
contains a key called the priority of the entry.

• A priority queue has only two operations other than the
usual creation, size, full, and empty operations:

• Insert--inserts an entry.

• Delete_Min--finds, passes back, and removes the entry
having the highest priority.

• If entries have equal priorities, then the first entry
inserted is removed first.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Model of a Priority Queue

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Implementation of a Priority Queue

• Several possible implementations are possible.

• Simple linked list

• A sorted contiguous list

• An unsorted list

• Binary search tree

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Binary Heap (or just Heap)

• Heaps have two properties

• Structure property

• Heap order property

• As with AVL trees, an operation on a heap
can destroy one of the properties, so a
heap operation must not terminate until all
heap properties are in order.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Structure Property

• A heap is a binary tree that is completely
filled, with the possible exception of the
bottom level, which is filled from left to
right.

• Such a tree is known as a complete binary
tree.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Observation

• A complete binary tree of height h has between
2h and 2h+1 - 1 nodes. 2h

• This implies that the height of a complete binary
tree is ⎣log n⎦, which is clearly O(log n).

• Because a complete binary tree is so regular, it
can be represented in an array and no pointers
are necessary.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example of an Implementation

• For any element in array position i, the left child is in position 2i, the right
child is in the cell after the left child (2i + 1), and the parent is in position
⎣i/2⎦.

• Thus not only are pointers not required, but the operations required to
traverse the tree are extremely simple.

• Problem is the estimation of the maximum heap size is required in
advance.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Heap Order Property

• The property that allows operations to be
performed quickly is the heap order property.

• For a heap, the smallest element should be at the
root so that the operation to remove will be quick.

• By the heap order property, the minimum element
can always be found at the root.

• Thus, we get the extra operation, find_min, in
constant time, O(1).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Heap Order Property
• Since we want to be able to find the minimum quickly, it

makes sense that the smallest element should be at the
root.

• If we consider that any subtree should also be a heap,
then any node should be smaller than all of its
descendants.

• Applying this logic, we arrive at the heap order property.

• In a heap, for every node X, the key in the parent of X is
smaller than (or equal to) the key in X, with the obvious
exception of the root (which has no parent).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

• Two complete trees (only the left tree is a heap).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Heap Operations - Insert

• We create a hole in the next available location.

• If x can be placed in the hole without violating the
heap order, then we do so and are done.

• Otherwise we slide the element that is in the hole's
parent node into the hole, thus bubbling the hole up
toward the root.

• We continue this process until x can be placed in the
hole.

• This strategy is known as a percolate up.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-Insert 14

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Observation

• The time to do the insertion could be as much
as O(log n) if the element to be inserted is the
new minimum and is percolated all the way to
the root.

• It has been shown that 2.607 comparisons are
required on average to perform an insert.

• The average insert moves an element up 1.607
levels.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Heap Operations - Delete

• Deletions are handled in a similar manner as
insertions.

• Finding the minimum is easy; the hard part is
removing it.

• When the root is removed, a hole is created.

• We then need to slide the smaller of the hole's
children into the hole, thus pushing the hole
down one level.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Deletion

• We repeat this step until x can be placed in the
hole.

• Thus, our action is to place x in its correct spot
along a path from the root containing minimum
children.

• The rearranging will typically take less than
O(log n).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Other Heap
Operations

• Finding the minimum can be performed in constant time.

• No help in finding the maximum.

• There is no ordering information.

• Decrease_Key (P,Δ)

• Increase_Key(P,Δ)

• Remove(I)

• Build_Heap

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Observation on Build_Heap

• Takes n keys and places them into an empty heap.

• We could perform n successive Inserts.

• This will take O(n) average but O(n log n) worst-
case.

• One other way is to place the n keys into the tree
in any order.

• Then perform Percolate_Down on half of the
nodes.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-Initial,
Percolate_Down(7)

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-Percolate_Down(6),
Percolate_Down(5)

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-Percolate_Down(4),
Percolate_Down(3)

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Example-Percolate_Down(2),
Percolate_Down(1)

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Back to the k Selection Problem

First Algorithm

• We now could use what we just learned and apply it
to find out the k-th smallest or largest element in a
set.

• To build a heap, it takes O(n) average and O(n log n)
for worst case scenario.

• To delete a heap, it take O(log n).

• Hence, the total running time is O(n + k log n).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

More

• For small k then the running time
dominated by the heap building operation
and is O(n).

• For larger values of k, the running time is
O(k log n) time.

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

Second Algorithm

• We could also build a smaller heap tree of
k elements.

• It then compares the remaining entries
against the heap. If the new element is
larger, then it replaces the root or else it is
being discarded.

• To build a k element heap, the time will be
O(k).

CSC2100 Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.

More

• The time to process each of the remaining
elements is O(1), to test if the element goes
into the heap, plus O(log k), to delete the root
and insert the new element if this is necessary.

• Thus, the total time is O(k + (n-k) log k) = O(n
log k).

• This algorithm also gives a bound of n log n for
finding the median.

