
“output” — 2019/7/12 — 21:01 — page 1 — #1i
i

i
i

i
i

i
i

Briefings in Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: XX XX XXXX
Problem solving protocol

Problem solving protocol

Flexible k-mers with variable-length indels for
identifying binding sequences of protein dimers
Chenyang Hong 1, Kevin Y. Yip 1,2,3,4,∗

1Department of Computer Science and Engineering, 2Hong Kong Bioinformatics Centre, 3CUHK-BGI Innovation Institute of
Trans-omics, 4Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

∗To whom correspondence should be addressed.

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Many DNA-binding proteins interact with partner proteins. Recently, based on the high-throughput CAP-
SELEX method, many such protein pairs have been found to bind DNA with flexible spacing between their
individual binding motifs. Most existing motif representations were not designed to capture such flexibly
spaced regions. In order to computationally discover more co-binding events without prior knowledge
about the identities of the co-binding proteins, a new representation is needed. We propose a new class
of sequence patterns that flexibly model such variable regions, and corresponding algorithms that identify
co-bound sequences using these patterns. Based on both simulated and CAP-SELEX data, features
derived from our sequence patterns lead to better classification performance than patterns that do not
explicitly model the variable regions. We also show that even for standard ChIP-seq data, this new class
of sequence patterns can help discover co-bound events in a subset of sequences in an unsupervised
manner. The open-source software is available at https://github.com/kevingroup/glk-SVM.
Key words: Protein dimers; Sequence motifs; CAP-SELEX; Transcription factors

1 Introduction
DNA sequence motifs are commonly represented by a position weight
matrix (PWM) [1], which provides information about the nucleotide
distribution at each position, usually in the form of log likelihood when
the nucleotide frequencies in the motif are compared to background
frequencies. A basic assumption behind the PWM is that different positions
in the motif are statistically independent, which does not hold in many
situations. Various alternative representations have been proposed without
making this assumption, such as Markov models [2; 3], generalized PWMs
considering higher-order nucleotide combination frequencies [4; 5; 6], and
feature-based models.

Chenyang Hong is a PhD student in Department of Computer Science
and Engineering at The Chinese University of Hong Kong. He studies
sequential pattern analysis.
Kevin Y. Yip is an associate professor in Department of Computer Science
and Engineering at The Chinese University of Hong Kong. He studies
transcriptional regulation and human diseases.

Feature-based models derive features from the input sequences and use
them to compute pairwise similarities among the sequences, which can
then be summarized into a kernel matrix. One of the most fundamental
kernels for biological sequences is the spectrum kernel, which uses k-
mers as features [7]. As in other uses of k-mers, the choice of the word
size k is critical. If k is set too small, the k-mers may not be informative
enough to capture key motif features; If k is set too large, the total number
of features would be huge, leading to data sparseness and potential over-
fitting. To use a large word size without capturing features too specific to
the training data, one way is to allow mismatches in k-mer matching [8],
and another way is to include wildcards (known as the “gaps”) in the k-
mers [9]. There were also studies that used alignment-based methods such
as the Smith-Waterman dynamic programming algorithm [10] to obtain
pairwise sequence similarities [11].

These kernels were originally developed for classifying protein
sequences, but they have also been adopted and further developed for
classifying DNA sequences [12; 13; 14; 15], which have a smaller
alphabet but possibly longer motifs. In either case, the sequences can
be classified by a kernel method such as a support vector machine (SVM).
Based on some testing results involving protein binding data from ChIP-
seq experiments, gapped k-mers could identify transcription factor (TF)
binding sequences better than standard k-mers, especially for TFs with
long binding motifs [14].

© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

“output” — 2019/7/12 — 21:01 — page 2 — #2i
i

i
i

i
i

i
i

2 Hong et al.

Although gapped k-mers can ignore unimportant positions in a motif
by setting these positions as wildcards, they cannot handle motifs with
variable lengths. In particular, many TFs form physical interactions
with partner TFs [16] and some TF dimers bind DNA with a variable-
length spacer sequence between two relatively rigid sites [17; 18]. For
example, the binding motif of TP53 contains a variable-length spacer
of 0-20 base pairs between two half sites [19], while HOX4A and
FOXA1 can bind DNA in the form of a dimer with their binding sites
separated by up to 30bp [20]. Recently, with the high-throughput method
CAP-SELEX (consecutive affinity-purification systematic evolution of
ligands by exponential enrichment) [21], which determines sequences
preferentially bound by specific TF pairs, variable spacing has been
observed in the binding sequences of many TF pairs.

Here we show that by extending gapped k-mers to allow a variable
insertion-deletion (indel) region, the resulting features can better identify
binding sequences of TF pairs. The corresponding support vector machine
models constructed identify sequences bound by a pair of TFs not only
by looking for their individual motifs but also the distance between them
learned from some training data. This is useful not only when analyzing
CAP-SELEX data but ChIP-seq data of individual TFs as well, since the
TFs may have unrecognized co-binding partners and our novel sequence
features can discover co-binding events from a subset of sequences in an
unsupervised manner.

In the literature, some previous studies have tried to predict TFs that
can form dimers [22; 23], which is a problem very different from the one
studied here, namely identifying DNA sequences bound by TF dimers.
Some other studies have tried to detect binding sites of transcription factors
that bind DNA in dimers [24; 25], but these methods either did not model
the dimer sites explicitly or required some prior information such as the
position specific scoring matrix (PSSM) of the potential co-binding factors.
There were also some previous methods that tried to model sequence motifs
with variable indel regions [26; 27], but these methods either require exact
motifs at the half sites or cannot handle large indels. Motifs containing a
variable indel were also studied in the context of protein sequences [28],
although the method is alignment-based, which is difficult to apply to our
problem since our input contains both sequences bound by the TF pair and
those that are not bound.

2 Methods

2.1 The glk pattern

To allow for a variable-length indel region within each k-mer, we first
define a general type of sequence patterns called glk patterns:

Definition 1. glk pattern - A glk pattern for DNA is a sequence with
g wildcard characters (‘N’), l indel characters (‘−’) and k nucleotide
characters (‘A’, ‘C’, ‘G’ or ‘T’) in any order.

For example, A− N− is a glk pattern with g = 1, l = 2 and k = 1.
A sequence is said to match a glk pattern if it can be generated from

the pattern. Specifically,

Definition 2. match - A sequence s matches a glk pattern p if p can be
converted into s by a series of operations from the following list:

• Substitute a wildcard character by a nucleotide character
• Substitute an indel character by a nucleotide character
• Delete an indel character

For example, ACG matches the glk pattern A− N− but CCG does
not.

Due to the indels, only sequences of certain lengths can match a glk
pattern:

Property 1. Necessary length condition A sequence s can match a glk
pattern only if the length of s is at least g + k and at most g + l + k.

These minimum and maximum lengths respectively correspond to the
situations that every indel is removed and every indel is substituted by a
nucleotide character.

One way to check whether a sequence s matches a glk pattern p is
to perform a global alignment between them with the following scoring

matrix:

From s

A C G T .

From p

A 0 −∞ −∞ −∞ −∞
C −∞ 0 −∞ −∞ −∞
G −∞ −∞ 0 −∞ −∞
T −∞ −∞ −∞ 0 −∞
N 0 0 0 0 −∞
− 0 0 0 0 0
. −∞ −∞ −∞ −∞ −∞,

where . is the gap character used in this alignment (not to be confused
with the indel character− used in the glk pattern). The optimal alignment
score can be computed in O(|s||p|) time by dynamic programming.

Lemma 1. s matches p if and only if the highest alignment score is 0.

Proof. If the alignment score is 0, any alignment having this score exactly
corresponds to a way that p can be converted to s by the three types of
operations, and thus by definition s matches p. Conversely, if p can be
converted to s by the three types of operations, the exact operations can
be represented by an alignment between s and p with score 0, since all the
valid operations would give a score of 0 according to the scoring matrix.

In the Supplementary Materials, we describe an algorithm for finding
all glk patterns that a sequence matches (Section S1.1) . We also discuss
there how the glk patterns commonly matched by two sequences can be
obtained (Sections S1.2-S1.3).

2.2 The glk-kernel problem

Our ultimate goal is to construct a kernel matrix for a set of sequences
based on their glk-pattern occurrence frequencies, such that sequences
that contain a motif can be distinguished from those that do not using
an SVM. To define this kernel matrix formally, we first introduce some
additional terms:

Definition 3. support count - The support count of a sequence S for
a glk pattern p is the number of S’s contiguous sub-sequences that match
p.

For example, if S=ACGAT, its support count for the glk pattern
p=AN− is 3, since the contiguous sub-sequences of S that match p are
S[1..2]=AC, S[1..3]=ACG and S[4..5]=AT.

Definition 4. support count vector - The support count vector of a
sequence S is the vector of its support counts for all the

(g+l+k
k

)
4k
(g+l

g

)
possible glk patterns, with the glk patterns ordered lexicographically.

Definition 5. the glk kernel matrix - Given a set of input sequences
S1, S2, ..., the glk kernel matrix is a matrix where entry (i, j) is the inner
product between the support count vectors of Si and Sj .

With these definitions, we can formally define the glk-kernel problem:

Definition 6. the glk-kernel problem - Given a set of input sequences
S1, S2, ..., the glk-kernel problem is to compute the glk kernel matrix of
these sequences.

A simple algorithm for computing the glk-kernel of a set of sequences
is given in the Supplementary Materials (Section S1.4) .

“output” — 2019/7/12 — 21:01 — page 3 — #3i
i

i
i

i
i

i
i

Flexible k-mers with variable-length indels 3

2.3 glk patterns with consecutive indels

Since our main purpose of proposing the glk patterns is to study binding
motifs of TF dimers, we are particularly interested in glk patterns that
contain a single consecutive block of indels. We call them the glk-ci
patterns:

Definition 7. glk-ci pattern - A glk-ci (glk with consecutive indels)
pattern is a glk pattern in which all indels appear in a consecutive region.

For example, AN−− is a glk-ci pattern with g = 1, l = 2 and
k = 1, but A− N− is not a glk-ci pattern since the two indels are
separated by a non-indel character.

The definition for a sequence to match a glk-ci pattern is the same as
that for a general glk pattern.

Due to its definition, each glk-ci pattern is composed of two (possibly
empty) non-indel regions:

Definition 8. Head and tail of a glk-ci pattern - The head and tail of
a glk-ci pattern p are respectively the sub-sequences of p before and after
the indel region.

For example, the head and tail of the glk-ci pattern AN−− are AN

and ∅ (the empty sequence), respectively.
It is easy to determine whether a sequence matches a glk-ci pattern:

Lemma 2. Suppose a glk-ci pattern p has h characters in its head and
t characters in its tail. A sequence s of length n matches p if and only if
i) s satisfies the length condition, ii) the first h characters of s match the
head of p, and iii) the last t characters of s match the tail of p.

The proof of it essentially follows the definition of glk-ci patterns.
Due to the lack of indels in the head, the first h characters of s match

the head of p if and only if every non-wildcard character in the head of p
is the same as the corresponding character in s at the same position. Tail
match can be determined in a similar way. As a result, the number of glk-ci
patterns that each sequence matches is easy to compute (Section S1.5).

Now, suppose we have two sequences s1 and s2 of lengths n1 and n2

with g + k ≤ n1 ≤ n2 ≤ g + l + k, and we want to find out all the
glk-ci patterns that they commonly match. This can be done by repeating
the following procedure for all possibilities in the different steps:

1. Construct a sequence p initialized with n2 indels, which will become
the glk-ci pattern.

2. Determine the sizes of the head and tail regions, h and t, where
h+ t = g + k.

3. Pick in total k positions in the head and tail of p that s1 and s2 have
the same character, i.e., s1[x] = s2[x] in the head or s1[n1 − y] =

s2[n2 − y] in the tail, for any x ∈ [1, h] and any y ∈ [0, t− 1].
4. If less than k positions can be picked in the Step 3, this head and

tail pair gives no glk-ci patterns commonly matched by s1 and s2.
Otherwise, for each of the k positions picked, copy the character
from s1 to p.

5. Replace all unpicked positions in the head and tail of p by wildcards.
6. Insert an extra g + l+ k − n2 indels to p between the head and tail.

Steps 1-3 of the above procedure can also be used to compute the
number of glk-ci patterns commonly matched by two sequences, since
the remaining steps are fixed once the head and tail regions have been
selected and the k positions from them have been picked. Therefore, to
compute this number efficiently, it is only necessary to know how many
combinations of the k positions can be picked for each pair of head and
tail regions. It is wasteful to re-determine this combination number from
scratch for every pair of head and tail regions, since each choice is highly
similar to the previous one.

To see how these combination numbers can be determined efficiently,
note that for each position x in s1, if it appears in a head region, it must
pair up with position x in s2. Similarly, if position n1 − y in s1 appears
in a tail region, it must pair up with position n2 − y in s2. For example,
suppose s1=ACG and s2=ACTG, the C in s1 must pair up with the C in
s2 if it is in the head region since they are both at the second position, and
it must pair up with the T in s2 if it is in the tail region since they are both
at the second to last position. Whether a position can appear in the head or
tail region depends on g and k. A position x cannot be in any head region
if x > g + k, since the length of the head region can be at most g + k.
Similarly, a position n − y cannot be in any tail region if y > g + k for
the same reason.

Using these ideas, we can record whether each position in s1 can
contribute to the k positions in Step 3 for different pairs of head-tail
locations. For example, suppose again that s1=ACG, s2=ACTG, g = 1

and k = 1 (and l ≥ 1). There are 3 possible pairs of head-tail locations,
namely those having sizes of (2, 0), (1, 1) and (0, 2), respectively. For the
A in s1, it contributes 1 to the head in both the first and second pairs since
it pairs with the A in s2. For the C in s1, it contributes 1 to the head in the
first pair since it pairs with the C in s2, and 0 to the tail in the third pair
since it pairs with the T in s2. For the G in s1, it contributes 1 to the tail
in both the second and third pairs since it pairs with G in s2. Therefore,
the number of positions that can be picked in Step 3 for the three pairs
is 1+1+0=2, 1+0+1=2 and 0+0+1=1, respectively. As a result, the total
number of glk-ci patterns commonly matched by these two sequences is(2
1

)
+
(2
1

)
+
(1
1

)
= 2 + 2 + 1 = 5, regardless of the value of l, as long

as n1 ≤ n2 ≤ g + l + k, i.e., l ≥ 2.
Putting all these together systematically, Algorithm S2 can be used

to compute the number of glk-ci patterns commonly matched by two
sequences. In this algorithm, since the values

(x
k

)
for various x are

commonly needed, they can be pre-computed for quick referencing. With
this efficient algorithm, the kernel can in turn be computed efficiently using
Algorithm S1.

2.4 A tree algorithm for the glk-ci-kernel problem

Algorithm S2 has a time complexity of O((g + k)2). For a sequence of
length N , there are (N−g−k+1)+ ...+(N−g−k− l+1) = O(Nl)

sub-sequences that satisfy the length condition, assuming N � g + k.
Therefore for two sequences each of length O(N), the total time needed
to compute their similarity is O(N2l2(g + k)2). Finally, if there are M

sequences in total, the time needed to compute the whole kernel matrix
would be O(M2N2l2(g + k)2), which is expensive when M or N is
large.

Practically, this approach may lead to the running of Algorithm S2 on
many sequence pairs that do not match any common glk-ci patterns. This
can be avoided by using a tree structure to index head-tail combinations,
similar to the tree proposed in [14] for computing the kernel based on
gapped-kmers without indels.

Specifically, assume l > 0 (since the l = 0 case is much simpler) and
we want to index sequence S. For each sub-sequence of S that satisfies
the length condition, we consider all possible head-tail combinations of
it and insert each of them into the tree. Each nucleotide is inserted as a
node down a path, with the first nucleotide inserted as a direct child of the
root. The node is given type “head” (resp. “tail”) if this nucleotide is part
of the head (resp. tail). When a nucleotide is inserted to the tree, it can
reuse a node if both the node label and node type are consistent with this
inserting nucleotide. Based on this procedure, each path from the root to
a leaf corresponds to a particular (g+k)-mer, which is the non-indel part
of exactly one possible glk-ci pattern. The ID of sequence S is further
stored in the leaf node, together with the number of sub-sequence of S
that contains this head-tail combination.

“output” — 2019/7/12 — 21:01 — page 4 — #4i
i

i
i

i
i

i
i

4 Hong et al.

As an example, suppose g = 1, l = 2 and k = 2. For the sequence
Sj=ACTGC, there are 6 sub-sequences satisfying the length condition
and all the corresponding head-tail combinations are as follows:

1. ACT: (∅,ACT), (A,CT), (AC,T), (ACT,∅)
2. ACTG: (∅,CTG), (A,TG), (AC,G), (ACT,∅)
3. ACTGC: (∅,TGC), (A,GC), (AC,C), (ACT,∅)
4. CTG: (∅,CTG), (C,TG), (CT,G), (CTG,∅)
5. CTGC: (∅,TGC), (C,GC), (CT,C), (CTG,∅)
6. TGC: (∅,TGC), (T,GC), (TG,C), (TGC,∅)

The tree after inserting these head-tail combinations is shown in
Figure 1.

Fig. 1. The tree after inserting all head-tail combinations of the sub-sequences of
Sj=ACTGC that satisfy the length condition, for g = 1, l = 2 and k = 2. Head
and tail nodes are shown with solid and dotted borders, respectively. The leaf nodes store
both the sequence ID (j in this case) and the number of its sub-sequences that have this
head-tail combination.

The whole tree-construction process is summarized in Algorithm S3.
The tree is used to compute the similarity between every pair of

sequences as follows. For each sequence Si, we take every sub-sequence
si of it that satisfies the length condition, and performs a depth-first-search
(DFS) of each head-tail combination in the whole tree. During the DFS,
if the node type does not match, the sub-tree is abandoned. If the node
type matches but the node label does not match, a mismatch counter is
incremented. When the mismatch counter becomes larger than g, the sub-
tree is again abandoned. Finally, if a leaf node is reached, the sub-sequences
with non-zero counts at this node are concluded to share common glk-ci
patterns with si. If a sequenceSj has a count of zj at this node, the number
of common glk-ci patterns between si and sub-sequences of Sj due to this
head-tail combination is zj

(g+k−miss
k

)
, where miss is the current value

of the mismatch counter. The whole algorithm is shown in Algorithm S4.

2.5 Practical variations of the glk-ci-kernel problem

In practice, two variations of the glk-ci-kernel problem are also considered.
The first variation is disallowing the indel region to appear at either

end of a glk-ci pattern, since those patterns are generally not interesting. It
can be easily implemented by requiring both the head and tail of every glk-
ci pattern to have at least one position. This variation usually reduces the
number of possible glk-ci patterns and correspondingly the time needed for
computing the kernel matrix dramatically. In this study, we implemented
this variation by further requesting the indel to appear exactly in the middle
of a pattern.

The second variation is permitting a glk-ci pattern to appear on either
strand of a DNA sequence, which means a sequence can match both a
glk-ci pattern and its reverse complement. This can be achieved by adding
also the reverse complement of each sequence to the head-tail tree.

2.6 Testing the effectiveness of glk-ci patterns

To test the effectiveness of glk-ci patterns in capturing motif information,
we used them as features to classify TF binding sequences using several
datasets and compared the results with gapped k-mer features, gappy
pair kernel [29; 30] and (on the CAP-SELEX dataset only due to long
running time) the gap-weighted string kernel [31]. For both our method
(glk-ci-SVM) and the previously proposed gapped k-mer SVM without
indels (gkm-SVM), we trained and tested the SVMs using the R package
provided by Ghandi et al. [32]. For the gappy pair kernel, we used the
implementation in the R KeBABS package [33]. For the gap-weighted

string kernel, we used the implementation in the R string kernels package
(http://cran.r-project.org/src/contrib/Archive/stringkernels/).

In all the tests, we performed five-fold cross validation and used the
area under the receiver-operator characteristics (AUROC) and area under
the precision-recall curve (AUPR) to quantify classification performance.

We also tested the effectiveness of glk-ci patterns as general sequence
features for unsupervised clustering. Applying this to the sequences bound
by a TF according to ChIP-seq data, we discovered a subset of the
sequences co-bound by another TF, thereby demonstrating the use of glk-ci
as a discovery tool.

2.6.1 Simulated dataset for TF pairs
To explore the ability of glk-ci in detecting co-binding events, we generated
simulated data as follows. We downloaded ChIP-seq peak files of some
TFs from the Jaspar database [34], based on a report that these TFs form
pairs with a preferred spacing between their binding sites [20]. For each TF
pair, we generated 800 positive sequences with the two motifs placed with
a distance between them drawn uniformly from a range (either [1,7], [1,11]
or [1,15]), with the non-motif regions copied from other parts of the peak
sequences. We then generated the same number of negative sequences
by placing the two motifs following a different uniform distribution.
Specifically, when motif distances for the positive sequences were drawn
uniformly from the range [1, d], the distances for the negative sequences
were drawn from [d+1, 2d]. Since these negative sequences also contained
the two motifs, whether an SVM could distinguish between the positive
and negative sequences would depend on the presence of information
about the spacing between them in the kernel. We also generated a similar
dataset with more negative sequences than positive sequences to test the
performance of glk-ci-SVM in this situation.

In gkm-SVM, l denotes the total pattern length. Since in glk patterns l
is the number of indels, to avoid confusion, we denote the former as tot.
To identify the appropriate values of k and tot for gkm-SVM, we tried
5 different values of tot around the actual total span of the two motifs
and the spacing between them, to give an advantage to this competing
method. We then randomly selected a TF pair to test several values of k,
and found that the best performance was achieved for k=6, which was
then used in this set of experiments. For gappy pair kernel, we tried 3
different values of k (length of the kmers which are considered in pairs
by this kernel), together with different values of m (maximal number of
irrelevant positions between a pair of kmers) around the actual spacing.
For glk-SVM, we set g to a small value of 2, and k=10 such that g+k
is approximately the length of a motif. We also tried other values of g

and k without this constraint of their sum. Since the indel parameter l

is the most difficult one to set in practice, we developed a method that
searches for an appropriate value of it automatically. Specifically, we found
that in real data the maximum difference between the occurrence counts
of a glk-ci pattern in the positive and negative sets correlates strongly
with classification performance (Section S2.2). Therefore, our procedure
tries different values of l based on the training data and uses the one that
maximizes this occurrence count difference.

For this dataset, we used the version of glk-ci-SVM that disallows
indels at pattern ends. Since all sequences were generated using the same
strand of the motifs, it was not necessary to consider reverse complement.

2.6.2 CAP-SELEX dataset for TF pairs
While the simulated dataset allowed us to mimic the situation of co-binding
TFs, the distance between the two motifs was generated by artificial
distributions. To further test the performance of glk-ci-SVM on real co-
binding data, we studied a CAP-SELEX dataset with 30 TF pairs [21].
We downloaded the sequencing reads from European Nucleotide Archive
(accession PRJEB7934), and selected 800 reads (or all reads if total was

“output” — 2019/7/12 — 21:01 — page 5 — #5i
i

i
i

i
i

i
i

Flexible k-mers with variable-length indels 5

smaller than 800) for each TF pair containing the canonical binding motifs
of both TFs as the positive sequences, following the approach adopted
in the original paper [21]. We extended these original 40bp sequences to
80bp by inserting random nucleotides to the two ends (in order to have
the same length for the positive and background sequences). For each
positive sequence, we generated a corresponding background sequence by
randomly moving the distance between the two canonical motifs following
a uniform distribution of [dmin, dmax], where dmin was set to the
negative of the length of the shorter motif (in which case the two motifs
would overlap and one of them would be trimmed because of that), and
dmax was set to 80 minus the length of the shorter motif (in which case
the two motifs would be maximally separated). It should be noted that the
distance distribution of these background sequences overlaps the distance
distribution of the positive sequences, making them more difficult to be
distinguished as compared to the positive and negative sequences in the
simulated dataset.

For gkm-SVM, we again used some random TF pairs to try out
different parameter values and used the set that gave the best classification
performance. For glk-ci-SVM, we set g=2, k=8 and used the automatic
procedure to search for l. For this dataset, we used both the versions of
glk-ci-SVM that allow and disallow indels at the end to compare their
performance. For gappy pair kernel, we randomly selected some TF pairs
to test several values ofk, and found that the best performance was achieved
for k=3, and set the value of m to be the same as l (since both of them
represent the length of spacing allowed). As in the case of the simulated
dataset, it was not necessary to consider reverse complement. For gap-
weighted string kernel, we fixed the gap length penalty factor lambda=0.9
(which gave the best performance), and tried 4 values of length, the
number of exact match characters, from 8 to 14. We also tried larger
values of length but the performance was not improved.

2.6.3 ENCODE ChIP-seq dataset for single TFs
The last dataset involved 497 sets of ChIP-seq data of individual DNA-
binding proteins from different human cell lines produced by the ENCODE
Consortium [35; 36]. It was included to test whether the glk-ci pattern
is also useful for identifying sequences from ChIP-seq binding data.
We used the processed data provided by Alipanahi et al. (2015) [37]
(downloaded from http://tools.genes.toronto.edu/deepbind/nbtcode/). We
took the sequences within the top 1000 peaks of each protein as the positive
set, and generated a corresponding negative set by randomly shuffling
the nucleotides in each positive sequence while preserving dinucleotide
frequencies. For gkm-SVM, we used its default value of k=6 (which is
close to the length of a typical motif) and tested four different settings,
based on two values of the total pattern length (tot=9,10) and whether
reverse complement is considered. For glk-ci-SVM, we also fixed k = 6

and used two different ways to set the values of g and l, namely 1) setting
their total to be the same as the wildcard value of gkm-SVM: (g, l) =

{(0, 3), (1, 2), (2, 1)}, or 2) fixing the g to be the same as the wildcard
value of gkm-SVM, and varied the value of l: l = {1, 2, 3, 4, 5, 6, 7}.
For this dataset, we used the version of glk-ci-SVM that allows indels to
appear at pattern ends, since we expected many protein binding motifs to
not contain a variable-length indel region in the middle.

2.6.4 Clustering with glk-ci patterns as sequence features
For the unsupervised clustering task, we randomly selected 8,000 ChIP-seq
peak sequences of the TF CEBPB in the K562 cell line from the ENCODE
dataset and used glk-ci patterns (with g=2, l=5 and k=8) to define their
similarity matrix. We then applied spectral clustering on the data, using the
implementation in the Python scikit-learn library [38]. For each cluster,
we performed de novo motif analysis using HOMER [39] to see whether
the sequences in the cluster are enriched in another motif.

3 Results

3.1 Simulated dataset

For the simulated dataset, our new glk-ci-SVM method generally
performed better than the previous gkm-SVM method and gappy pair
kernel, sometimes by a big margin (Figure 2, Sections S2.3, S2.4). This
general trend was not affected by the method for aggregating results across
parameter settings or by the evaluation measure. For each TF pair, gkm-
SVM generally performed better when the spacing between the two motifs
was small. In contrast, glk-ci-SVM consistently performed well regardless
of the spacing.

Fig. 2. The AUROC (a) and AUPR (b) results of glk-ci-SVM, gappy pair kernel and gkm-
SVM based on the simulated dataset.

To provide some insights regarding the most important features for
separating the positive and negative sequences, we extracted the glk-ci
patterns with the largest difference between their occurrence counts in the
positive and negative sequences. Figure 3 shows an example for the ELF1-
FOSL1 pair. It shows the 5 glk-ci patterns with the strongest differential
occurrence, with the head and tail of these patterns aligned, and their
indel region shown as a distribution based on the positive sequences that
support these patterns. Quantified by the PWMSimilarity function of the
TFBSTools R package [40], the head and tail sequences of these top glk
patterns had a similarity with the corresponding motifs in Jaspar [34]
from 0.953 to 0.993, showing that they are highly similar. It can also be
seen that the distance between the head and tail vary a lot in the different
positive sequences. The top 5 glk-ci patterns with the strongest differential
occurrence of the other TF pairs are shown in Figure S1.

Fig. 3. Top 5 glk-ci patterns with strongest differential occurrence between the positive and
negative sequences for the ELF1-FOSL1 pair based on the simulated data. The distributions
show the numbers of supporting positive sequences with respect to the size of the indel region
of the glk-ci patterns. The parameters of glk-ci-SVM were set to g=2, l=7 and k=12. The
Jaspar motifs for ELF1 and FOSL1 are shown at the bottom for comparisons, with their
similarities with the head and tail of the top glk patterns shown in the “Similarity” columns.

3.2 CAP-SELEX dataset for TF pairs

For the CAP-SELEX dataset, the version of glk-ci-SVM disallowing indels
at pattern ends almost always outperformed the version allowing end indels
(Figure 4a-b), confirming the usefulness of this variation in practice. This
version also performed better than gkm-SVM (Wilcoxon two-sided signed-
rank test p=1.24e-5 for AUROC and 4.72e-2 for AUPR, same test used for
the p-values below). As an example, the TF pair TFAP2C-ONECUT2
had the largest performance difference between gkm-SVM and glk-ci-
SVM disallowing end indels, with the AUROC values of 0.38 and 0.70,
respectively. Consistent with this, the spacing between these two TFs in the
positive sequences was fairly flexible, with an average of 9.9 nucleotides
and a standard deviation of 4.0 nucleotides. In contrast, the spacing
distribution of the TF pair POU2F1-TBX21 had the smallest standard
deviation, and correspondingly the performance of gkm-SVM and glk-ci-
SVM was similar, both separating positive and negative sequences almost
perfectly.

Similarly, glk-ci-SVM outperformed gap-weighted string kernel
generally (p=1.74e-4 for AUROC and 1.19e-3 for AUPR) (Figure 4c-
d). For some TF pairs that glk-ci-SVM and gkm-SVM could predict
almost perfectly, gap-weighted string kernel could not perform as well.
For example, both glk-ci-SVM and gkm-SVM could achieve the AUROC

“output” — 2019/7/12 — 21:01 — page 6 — #6i
i

i
i

i
i

i
i

6 Hong et al.

Fig. 4. Performance of glk-ci-SVM, gkm-SVM and gap-weighted string kernel based on
the CAP-SELEX dataset. (a)-(b) Comparisons of glk-ci-SVM and gkm-SVM based on the
AUROC (a) and AUPR (b) results of the two methods among their parameter settings. (c)-
(d) Comparisons of glk-ci-SVM and gap-weighted string kernel based on the AUROC (c)
and AUPR (d) results of the two methods. (e)-(f) Comparisons of glk-ci-SVM and gappy
pair kernel based on the AUROC (e) and AUPR (f) results of the two methods.In each panel,
the diagonal dotted line corresponds to the situation when the two comparing methods have
the same performance.

value of 0.98 for the TF pair FOXJ3-TBX21, while gap-weighted string
kernel could only reach 0.91. As for the comparison to gappy pair kernel,
glk-ci-SVM also outperformed it generally (p=2.35e-6 for AUROC and
6.15e-4 for AUPR) (Figure 4e-f).

3.3 ENCODE ChIP-seq dataset for single TFs

Figure 5 compares the performance of glk-ci-SVM and gkm-SVM based
on the ENCODE dataset for single TFs. Overall, the two methods had
similar performance, in terms of both AUROC (panels a and b) and AUPR
(panels c and d). However, when the performance of gkm-SVM was low
(auroc < 0.8), glk-ci-SVM provided better classification performance
(p=2.36e-8 for AUROC and 1.78e-7 for AUPR), as reflected by having
more points above the equal-performance line for lower values of gkm-
SVM (panel a). This was not due to specific parameter settings, since the
same trend is also observed with the average result of all the parameter
settings (panel b).

Fig. 5. Performance of glk-ci-SVM and gkm-SVM based on the ENCODE dataset. (a-d)
The best AUROC (a), average AUROC (b), best AUPR (c) and average AUPR (d) results
of glk-ci-SVM and gkm-SVM among their parameter settings. (e-f) The best AUROC (e)
and average AUROC (f) of glk-ci-SVM with or without considering reverse complement.
In each panel, the diagonal line corresponds to the situation when the two methods have
the same performance.

For example, for the ChIP-seq data of EZH2 in normal human
astrocytes, gkm-SVM achieved an AUROC value of 0.78 while glk-ci-
SVM achieved 0.80. This improvement is consistent with the fact that
EZH2 can exist in both monomer and dimer forms [41], although the
relative frequencies of the two forms when binding target DNA require
further investigations.

In contrast, when a DNA-binding protein has a highly conserved motif
or binds DNA alone with a single DNA-binding domain, glk-ci-SVM could
not improve the performance of gkm-SVM. For example, the binding motif
of CTCF is rigid and highly conserved. Among the different ChIP-seq
datasets of this protein, the performance of gkm-SVM and glk-ci-SVM was
highly similar, with both achieving an average AUROC higher than 0.95.
In fact, for CTCF, even a position weight matrix or consensus sequence
could also distinguish positive and negative sequences very well.

When comparing glk-ci-SVM with or without considering reverse
complement, the performance was consistently better when reverse
complement was considered (panels e and f), showing that this variation
is practically useful when analyzing ChIP-seq data.

3.4 Clustering with glk-ci patterns as sequence features

For the unsupervised clustering task, when we produced 6 clusters,
one of them showed very strong enrichment (p=1e-318) for a motif
highly similar to the motif of the TEAD family (Figure 6). This cluster
contained 361 sequences and 98.34% of them contained this motif.
CEBPB was previously reported to co-bind with TEAD4 based on CAP-
SELEX data [21], consistent with the high similarity between the motif

identified from this cluster and the canonical TEAD4 motif (HOMER
match score=0.52). Similar results were also obtained when we changed
the number of clusters to 4, 5 or 7.

Interestingly, if we did not perform the clustering but performed a de
novo motif discovery from all the TF binding sequences of CEBPB directly,
there was no enrichment of the TEAD family motifs, showing that the co-
binding occurred in only a subset of the CEBPB-bound sequences and the
glk-ci features successfully identified this subset.

These results demonstrate that glk-ci patterns can be used to discover
co-binding events without prior knowledge of the co-binding TFs.

Fig. 6. Sequence logos of (a) the motif identified de novo from the cluster, (b) the canonical
TEAD3 motif and (c) the canonical TEAD4 motif.

3.5 Runtime Benchmark

To evaluate the running time of glk-ci-SVM (the version disallowing indels
at pattern ends), we randomly selected one ENCODE ChIP-seq dataset,
which contained 2000 peaks with each peak sequence of length 101bp. We
used four different parameter settings ((g,l,k) = (2,5,6), (2,5,8), (2,10,6)
and (3,6,6)) to benchmark the running time of glk-ci kernel calculation
with different number of threads (from 1 to 16).

The results (Figure 7) show that the running time of glk-ci SVM
increased linearly with respect to the numbers of indels allowed (l) and
exact matches (k), which are consistent with our complexity analysis. If
only one thread is used, the running time of glk-ci-SVM could be long when
the parameter values are large, especially for the number of wildcards, g.
This problem was alleviated by our multi-threading implementation. When
16 threads were used, the kernel calculation finished within 100 seconds
even for large parameter values. Since we have shown above that good
classification performance could already be achieved with a small value
of g in practice, the running time of glk-ci SVM should not be a problem
in real applications.

Fig. 7. Running time of glk-ci-SVM with different parameter settings on the benchmark
data.

We also tested the scalability of glk-ci-SVM with respect to different
number of sequences. The results (Section S2.5) show that the running
time remains short with 8000 input sequences.

4 Discussion
In this study, we have proposed the glk and glk-ci patterns that contain
flexible indels, and corresponding algorithms for computing the kernel
matrix based on the support count vectors of all glk-ci patterns efficiently.
Empirical results based on simulated and CAP-SELEX data confirmed
that glk-ci patterns led to better classification performance than gapped
k-mers that do not allow indels. In fact, glk patterns can be used not only
for modeling CAP-SELEX data, but also for analyzing standard ChIP-
seq data, in which case the positive sequences can be bound by the target
protein alone, or both the target protein and other proteins in complex
with it. By using glk patterns to define sequence similarity, it is possible
to identify these different subsets of sequences by unsupervised clustering
using any clustering method that requires only a similarity matrix as input.
We also implemented a glk-ci pattern counting method, which extracts
glk-ci patterns with the strongest differential occurrence in the positive

“output” — 2019/7/12 — 21:01 — page 7 — #7i
i

i
i

i
i

i
i

Flexible k-mers with variable-length indels 7

and negative sequences. It could provide important biological insights
regarding the binding motifs of partner TFs and their spacing preference.

The ability of glk patterns in detecting a subset of binding sequences
that involve co-binding of another factor can also be used for a different
purpose, namely “cleaning up” the binding sequences by identifying the
subset not bound by other co-factors, which can help better discover the
binding motif of the factor when it binds DNA alone.

CAP-SELEX uses synthetic random sequences, which may identify
co-bound sequences different from the ones in vivo. This limitation is
tackled by new methods such as reChIP-seq [42], the data produced by
which will be used to further evaluate glk patterns.

In this work, we have chosen SVM as the classifier. One key reason was
that SVM only requires a kernel matrix as input rather than the individual
feature vectors, which avoided materializing the long support count vectors
of all possible glk patterns. In general, glk patterns can be efficiently used
as sequence features with any machine learning methods that can take a
similarity matrix as input.

Although we have only tested our method on transcription factor
binding sequence prediction, especially for TF dimers with variable
spacing, our method can also be adopted to other sequence analysis
problems not limited to DNA sequences. The glk and glk-ci patterns we
propose can be used as general sequence features, which may be useful in
various sequence analysis tasks involving flexible regions. More generally,
since the glk kernel includes many popular kernels as special cases,
including the gkm kernel, spectrum kernel and some other string kernels,
glk-SVM can be used as a general method in various classification tasks
of biological sequences, including homology detection, metagenomic
sequence classification, evaluation of evolutionary conservation and RNA
binding proteins prediction.

Key Points

• We propose a new class of sequence patterns that flexibly
model variable regions, and corresponding algorithms
that identify TF dimer co-bound sequences using these
patterns.

• We provide a pattern counting method that can be used
for extracting important features and guiding parameter
setting.

• We show that using features derived from our sequence
patterns lead to better classification performance than
patterns that do not explicitly model the variable regions
for transcription factor dimer binding prediction.

• The sequence patterns we propose can be used as general
sequence features in different tasks, including de novo
discovery of co-binding events.

5 Acknowledgement
We would like to thank William Wenjie Li for helpful discussions. KYY
is partially supported by the HKSAR General Research Fund 14170217.

References
1. Stormo GD, Schneider TD, Gold L, et al. Use of the ‘perceptron’

algorithm to distinguish translational initiation sites in e. coli. Nucleic
Acids Research 1982;10(9):2997–3011.

2. Zhang MQ, Marr TG. A weight array method for splicing signal
analysis. CABIOS 1993;9(5):499–509.

3. Ellrott K, Yang C, Sladek FM, et al. Identifying transcription factor
binding sites through markov chain optimization. Bioinformatics 2002;
18:S100–S109.

4. Gershenzon NI, Stormo GD, Ioshikhes IP. Computational technique
for improvement of the position-weight matrices for the DNA/protein
binding sites. Nucleic Acids Research 2005;33:2290–2301.

5. Siddharthan R. Dinucleotide weight matrices for predicting
transcription factor binding sites: Generalizing the position weight
matrix. PLOS ONE 2010;5:e9722.

6. Tomovic A, Oakeley EJ. Position dependencies in transcription factor
binding sites. Bioinformatics 2007;23:933–941.

7. Leslie C, Eskin E, Noble WS. The spectrum kernel: A string kernel for
SVM protein classification. In: Pacific Symposium in Biocomputing.
2001; pp. 564–575.

8. Leslie CS, Eskin E, Cohen A, et al. Mismatch string kernels for
discriminative protein classification. Bioinformatics 2004;20:467–
476.

9. Leslie C, Kuang R. Fast string kernels using inexact matching for
protein sequences. Journal of Machine Learning Research 2004;
5:1435–1455.

10. Smith T, Waterman M. Identification of common molecular
subsequences. Journal of Molecular Biology 1981;147(1):195 – 197.

11. Liao L, Noble WS. Combining pairwise sequence similarity and
support vector machines for detecting remote protein evolutionary
and structural relationships. Journal of computational biology 2003;
10(6):857–868.

12. Lee D, Karchin R, Beer MA. Discriminative prediction of mammalian
enhancers from DNA sequences. Genome Research 2011;21:2167–
2180.

13. Fletez-Brant C, Lee D, McCallion AS, et al. kmer-SVM: A web server
for identifying predictive regulatory sequence features in genomic data
sets. Nucleic Acids Research 2013;41:W544–W556.

14. Ghandi M, Lee D, Mohammad-Noori M, et al. Enhanced
regulatory sequence prediction using gapped k-mer features. PLOS
Computational Biology 2014;10:e1004035.

15. Lee D. LS-GKM: A new gkm-SVM for large-scale datasets.
Bioinformatics 2016;32:2196–2198.

16. Ravasi T, Suzuki H, Cannistraci CV, et al. An atlas of combinatorial
transcriptional regulation in mouse and man. Cell 2010;140:744–752.

17. Roulet E, Bucher P, Schneider R, et al. Experimental analysis and
computer prediction of CTF/NFI transcription factor DNA binding
sites. Journal of Molecular Biology 2000;297:833–848.

18. Siggers T, Gordân R. Protein-DNA binding: Complexities and multi-
protein codes. Nucleic Acids Research 2014;42:2099–2111.

19. Riley T, Sontag E, Chen P, et al. Transcriptional control of human
p53-regulated genes. Nature Reviews Molecular Cell Biology 2008;
9(5):402–412.

20. Guo Y, Mahony S, Gifford DK. High resolution genome wide
binding event finding and motif discovery reveals transcription factor
spatial binding constraints. PLOS Computational Biology 2012;
8(8):e1002638.

21. Jolma A, Yin Y, Nitta KR, et al. DNA-dependent formation of
transcription factor pairs alters their binding specificity. Nature 2015;
527(7578):384–388.

22. Jankowski A, Szczurek E, Jauch R, et al. Comprehensive prediction in
78 human cell lines reveals rigidity and compactness of transcription
factor dimers. Genome Research 2013;23(8):1307–1318.

23. Lai FJ, Jhu MH, Chiu CC, et al. Identifying cooperative transcription
factors in yeast using multiple data sources. BMC systems biology
2014;8(5):S2.

24. Sharon E, Lubliner S, Segal E. A feature-based approach to
modeling protein–dna interactions. PLoS computational biology 2008;

“output” — 2019/7/12 — 21:01 — page 8 — #8i
i

i
i

i
i

i
i

8 Hong et al.

4(8):e1000154.
25. Pudimat R, Schukat-Talamazzini EG, Backofen R. A multiple-feature

framework for modelling and predicting transcription factor binding
sites. Bioinformatics 2005;21(14):3082–3088.

26. Hu YJ. Finding subtle motifs with variable gaps in unaligned DNA
sequences. Computer Methods and Programs in Biomedicine 2003;
70(1):11–20.

27. Leibovich L, Yakhini Z. Efficient motif search in ranked lists and
applications to variable gap motifs. Nucleic Acids Research 2012;
40(13):5832–5847.

28. Frith MC, Saunders NFW, Kobe B, et al. Discovering sequence motifs
with arbitrary insertions and deletions. PLoS Computational Biology
2008;4:5.

29. Kuksa P, Huang PH, Pavlovic V. A fast, large-scale learning method for
protein sequence classification. In: 8th Int. Workshop on Data Mining
in Bioinformatics. 2008; pp. 29–37.

30. Hamilton M, Reddy A, Ben-Hur A. Kernel methods for calmodulin
binding and binding site prediction. In: Proceedings of the 2nd
ACM Conference on Bioinformatics, Computational Biology and
Biomedicine. 2011; pp. 381–386.

31. Rousu J, Shawe-Taylor J. Efficient computation of gapped substring
kernels on large alphabets. Journal of Machine Learning Research
2005;6:1323–1344.

32. Ghandi M, Mohammad-Noori M, Ghareghani N, et al. GkmSVM:
An R package for gapped-kmer SVM. Bioinformatics 2016;32:2205–
2207.

33. Palme J, Hochreiter S, Bodenhofer U. Kebabs: an r package for
kernel-based analysis of biological sequences. Bioinformatics 2015;
31(15):2574–2576.

34. Mathelier A, Fornes O, Arenillas DJ, et al. JASPAR 2016: A major
expansion and update of the open-access database of transcription
factor binding profiles. Nucleic Acids Research 2016;44:D110–D115.

35. The ENCODE Project Consortium. An integrated encyclopedia of
DNA elements in the human genome. Nature 2012;489(7414):57–74.

36. Yip KY, Cheng C, Bhardwaj N, et al. Classification of human genomic
regions based on experimentally-determined binding sites of more than
100 transcription-related factors. Genome Biology 2012;13:R48.

37. Alipanahi B, Delong A, Weirauch MT, et al. Predicting the sequence
specificities of DNA- and RNA-binding proteins by deep learning.
Nature Biotechnology 2015;33(8):831–838.

38. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine
learning in python. Journal of machine learning research 2011;
12(Oct):2825–2830.

39. Heinz S, Benner C, Spann N, et al. Simple combinations
of lineage-determining transcription factors prime cis-regulatory
elements required for macrophage and b cell identities. Molecular
cell 2010;38(4):576–589.

40. Tan G, Lenhard B. Tfbstools: an r/bioconductor package for
transcription factor binding site analysis. Bioinformatics 2016;
32(10):1555–1556.

41. Wu H, Zeng H, Dong A, et al. Structure of the catalytic domain
of EZH2 reveals conformational plasticity in cofactor and substrate
binding sites and explains oncogenic mutations. PLOS ONE 2013;
8:e83737.

42. Kinkley S, Helmuth J, Polansky JK, et al. reChIP-seq reveals
widespread bivalency of H3K4me3 and H3K27me3 in CD4+ memory
T cells. Nature Communications 2016;7:12514.

43. Wasserman WW, Sandelin A. Applied bioinformatics for the
identification of regulatory elements. Nature Reviews Genetics 2004;
5(4):276.

“output” — 2019/7/12 — 21:01 — page 9 — #9i
i

i
i

i
i

i
i

Flexible k-mers with variable-length indels 9

6 Figure Legends
Fig 1. The tree after inserting all head-tail combinations of the sub-sequences of Sj=ACTGC that satisfy the length condition, for g = 1, l = 2 and
k = 2. Head and tail nodes are shown with solid and dotted borders, respectively. The leaf nodes store both the sequence ID (j in this case) and the
number of its sub-sequences that have this head-tail combination.
Fig 2. The AUROC (a) and AUPR (b) results of glk-ci-SVM, gappy pair kernel and gkm-SVM based on the simulated dataset.
Fig 3. Top 5 glk-ci patterns with strongest differential occurrence between the positive and negative sequences for the ELF1-FOSL1 pair based on the
simulated data. The distributions show the numbers of supporting positive sequences with respect to the size of the indel region of the glk-ci patterns.
The parameters of glk-ci-SVM were set to g=2, l=7 and k=12. The Jaspar motifs for ELF1 and FOSL1 are shown at the bottom for comparisons, with
their similarities with the head and tail of the top glk patterns shown in the “Similarity” columns.
Fig 4. Performance of glk-ci-SVM, gkm-SVM and gap-weighted string kernel based on the CAP-SELEX dataset. (a)-(b) Comparisons of glk-ci-SVM
and gkm-SVM based on the AUROC (a) and AUPR (b) results of the two methods among their parameter settings. (c)-(d) Comparisons of glk-ci-SVM
and gap-weighted string kernel based on the AUROC (c) and AUPR (d) results of the two methods. (e)-(f) Comparisons of glk-ci-SVM and gappy pair
kernel based on the AUROC (e) and AUPR (f) results of the two methods.In each panel, the diagonal dotted line corresponds to the situation when the
two comparing methods have the same performance.
Fig 5. Performance of glk-ci-SVM and gkm-SVM based on the ENCODE dataset. (a-d) The best AUROC (a), average AUROC (b), best AUPR (c)
and average AUPR (d) results of glk-ci-SVM and gkm-SVM among their parameter settings. (e-f) The best AUROC (e) and average AUROC (f) of
glk-ci-SVM with or without considering reverse complement. In each panel, the diagonal line corresponds to the situation when the two methods have
the same performance.
Fig 6. Sequence logos of (a) the motif identified de novo from the cluster, (b) the canonical TEAD3 motif and (c) the canonical TEAD4 motif.
Fig 7. Running time of glk-ci-SVM with different parameter settings on the benchmark data.

“output” — 2019/7/12 — 21:01 — page S1 — #10i
i

i
i

i
i

i
i

Flexible k-mers with variable-length indels S1

Supplementary materials

S1 Supplementary methods

S1.1 All glk patterns that a sequence matches
The set of all glk patterns that a sequence (with length n, where g+k ≤ n ≤ g+ l+k) matches can be determined by repeating the following procedure
for all possibilities:

1. Choose g of the characters and turn them into wildcards.
2. Choose n− g − k of the remaining characters and turn them into indels.
3. Insert g + l + k − n additional indels anywhere.

For example, suppose g = 1, l = 2 and k = 1, from the sequence s=ACG (where n = 3), the glk patterns that s matches (16 of them in total, in
arbitrary orders) are determined as follows:

• After Step 1: ACN, ANG, NCG

• After Step 2: AN−, A− N, NC−,−CN, N− G,−NG

• After Step 3: AN−−, A− N−, −AN−,A−−N, −A− N, NC−−, N− C−, −NC−, −CN−, −C− N, −− CN, N− G−,
N−−G,−N− G,−NG−,−− NG

If we use the idea of this procedure to count the number of unique glk patterns that a sequence matches, since some glk patterns can be created by
multiple ways of the three steps, it is necessary to avoid double counting. In the above example, A− N− can be created by substituting C in ACN by
an indel in Step 2, followed by adding an indel at the end; Alternatively, it can be created by substituting G in ANG by an indel, followed by adding indel
right after A. The only other glk pattern above that can be produced by multiple ways from s is−N− G.

Although this double counting issue makes it difficult to compute the exact number of unique glk patterns that a sequence matches, we can nonetheless
get an upper bound of it easily by considering the special case that no double counting exists:

C1(g, l, k, n) ≤
(n
g

)(n− g

n− g − k

)(2g + l + 2k − n

g + k

)
, (1)

where each term on the right hand side respectively corresponds to one of the three steps, and the term for the third step comes from choosing g+k non-indel
characters as the “partitions” to separate the indels added in Step 3. Applying this formula to the above example, we get

(3
1

)(3−1
3−1−1

)(2×1+2×1+2−3
1+1

)
=
(3
1

)(2
1

)(3
2

)
= 3× 2× 3 = 18, which is slightly larger than the actual value of 16 due to the two double-counting cases.

A special case occurs when n = g + l + k, in which case Step 3 does not apply:

Lemma S1. For a sequence s of length n where n = g + l + k, the number of glk patterns that s matches is exactly the value given by Formula 1.

Proof. When n = g+ l+k, all glk patterns are produced by substitutions with no insertions involved. There is thus a simple one-to-one correspondence
between the characters in s and in each glk pattern, and each choice combination of Steps 1 and 2 would lead to a different glk pattern.

Another special case occurs when n = g + k, in which case Step 2 does not apply:

Lemma S2. For a sequence s of length n where n = g + k, the number of glk patterns that s matches is exactly the value given by Formula 1.

The proof of it is similar to the previous case, by having a one-to-one correspondence between the characters in s and the non-indel characters in p.
These two special cases imply that l = 1 is a simple case:

Corollary S1. When l = 1, for every sequence s that satisfies the length condition, the number of glk patterns that it matches is given by Formula 1.

This is because any s satisfying the length condition must have length either g + k or g + l + k.
In general, when both Steps 2 and 3 apply, there are three sources of double counting. First, a nucleotide character in p could come from different

instances of that character in s. Second, a wildcard character in p could come from different characters in s. Third, the indel characters in p could be
added in either Step 2 or Step 3.

S1.2 glk patterns that two sequences commonly match
The set of all glk patterns that two sequences (with lengths n1 and n2, where g + k ≤ n1 ≤ n2 ≤ g + l + k) commonly match can be determined by
repeating the following procedure for all possibilities:

1. Form a global alignment between the two sequences with at least k match positions, g + k non-indel (i.e., match or mismatch) positions, and n

positions in total, where n ≤ g + l + k.
2. Form a sequence p initialized with n indels, for constructing the glk pattern.
3. Choose k of the match positions in the alignment and copy these matched characters to the corresponding positions of p.
4. Choose g of the remaining match or mismatch positions and set the corresponding positions of p to wildcards.
5. Insert g + l + k − n additional indels to p anywhere.

Step 1 is particularly difficult since it requires the enumeration of all alignments that satisfy the criteria.
In some special cases, the number of glk patterns that two sequences commonly match is easy to compute.

“output” — 2019/7/12 — 21:01 — page S2 — #11i
i

i
i

i
i

i
i

S2 Hong et al.

One special case is when n1 = n2 = g + l + k. In this case, there is only one possible alignment, namely one that has no indels inserted. In this
case, the number of glk patterns that the two sequences commonly match depends on the number of mismatches m between them:

C2a(g, l, k, n1,m) =
(n1 −m

k

)(n1 − k

g

)
(2)

S1.3 Whether two sequences commonly match at least one glk pattern
To quickly check whether two sequences commonly match at least one glk pattern without comparing their full sets of matching glk patterns, one way is
to check whether the two sequences contain a common sub-sequence of length at least k, for otherwise it would be impossible to choose k match positions
in any alignment between the two sequences in Step 3. This is a necessary but not sufficient condition. For instance, if the only alignments that give k

match positions do not have at least g mismatch positions, then Step 4 would be impossible.
For any two sequences of lengths n1 and n2, whether this condition is satisfied can be determined in O(n1n2) time using the dynamic programming

algorithm for longest common sub-sequence.

S1.4 A simple algorithm for computing the glk-kernel
Since each support count vector can be very long when g, l or k is large, and many support counts are zero for a given sequence, it is very inefficient to
compute the glk-kernel by constructing the actual support count vectors. Following the idea proposed in the gapped k-mer SVM paper [14], one way to
speed up is to consider only the glk patterns supported by each sequence. Since we have a (not very efficient) procedure for generating all glk patterns
that each sequence matches, one simple algorithm is as follows:

Algorithm S1 A simple algorithm for computing the glk-kernel

1: function glk-kernel1({S}, g, l, k) . {S} = S1, S2, ...: the set of input sequences
. g, l, k: specified values for defining glk patterns

2: Define A as the kernel matrix initialized with all 0’s
3: for each pair of sequences Sx, Sy ∈ {S} do
4: for each sub-sequence si of Sx with a length between g + k and g + l + k do
5: for each sub-sequence sj of Sy with a length between g + k and g + l + k do
6: Define simi,j as the number of glk patterns commonly supported by si and sj
7: A[x, y] += simi,j

8: A[y, x] += simi,j

9: end for
10: end for
11: end for
12: Return A

13: end function

A simple variation of this algorithm is to check whether si and sj match at least one common glk pattern, before intersecting their full sets of matching
glk patterns. This variation would be useful when the extra checking time is small as compared to the time needed for taking the set intersection.

S1.5 Finding the set and number of glk-ci patterns that each sequence matches
The whole set of glk-ci patterns that a sequence s of length n (g+ k ≤ n ≤ g+ l+ k) matches can be determined by repeating the following procedure
for all possibilities:

1. Form a sequence p initialized with n indels, for constructing the glk-ci pattern.
2. Determine the head and tail regions, with a total of g + k characters.
3. From the head and tail regions together, pick k positions and copy the corresponding characters from s to p.
4. Replace all unpicked positions in the head and tail of p by wildcards.
5. Insert an extra g + l + k − n indels to p between the head and tail.

Since each choice combination from the first two steps would lead to a different glk-ci pattern, the total number of glk-ci patterns that a sequence
matches can be easily computed:

Cci(g, l, k, n) =

{ (g+k
g

)
, if l = 0

(g + k + 1)
(g+k

g

)
, if l > 0

(3)

In the special case of l = 0, the head and tail merge into a single section and thus it is only necessary to determine which g characters are to be copied
to the glk-ci pattern. In other cases, first the distribution of characters into head and tail should be decided (with g+k+1 choices), followed by choosing
the g characters from these two segments together.

By definition, any glk pattern with l = 0 or l = 1 must also be a glk-ci pattern since it is impossible to have two disconnected indels given these
values of l. When l = 0, any sequence that matches a glk pattern must have length n = g + k due to the length condition, and thus by Lemma S2,
Formula 1 gives the exact number of glk patterns that a sequence matches. Similarly, when l = 1, by Corollary S1, Formula 1 also gives the exact number.

“output” — 2019/7/12 — 21:01 — page S3 — #12i
i

i
i

i
i

i
i

Flexible k-mers with variable-length indels S3

Therefore, when l = 0 or l = 1, Formula 1 and Formula 3 should be identical. This is indeed the case: When l = 0, n = g + k,

(n
g

)(n− g

n− g − k

)(2g + l + 2k − n

g + k

)
=
(g + k

g

)(k
0

)(g + k

g + k

)
=
(g + k

g

)
;

When l = 1, n = g + k or n = g + k + 1. For n = g + k,

(n
g

)(n− g

n− g − k

)(2g + l + 2k − n

g + k

)
=
(g + k

g

)(k
0

)(g + k + 1

g + k

)
=
(g + k

g

)
(g + k + 1);

And when l = 1 and n = g + k + 1,

(n
g

)(n− g

n− g − k

)(2g + l + 2k − n

g + k

)
=
(g + k + 1

g

)(k + 1

1

)(g + k

g + k

)
=
(g + k + 1

g

)
(k + 1)

=
(g + k

g

)
[(g + k + 1)/(g + k + 1− g)](k + 1)

=
(g + k

g

)
(g + k + 1).

S1.6 Computing the number of glk-ci patterns commonly matched by two sequences
Algorithm S2 can be used to compute the number of glk-ci patterns commonly matched by two sequences.

S1.7 A tree-based algorithm for efficiently computing the number of glk-ci patterns commonly matched by two sequences
The tree-construction process is summarized in Algorithm S3. The use of it in computing the number of glk-ci patterns for each pair of sequences is
described in Algorithm S4.

S1.8 Quantifying the similarity between a head/tail of a glk pattern and a sequence motif
We computed the similarity between the head/tail of a glk pattern (which is a k-mer possibly with wildcard characters) and a sequence motif as follows.
First, we represented a head/tail as a position probability matrix, where for each non-wildcard position the specified nucleotides has a probability of 1
and all other nucleotides have a probability of 0, while for each wildcard position all four nucleotides have a probability of 0.25. This position probability
matrix was then converted to a position weight matrix [43]. Finally, the similarity between this position weight matrix and the position weight matrix of
a sequence motif was quantified by the PWMSimilarity function (with Pearson correlation as measurement) of the TFBSTools R package.

“output” — 2019/7/12 — 21:01 — page S4 — #13i
i

i
i

i
i

i
i

S4 Hong et al.

Algorithm S2 Algorithm for computing the number of glk-ci patterns commonly matched by two sequences
1: function Cci(s1, s2, g, l, k) . s2, s2: the two sequences of lengths n1 and n2 (with n1 ≤ n2)

. g, l, k: specified values for defining glk-ci patterns
2: if n2 < g + k OR n1 > g + l + k then
3: Return 0
4: else if n1 = n2 = g + k then
5: Define count := 0 . Number of positions with same characters in s1 and s2
6: for i = 1 to n2 do
7: if s1[i] = s2[i] then
8: count += 1
9: end if
10: end for
11: if l > 0 then
12: Return

(count
k

)
* (g + k + 1)

13: end if
14: Return

(count
k

)
15: else
16: Define counts as an array of g + k + 1 integers all initialized to 0 . First array index is 1 here

. Counting for the head region
17: for i = 1 to g + k do . For each position of s1 and s2 counting forward
18: if s1[i] = s2[i] then
19: for j = 1 to g + k + 1− i do . Position i only contributes to these heads
20: counts[j] += 1
21: end for
22: end if
23: end for

. Counting for the tail region
24: for i = 1 to g + k do . For each position of s1 and s2 counting backward
25: if s1[n1 − i+ 1] = s2[n2 − i+ 1] then
26: for j = 1 to g + k + 1− i do . Position i only contributes to these tails
27: counts[g + k + 2− j] += 1
28: end for
29: end if
30: end for

. Compute the final answer
31: Define answer := 0
32: for j = 1 to g + k + 1 do
33: answer +=

(counts[j]
k

)
34: end for
35: Return answer
36: end if
37: end function

“output” — 2019/7/12 — 21:01 — page S5 — #14i
i

i
i

i
i

i
i

Flexible k-mers with variable-length indels S5

Algorithm S3 Algorithm for building Head-Tail tree for a set of input sequences

1: function buildTree({S}, g, l, k) . {S} = S1, S2, ...: the set of input sequences
2: Define Root as the root of the tree
3: for each sequence Sx ∈ {S} do
4: for each sub-sequence si of Sx with a length between g + k and g + l + k do
5: Define n := |si| . Length of si
6: for j = 0 to g + k do
7: Define H := si[1..g + k − j] . First g + k − j nucleotides of si as head

. si[a..b] = ∅ if a > b

8: Define T := si[n− j + 1..n] . Last j nucleotides of si as tail
9: insertTree(i, H , T , Root) . Insert this head-tail combination into tree
10: end for
11: end for
12: end for
13: Return Root

14: end function
15: function insertTree(i, H , T , Root) . i: ID of the sequence

. H, T : head and tail part
16: Define p := Root

17: for each nucleotide x of H do
18: if p does not have a child of type “head” and label x then
19: Create a head node q with label x as a child of p
20: end if
21: p := child of p of type “head” and label x . Must have one now
22: end for
23: for each nucleotide x of T do
24: if p does not have a child of type “tail” and label x then
25: Create a tail node q with label x as a child of p
26: end if
27: p := child of p of type “tail” and label x . Must have one now
28: end for
29: Increment the counter of sequence Si at node p by 1
30: end function

“output” — 2019/7/12 — 21:01 — page S6 — #15i
i

i
i

i
i

i
i

S6 Hong et al.

Algorithm S4 Algorithm for computing the kernel matrix among a set of input sequences using the Head-Tail tree

1: function computeKernel({S}, g, l, k, Root)
. {S} = S1, S2, ...: the set of input sequences

. Root: root node of the index tree
2: Define Sim as the kernel matrix, initialized with all zeros
3: for each sequence Sx ∈ {S} do
4: for each sub-sequence si of Sx with a length between g + k and g + l + k do
5: Define n := |si| . Length of si
6: for j = 0 to g + k do
7: Define H := si[1..g + k − j]

. First g + k − j nucleotides of si as head
. si[a..b] = ∅ if a > b

8: Define T := si[n− j + 1..n]

. Last j nucleotides of si as tail
9: dfsTree(i,H, T, g, k,Root, Sim, 0)

. using DFS to find this head-tail combination in the tree
10: end for
11: end for
12: end for
13: end function
14: function dfsTree(i,H, T, g, k,Root, Sim,mc)

. i: sequence ID, H,T : head and tail of the sub-sequence
. Sim: the kernel matrix, mc: mismatch count

15: if Root is a leaf node then
16: for each sequence ID j 6= i with a non-zero count zj at this node do
17: Sim[i, j]+ = zj

(g+k−mc
k

)
18: end for
19: else
20: if H 6= ∅ then
21: Define type=“head”
22: Define nuc = H[1]

23: H := H[2..|H|]
24: else
25: Define type=“tail”
26: Define nuc = T [1]

27: T := T [2..|T |]
28: end if
29: for each child node Child of Root do
30: if Child.type = type and (mc < g or Child.label=nuc) then
31: if Child.label=nuc then
32: dfsTree(i,H, T, g, k, Child, Sim,mc)
33: else
34: dfsTree(i,H, T, g, k, Child, Sim,mc+ 1)
35: end if
36: end if
37: end for
38: end if
39: end function

“output” — 2019/7/12 — 21:01 — page S7 — #16i
i

i
i

i
i

i
i

Flexible k-mers with variable-length indels S7

S2 Supplementary results

S2.1 Top 5 glk-ci patterns for the simulated data
Figure S1 shows the 5 glk-ci patterns with the strongest differential occurrence for TF pairs (a) ELF1-USF1, (b) FOS-MAX, (c) USF1-YY1, (d) STAT1-
MAX and (e) FOS-YY1. In each case, the head and tail of these patterns are aligned, and the indel region is shown as a distribution based on the positive
sequences that support these patterns.

(a) ELF1-USF1

Positive
occurrence

Negative
occurrence

Occurrence
difference

707 7 700 GAAGTG* 0 82 103 85 100 101 125 111 *CACGTG

641 11 630 GGAAGT* 2 0 92 110 95 104 106 132 *CACGTG

608 9 599 GGAAGTG 0 0 84 108 85 102 103 126 *CA*GTG

602 8 594 GGAA*TG 0 1 83 105 86 99 102 126 *CACGTG

600 6 594 GAAGTG* 0 0 83 103 85 100 102 127 CAC*TGA

0 1 2 3 4 5 6 7

ELF1 USF1

glk-ci pattern

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

(a) ELF1 -USF1

(b) FOS-MAX

Positive
occurrence

Negative
occurrence

Occurrence
difference

712 10 702 A*TCAT* 1 87 108 80 96 105 122 113 AAGCACA

702 4 698 ACTCA** 1 82 109 76 96 102 122 114 AAGCACA

701 3 698 GA*TCAT 1 85 107 79 97 101 120 111 *AAGCAC

698 3 695 GACTCA* 1 82 108 77 97 100 120 113 *AAGCAC

692 0 692 ACTCAT* 0 79 106 75 95 102 118 110 A*GCACA

0 1 2 3 4 5 6 7

FOS MAX

glk-ci pattern

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

(b) FOS-MAX(c) USF1-YY1

Positive
occurrence

Negative
occurrence

Occurrence
difference

718 4 714 CGTGACC 0 84 112 90 100 104 121 107 C*A*ATG

716 5 711 CGTGACC 0 85 111 88 101 104 121 106 CAA*A*G

715 4 711 ACGTGAC 0 84 111 88 101 104 121 106 *CAA*AT

713 3 710 CGTGACC 0 84 110 88 100 104 121 106 CAA*AT*

713 5 708 CGTGACC 0 84 110 88 100 104 121 106 CA**ATG

0 1 2 3 4 5 6 7

USF1 YY1

glk-ci pattern

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

(c) USF1-YY1

(d) STAT1-MAX

Positive
occurrence

Negative
occurrence

Occurrence
difference

478 6 472 GGAAA** 2 0 74 79 69 78 78 98 CACATGG

431 1 430 CC*GGAA 0 53 72 48 49 62 69 78 *AAGCAC

376 1 375 C*AGGAA 0 49 58 45 43 49 62 70 *AAGCAC

391 17 374 *GGAAA* 11 2 0 74 79 69 78 78 CACATGG

375 1 374 TTC**GG 0 0 0 0 88 108 81 98 AAGCACA

0 1 2 3 4 5 6 7

STAT1 MAX

glk-ci pattern

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

0 1 2 3 4 5 6 7

0

50

100

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

0 1 2 3 4 5 6 7

(d) STAT1-MAX(e) FOS-YY1

Positive
occurrence

Negative
occurrence

Occurrence
difference

681 2 679 GACTCAT 1 78 106 82 96 101 117 100 *CAA*AT

594 4 590 TGACTCA 0 1 81 108 84 99 101 120 *CAA*AT

587 4 583 GACTCAT 0 1 79 106 85 98 101 117 CAA*A*G

581 2 579 GACTCAT 0 1 78 106 82 96 101 117 CAA*AT*

581 2 579 GACTCAT 0 0 78 107 82 96 101 117 C*A*ATG

0 1 2 3 4 5 6 7

FOS YY1

glk-ci pattern

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

0

50

100

150

0 1 2 3 4 5 6 7

(e) FOS-YY1

Fig. S1. Top 5 glk-ci patterns with strongest differential occurrence between the positive and negative sequences for TF pairs (a) ELF1-USF1, (b) FOS-MAX, (c) USF1-YY1, (d) STAT1-
MAX and (e) FOS-YY1, based on the simulated data. The distributions show the numbers of supporting positive sequences with respect to the size of the indel region of the glk-ci patterns.
The parameters of glk-ci-SVM were set to g=2, l=7 and k=12. The corresponding Jaspar motifs are shown at the bottom for comparisons.

“output” — 2019/7/12 — 21:01 — page S8 — #17i
i

i
i

i
i

i
i

S8 Hong et al.

S2.2 Effects of parameter values
Figure S2 shows that the maximum difference between the occurrence counts of a glk-ci pattern in the positive and negative sequences correlates strongly
with the classification performance.

CUX1_NHLH1g2l8k8 g2l10k8 g2l12k8 g2l14k8 g2l16k8 g2l18k8 g2l20k8 g2l22k8
400+400 415 620 774 877 969 1044 1085 1129
auroc 0.743504 0.800738 0.837335 0.848566 0.868654 0.876399 0.881484 0.885612
aupr 0.757116 0.808098 0.829642 0.828642 0.838068 0.840574 0.840462 0.838543

0

200

400

600

800

1000

1200

1400

0.65

0.7

0.75

0.8

0.85

0.9

M
ax
im
al
	D
iff
er
en
ce

au
ro
c/
au
pr

auroc

aupr

Maximal	Difference

Fig. S2. Maximal difference between glk-ci pattern occurrence counts in the positive and negative sequences across different value of parameter l for the TF pair CUX1 and NHLH1.

We then investigated how the SVM performance was affected by the parameter setting. For the TF pair FOS-MAX, the two motifs had 11 and 10
positions, respectively. When the spacing range was set to [1,7], the total span of the two motifs and the spacing varied between 22 and 28 positions. For
gkm-SVM, the values of tot considered and the resulting performance exhibited no clear relationships (Figure S3a). For glk-ci-SVM, we tried three sets
of values for g and l, namely (2,7), (3,7) and (2,10). We used small values of g since they would require less running time, and it turned out that these
small values were sufficient for achieving very high performance. We further tried several more combinations of these two parameters to see how the
performance of glk-ci-SVM would change, and found that the performance was generally higher with a larger value of l (Figure S3b), suggesting that
glk-ci patterns that modeled the negative sequences were also useful for the classification.

S2.3 Simulated dataset with more negative sequences than positive sequences
We generated an imbalanced simulated dataset. For each TF pair, the dataset contains 500 positive sequences and 2000 negative sequences. The motif
distances for the positive sequences were drawn uniformly from the range [1, 15], and the distances for the negative sequences were drawn from [16, 30].
We set the value of g to 2, k to 10, and the value of l is the same as in the corresponding balanced dataset. Figure S4 shows the performances of glk-ci
SVM on this imbalanced dataset.

S2.4 More parameter settings for the simulated dataset
For the experiments in the main text, we set g to 2 and k to 10. To test the performance when g + k is different from the expected motif length, we also
tested some additional values for the simulated dataset. From the results (Figure S5), the performance remained highly similar to the other parameter
settings.

S2.5 Runtime scalability with respect to dataset size
To evaluate the scalability of glk-ci-SVM (the version disallowing indels at pattern ends) with respect to the dataset size, we randomly selected one
ENCODE ChIP-seq dataset, and then generated four sub-datasets of different sizes (containing 2000, 4000, 6000 or 8000 random peak sequences each
of length 101bp). We set g = 2, l = 5, k = 6, and used 32 threads. Figure S6 shows the running time of glk-ci SVM on thsee four datasets.

“output” — 2019/7/12 — 21:01 — page S9 — #18i
i

i
i

i
i

i
i

Flexible k-mers with variable-length indels S9

(a) Performance of gkm-SVM

(b) Performance of glk-ci-SVM

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

24 26 28 30 32

tot

AUROC AUPR

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Parameters

AUROC AUPR

Fig. S3. Performance of gkm-SVM (a) and glk-ci-SVM (b) with different parameter settings based on the simulated data for the FOS-MAX pair.

ELF1-USF1 [1,15]FOS-MAX [1,15]ELF1-FOSL1 [1,15]USF1-YY1 [1,15]STAT1-MAX [1,15]FOS-YY1 [1,15]

g2l19k10 g2l20k10 g2l19k10 g2l18k10 g2l18k10 g2l18k10

AUROC 0.960761 0.936839 0.905155 0.952091 0.884942 0.919717

AUPR 0.874588 0.807195 0.656522 0.847687 0.692001 0.767806

0

0.2

0.4

0.6

0.8

1

ELF1-USF1
[1,15]

FOS-MAX
[1,15]

ELF1-FOSL1
[1,15]

USF1-YY1
[1,15]

STAT1-MAX
[1,15]

FOS-YY1
[1,15]

AUROC AUPR

Fig. S4. The AUROC (white) and AUPR (grey) results of glk-ci SVM on the imbalanced dataset.

“output” — 2019/7/12 — 21:01 — page S10 — #19i
i

i
i

i
i

i
i

S10 Hong et al.

(a) AUROC

(b) AUPR

0

0.2

0.4

0.6

0.8

1

g2k8 g2k10 g3k9

0

0.2

0.4

0.6

0.8

1

g2k8 g2k10 g3k9

Fig. S5. The AUROC (a) and AUPR (b) results of additional parameter settings of g and k based on the simulated dataset.

0

20

40

60

80

100

120

140

160

180

200

2000 4000 6000 8000

Ti
m

e
(s

ec
o

n
d

)

Number of sequences

g2l5k6 (32 threads)

Fig. S6. Running time of glk-ci-SVM on the four benchmark datasets with increasing size.

