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Abstract—Traditional decision tree classifiers work with data
whose values are known and precise. We extend such classifiers
to handle data with uncertain information, which originates
from measurement/quantisation errors, data staleness, multiple
repeated measurements, etc. The value uncertainty is represented
by multiple values forming a probability distribution function
(pdf). We discover that the accuracy of a decision tree classifier
can be much improved if the whole pdf, rather than a simple
statistic, is taken into account. We extend classical decision tree
building algorithms to handle data tuples with uncertain values.
Since processing pdf’s is computationally more costly, we propose
a series of pruning techniques that can greatly improve the
efficiency of the construction of decision trees.

I. INTRODUCTION

Classification is a classical problem in machine learning

and data mining[1]. Given a set of training data tuples, each

having a class label and being represented by a feature vector,

the task is to algorithmically build a model that predicts

the class label of an unseen test tuple based on the tuple’s

feature vector. One of the most popular classification models

is the decision tree model. Decisions trees are popular because

they are practical and easy to understand. Rules can also be

extracted from decision trees easily. Many algorithms, such

as ID3[2] and C4.5[3] have been devised for decision tree

construction. These algorithms are widely adopted and used

in a wide range of applications such as image recognition,

medical diagnosis[4], credit rating of loan applicants, scientific

tests, fraud detection, and target marketing.

In traditional decision-tree classification, a feature (an at-

tribute) of a tuple is either categorical or numerical. For the

latter, a precise and definite point value is usually assumed.

In many applications, however, data uncertainty is common.

The value of a feature/attribute is thus best captured by not

a single point value, but by a range of values giving rise to

a probability distribution. Data uncertainty arises naturally in

many applications due to various reasons: measurement errors,

data staleness, repeated measurements, limitations of the data

collection process, etc.

A simple way to handle data uncertainty is to abstract

probability distributions by summary statistics such as means

and variances. We call this approach Averaging. Another

approach is to consider the complete information carried by

the probability distributions to build a decision tree. We call

this approach Distribution-based.

In this paper we study the problem of constructing decision

tree classifiers on data with uncertain numerical attributes. Our

goals are (1) to devise an algorithm for building decision trees

from uncertain data using the Distribution-based approach; (2)

to investigate whether the Distribution-based approach could

lead to a higher classification accuracy compared with the Av-

eraging approach; and (3) to establish a theoretical foundation

on which pruning techniques are derived that can significantly

improve the computational efficiency of the Distribution-based

algorithms.

II. RELATED WORKS

There has been a growing interest in uncertain data min-

ing. The well-known k-means clustering algorithm has been

extended to the UK-means algorithm[5] and various pruning

techniques have been proposed[6], [7].

Decision tree classification with missing data has been

addressed for decades in the form of missing values[2], [3]. In

C4.5[3], these are handled by using fractional tuples. In this

work, we adopt the technique of fractional tuple for splitting

tuples into subsets when the domain of its pdf spans across

the split point. However, handling data values represented as

pdf’s is unprecedented.

In fuzzy decision tree classification, both attributes and class

labels can be fuzzy and are represented in fuzzy terms[8].

Given a fuzzy attribute of a data tuple, a degree (called

membership) is assigned to each possible value, showing the

extent to which the data tuple belongs to a particular value.

Our work instead gives classification results as a distribution:

for each test tuple, we give a distribution telling how likely it

belongs to each class.

Building a decision tree on tuples with numerical, point-

valued data is computationally demanding[9]. Finding the best

split point is computationally expensive. To improve efficiency,

many techniques have been proposed to reduce the number

of candidate split points[10], [9], [11]. Our work can be

considered an extension of these optimisation techniques.

III. PROBLEM DEFINITION

In our model, a dataset consists of d training tuples,

{t1, t2, . . . , td}, and k numerical (real-valued) feature at-

tributes, A1, . . . Ak. Each tuple ti is associated with a feature

vector Vi = (fi,1, fi,2, . . . , fi,k) and a class label ci ∈ C.

Here, each fi,j is a pdf with domain [ai,j , bi,j ] modelling the

uncertain value of attribute Aj in tuple ti. The classification

problem is to construct a model M that maps each feature

vector (fx,1, . . . , fx,k) to a probability distribution Px on C
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Fig. 1. Classifying a test tuple

such that given a test tuple t0 = (f0,1, . . . , f0,k, c0), P0 =
M(f0,1, . . . , f0,k) predicts the class label c0 with high accu-

racy. We say that P0 predicts c0 if c0 = arg maxc∈C{P0(c)}.
We consider binary decision trees with tests on numerical

attributes. Each internal node n of a decision tree is associated

with an attribute Ajn
and a split point zn, giving a binary

test x ≤ zn. An internal node has exactly 2 children. Each

leaf node m in the decision tree is associated with a discrete

probability distribution Pm over C.

To determine the class label of a given test tuple t0 =
(f0,1, . . . , f0,k, ?), we traverse the tree top down, starting from

the root node. When we visit an internal node n, we split the

tuple into two parts at zn and distribute each part recursively

down the child nodes accordingly. Eventually, we reach leaf

nodes. The probability distribution Pm at each leaf node m
contributes1 to the final distribution P0 for predicting the class

label of t0. This is illustrated with the example in Figure 1.

A pdf fi,j could be programmed analytically if it can

be specified in closed forms. More typically, it would be

implemented numerically by storing a set of s sample points

x ∈ [ai,j , bi,j ] with the associated value fi,j(x), effectively
approximating fi,j by a discrete distribution. We adopt this

numerical approach for the rest this paper. With this repre-

sentation, the amount of information available is exploded by

a factor of s. Hopefully, the richer information allows us to

build a better classification model.

The most challenging task is to construct a decision tree

based on tuples with uncertain values, finding suitable Ajn

and zn for each internal node n, as well as an appropriate

probability distribution Pm for each leave node m.

IV. ALGORITHMS

We propose two approaches for handling uncertain data.

A. Averaging

A straight-forward way to deal with the uncertain infor-

mation is to replace each pdf with its expected value, thus

effectively converting the data tuples to point-valued tuples.

This reduces the problem back to that for point-valued data,

and hence traditional decision tree algorithms such as ID3

1 Details are omitted due to the lack of space.

TABLE I
EXAMPLE TUPLES

tuple class mean probability distribution
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1 A +2.0 8/11 3/11
2 A −2.0 1/9 8/9
3 A +2.0 5/8 1/8 2/8
4 B −2.0 5/19 1/19 13/19
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Fig. 2. Decision tree built from example tuples in Table I

and C4.5[3] can be reused. We call this approach AVG

(for Averaging). We use an algorithm based on C4.5, using

entropy as the dispersion measure. To alleviate the problem of

overfitting, we apply the techniques of pre-pruning and post-

pruning (see [12], [3]). This is illustrated using the example

tuples shown in Table I. The resulting decision tree is shown

in Figure 2(a). Now, if we use the 6 tuples in Table I as test

tuples, this decision tree will classify tuples 2, 4, 6 as class

“B” (the most likely class label in L) and the rest as “A”.

Hence it misclassifies tuples 2 and 5. The accuracy is 2/3.

B. Distribution-based

For uncertain data, we adopt the same decision tree building

framework, including the techniques of pre-pruning and post-

pruning. After an attribute Ajn
and a split point zn has been

chosen for a node n, we split the set of tuples S into two

subsets L and R. The major difference from the point-data

case lies in the way the set S is split. If the pdf properly

contains the split point, i.e., ai,jn
≤ zn < bi,jn

, we split ti
into two fractional tuples[3] tL and tR and add them to L and

R, respectively.1 We call this algorithm UDT (for Uncertain

Decision Tree).

The key to building a good decision tree is a good choice

of an attribute Ajn
and a split point zn for each node n. With

uncertain data, however, the number of choices of a split point

given an attribute is not limited to m − 1 point values, but

the union of the domains of all pdfs fi,jn
∀i = 1, . . . , m.

Representing each fi,j with s sample points, there are in total

ms sample points. So, there are at most ms− 1 possible split

points to consider. Comparing to AVG, UDT is s time more

expensive, computationally.

Let us re-examine the example tuples in Table I to see how

the distribution-based algorithm can improve classification

accuracy. By taking into account the probability distribution,

UDT builds the tree shown in Figure 3 before pre-pruning

and post-pruning are applied. This tree turns out to have a

100% classification accuracy! After post-pruning, we get the

tree in Figure 2(b). Use the 6 tuples in Table I as testing tuples

to test this pruned tree, all 6 tuples are classified correctly.
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Fig. 3. Example decision tree before post-pruning

TABLE II
ACCURACY IMPROVEMENT BY CONSIDERING THE DISTRIBUTION

Data Set AVG UDT

Best w = 1%w = 5%w = 10%w = 20%

JapaneseVowel 81.89 87.30 ∗87.30 (distribution based raw data)

Pen-Digit 90.87 95.22 91.66 92.18 93.79 ∗95.22
PageBlock 95.73 96.82 ∗96.82 96.32 95.74 94.87#
Satellite 84.48 87.73 85.18 87.10 ∗87.73 86.25
Segment 89.37 92.91 91.91 ∗92.91 92.23 89.11#
Vehicle 71.03 75.09 72.44 72.98 73.18 ∗75.09

BreastCancer 93.52 95.93 94.73 94.28 95.51 ∗95.93

Ionosphere 88.69 91.69 89.65 88.92 ∗91.69 91.60
Glass 66.49 72.75 69.60 ∗72.75 70.79 69.69
Iris 94.73 96.13 94.47# 95.27 96.00 ∗96.13

The accuracy is 100%. This example thus illustrates that by

considering probability distributions rather than just expected

values, we can potentially build a more accurate decision tree.

C. Experiments on Accuracy

We have implemented AVG and UDT and applied them

to 10 real data sets taken from the UCI Machine Learning

Repository[13]. The results are shown in Table II. For most

of the datasets, the data uncertainty is modelled with a

Gaussian distribution with a controllable parameter w. For the

“JapaneseVowel” data set, we use the uncertainty given by the

raw data to model the pdf.

From the table, we see that UDT builds more accurate

decision trees than AVG does. For instance, for the first data

set, whose pdf is modelled from the raw data samples, the

accuracy is improved from 81.89% to 87.30%; i.e., the error

rate is reduced from 18.11% down to 12.70%, which is a very

significant improvement. Only in a few cases (marked with

“#” in the table) does UDT give slightly worse accuracies than

AVG. Comparing the second and third columns of Table II, we

see that UDT can potentially build remarkably more accurate

decision trees than AVG.

V. PRUNING ALGORITHMS

Although UDT can build a more accurate decision tree, it is

not as efficient as AVG. UDT has to perform s times as many

computations as AVG. We have come up with a few strategies

for pruning candidate split points.

A. Pruning Empty and Homogeneous Intervals

The hardest problem to solve in UDT is to select an attribute

Aj and split point zj to minimise the entropy. Let us focus on

finding the best split point for one particular attribute Aj .

We define the set of end-points of tuples in S on attribute

Aj as Qj = {q | (q = ah,j) ∨ (q = bh,j) for some th ∈ S}.
We assume that there are v such end-points, q1, q2, . . . , qv,

sorted in ascending order. Within [q1, qv], we want to find an

optimal split point for attribute Aj .

Definition 1: For a given set of tuples S, an optimal split

point for an attribute Aj is one that minimises the entropy.

(Note that the minimisation is taken over all z ∈ [q1, qv].)
The end-points define v − 1 disjoint intervals: (qi, qi+1] for

i = 1, . . . , v − 1. We will examine each interval separately.

For convenience, an interval is denoted by (a, b].
Definition 2 (Empty interval): An interval (a, b] is empty if∫ b

a
fh,j(x) dx = 0 for all th ∈ S.
Definition 3 (Homogeneous interval): An interval (a, b] is

homogeneous if there exists a class label c ∈ C such that∫ b

a
fh,j(x) dx 6= 0 =⇒ ch = c for all th ∈ S.
Intuitively, an interval is empty if no pdf’s domain intersects

it; an interval is homogeneous if all the pdf’s that intersect it

come from tuples of the same class.

Definition 4 (Heterogeneous interval): An interval (a, b] is
heterogeneous if it is neither empty nor homogeneous.

Theorem 1: If an optimal split point falls in an empty

interval, then an end-point of the interval is also an optimal

split point.

Theorem 2: If an optimal split point falls in a homogeneous

interval, then an end-point of the interval is also an optimal

split point.

The implication of these theorems is that interior points

in empty and homogeneous intervals need not be considered

when we are looking for an optimal split point. The analogue

for the point-data case is also well known. [10].

Applying Theorems 1 and 2 to UDT allows us to prune

away the interior points of empty and homogeneous intervals.

This gives our Basic Pruning algorithm UDT-BP.

B. Pruning by Bounding

Our next algorithm attempts to prune away heterogeneous

intervals through a bounding technique. First we compute the

entropy H(q, Aj) for all end-points q ∈ Qj . Let H∗
j be the

minimum value. Next, for each heterogeneous interval (a, b],
we compute a lower bound, Lj , of H(z, Aj) over all candidate
split points z ∈ (a, b]. If Lj ≥ H∗

j , we know that none of the

candidate split points within the interval (a, b] can give an

entropy that is smaller than H∗
j and thus the whole interval

can be pruned.

We note that the number of end-points is much smaller

than the total number of candidate split points. So, if a lot

of heterogeneous intervals are pruned in this manner, we can

eliminate many entropy calculations. The cost1 of computing

Lj is roughly the same as evaluating the entropy of only

one split point. So, if an interval is pruned by the lower-

bound technique, we have reduced the cost of computing

the entropy values of all split points in the interval to the

computation of one entropy-like lower bound. Combining

this heterogeneous interval pruning technique with those for

empty and homogeneous intervals gives us the Local Pruning
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Fig. 4. Performance of the pruning algorithms

algorithm UDT-LP. A simple but effective improvement on

UDT-LP is to use a global (across all attributes Aj ) threshold

H∗ = min1≤j≤k H∗
j for pruning. This gives UDT-GP.

C. End-point sampling

As we will see later in Section VI, UDT-GP is very effective

in pruning intervals. In some settings, UDT-GP reduces the

number of “entropy calculations” (including the calculation of

entropy values of split points and the calculation of entropy-

like lower bounds for intervals) to only 2.7% of that of UDT.

On a closer inspection, we find that many of these remaining

entropy calculations come from the determination of end-point

entropy values. In order to further improve the algorithm’s

performance, we propose a method to prune these end-points.

We can take a sample of the end-points (say 10%) and use

their entropy values to derive a pruning threshold. This thresh-

old might be slightly less effective as the one derived from all

end-points, however, finding it requires much fewer entropy

calculations. Incorporate this End-point Sampling strategy into

UDT-GP gives us our next algorithm UDT-ES.

VI. EXPERIMENTS ON EFFICIENCY

The algorithms described above have been implemented

in Java using JDK 1.6 and a series of experiments were

performed on a PC with an Intel Core 2 Duo 2.66GHz CPU.

The data sets used are the same as those used in Section IV-B.

A. Execution Time

We first examine the execution time of the algorithms, which

is charted in Figure 4(a). We have given also the execution

time of the AVG algorithm (see Section IV-A). Note that AVG

builds different decision trees from those constructed by the

UDT-based algorithms, and that AVG generally builds less

accurate classifiers. The execution time of AVG shown in the

figure is for reference only. From the figure, we observe the

following general (ascending) order of efficiency: UDT, UDT-

BP, UDT-LP, UDT-GP, UDT-ES. The AVG algorithm, which

does not exploit the uncertainty information, takes the least

time to finish, but cannot achieve as high an accuracy com-

pared to the distribution-based algorithms (see Section IV-C).

We remark that in the experiment, each pdf is represented by

100 sample points (i.e., s = 100). All UDT-based algorithms

thus have to handle 99 times more data (except for the

“JapaneseVowel” data) than AVG, which only processes one

average per pdf.

B. Pruning Effectiveness

Next, we study the pruning effectiveness of the algorithms.

Figure 4(b) shows the number of entropy calculations per-

formed by each algorithm. As we have explained, the compu-

tation time of the lower bound of an interval is comparable to

that of computing an entropy. Therefore, for UDT-LP, UDT-

GP, and UDT-ES, the number of entropy calculations include

the number of lower bounds computed. The figure shows that

our pruning techniques introduced in Section V are highly

effective. Indeed, UDT-ES reduces the number of entropy

calculations to 0.56%–28% when compared with UDT. It

thus achieves a pruning effectiveness ranging from 72% up

to as much as 99.44%. As entropy calculations dominate the

execution time of UDT, such effective pruning techniques

significantly reduce the tree-construction time.

VII. CONCLUDING REMARKS

We have extended the model of decision-tree classification

and tree-construction algorithms[3] to accommodate data tu-

ples having numerical attributes with uncertainty described

by arbitrary pdf’s. Experiments show that exploiting data

uncertainty leads to decision trees with remarkably higher

accuracies. Performance is an issue, though, because of the

increased amount of information to be processed. We have

devised a series of highly effective pruning techniques to

improve tree construction efficiency. Pruning by bounding and

end-point sampling are novel pruning techniques.

Although our novel techniques are primarily designed to

handle uncertain data, they are also useful for building decision

trees using classical algorithms when there are tremendous

amounts of data tuples.
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