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Abstract: Recent studies have suggested that extremely low dimen-
sional projected clusters (e.g. < 10% of the total number of dimensions)
exist in real datasets such as gene expression profiles. A number of algo-
rithms have been proposed to detect clusters in subspaces, but few can
identify clusters with such low percentage of relevant dimensions. In
this paper we propose a new algorithm that can accurately identify this
kind of clusters. It uses a robust objective function to combine object
clustering and dimension selection into a single optimization problem.
It also allows the input of domain knowledge in various forms to improve
the clustering accuracy. Both theoretical analyses and experimental re-
sults show that by using a small amount of input knowledge, possibly
covering only a portion of the underlying classes, the new algorithm can
precisely detect clusters with only 1% of the dimensions being relevant.
We also show that the semi-supervised approach allows the algorithm
to identify a particular target set of clusters when there are multiple
meaningful groupings of the objects. A real mircoarray data set is used
to demonstrate how to use input knowledge to improve the clustering
accuracy results.
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1 Introduction

Recently many studies have suggested the presence of low dimensional clusters
in high-dimensional real datasets. For example, in a typical microarray gene ex-
pression dataset that contains the expression values of several thousands of genes in
different samples, it is common to find only several tens of genes having expression
patterns that are highly specific to each cluster of samples(Pomeroy et al., 2002).
The genes are called the relevant genes, as opposed to the irrelevant genes that do
not help much in identifying the cluster members (i.e., samples of the same type).
Due to the large number of genes being irrelevant to each cluster, two samples in
the same cluster could have low similarity when measured by a similarity func-
tion that considers the expression values of all genes. The clusters may thus be
undetectable by traditional clustering algorithms. The same kind of low dimen-
sional clusters could also exist in datasets from various domains such as computer
vision(Procopiuc et al., 2002), e-commerce(Wang et al., 2002), text mining and
nutrition value analysis(Yip, 2003).

The projected clustering problem(Aggarwal et al., 1999) is defined for such
a scenario. Each projected cluster is a set of objects with an associated set of
relevant dimensions such that in the subspace formed by the relevant dimensions,
the objects are similar to each other but dissimilar to objects outside the cluster. In
this paper we measure object similarity based on Euclidean distance, so a dimension
is more relevant to a cluster if the projections of its members on the dimension are
closer to each other, but more remote from other objects. The goal of a projected
clustering algorithm is to identify clusters of objects and their relevant dimensions
such that a certain objective function (e.g. within-cluster dispersion along the
relevant dimensions) is optimized.

While the clusters in real datasets could contain an extremely low percentage of
relevant dimensions (e.g. less than 10% of all genes in a gene expression dataset),
it has been reported that most current projected clustering algorithms are unable
to identify clusters with such low dimensionality(Yip et al., 2004). This is mainly
due to their use of objective functions that highly rely on the accuracy of some
input parameters, and the use of similarity calculations that involve all dimensions,
which may not reflect the real similarity between different objects(Yip et al., 2004).

In addition, being unsupervised methods, these clustering algorithms make little
use of domain knowledge, even some domain knowledge is usually available in some
applications. For example, in gene expression datasets, the functions of some genes
are usually known to the biologists. In text mining, some document types have
well-known keywords that help identify the member documents. In order to better
utilize domain knowledge in the clustering process, a number of semi-supervised
clustering algorithms have been proposed(Demiriz et al., 1999). For example, in a
semi-supervised k-means algorithm(Wagstaff et al., 2001), domain knowledge about
the relationships between some object pairs is used to force the assignment of some
pairs to the same cluster and some to different clusters. As reported in many studies
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(e.g.(Cohn et al., 2003; Wagstaff and Cardie, 2000)), the clustering accuracy can
be greatly improved by inputting only a small amount of domain knowledge.

It should be noted that while some domain knowledge is being used by the
algorithms, semi-supervised clustering is different from classification (supervised-
learning) in that the knowledge being used in semi-supervised clustering may not
be suitable or sufficient for classification. First, the knowledge needs not be in the
form of class labels of the objects as required by classification. Second, the amount
of knowledge for each class can be so small that it is insufficient for building a
classifier that captures the general properties of the class. For example, the input
knowledge can be biased towards one side of the class. But in such cases the input
knowledge is still highly useful in semi-supervised clustering. Third, as opposed
to classification, the input knowledge of semi-supervised clustering needs not cover
all classes, but it is still possible to produce the clusters corresponding to every
underlying class.

Previous studies on semi-supervised clustering do not consider the relevance of
dimensions. But the semi-supervised approach is actually very useful in projected
clustering. Given a small amount of example objects of a cluster (e.g. tumor
samples known to be of a certain type), the relevant dimensions of the cluster can
be estimated as the dimensions along which the objects are significantly close to
each other. Similarly, having a dimension specified as relevant to a cluster (e.g. a
gene known to be relevant to a tumor type), the cluster members can be estimated
from regions with unexpectedly high object densities.

Semi-supervised clustering also has an important application in handling datasets
that have multiple meaningful groupings. For example, in cancer study, patients
can be grouped by their response to a certain treatment, or by the risk of having
cancer recurrence. Unsupervised methods can only produce a single set of clusters,
which may correspond to only one of the groupings, or even none of them. Us-
ing the semi-supervised approach, by supplying different input knowledge, a single
clustering algorithm can be guided to produce both kinds of clusters in different
runs. From a machine learning point of view, the search space of semi-supervised
clustering is very large and contains many local optima. The input knowledge helps
clustering algorithms start searching at a point close to the target optimum, and
guides the search path towards it.

All the above observations motivate the current study, which has three major
contributions:

• Proposing a robust objective function for projected clustering that naturally
involves dimension selection in the optimization process.

• Proposing the use of various forms of domain knowledge to improve the ac-
curacy of projected clustering.

• Developing a new clustering algorithm that can (theoretically and empirically)
detect clusters of extremely low dimensionality even with no input domain
knowledge, and whose accuracy can be further improved by incorporating
some domain knowledge in the clustering process.

In the next section we will review some related work in projected clustering
and semi-supervised clustering. In Section 3 we will formally define the semi-
supervised projected clustering problem, as well as the assumptions being made in
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this study. In Section 4 we will describe our new algorithm. Experimental results
will be presented in Section 5, together with some observations and discussions. In
Section 6 we will summarize the whole study and discuss some future extensions.

2 Related Work

2.1 Projected Clustering

Existing projected clustering algorithms can be classified into three categories:
partitional, one cluster at a time, and hierarchical. The partitional approach PRO-
CLUS(Aggarwal et al., 1999) is based on the traditional k-medoids approach(Ng
and Han, 1994), with a goal of minimizing the average within-cluster dispersion.
The distance between different cluster members is computed in the relevant sub-
space of the cluster, which is determined by measuring the average distance between
the medoid and a set of “neighboring objects” that are close to it when all dimen-
sions are considered. The dimensions with the smallest average distances to the
medoid of each cluster are selected as the relevant dimensions of the cluster, which
form its relevant subspace.

Another partitional method ORCLUS(Aggarwal and Yu, 2000) improves PRO-
CLUS by selecting principal components so that clusters not parallel to the original
dimensions can also be detected. It also adds a hierarchical part that can potentially
reduce the errors due to inaccurate initial object assignments.

A limitation of these partitional methods is the determination of neighboring
objects based on similarity calculations that involve all dimensions. Since different
members of a cluster may appear to be dissimilar when all dimensions are con-
sidered, the neighboring objects of a medoid need not be come from the same real
cluster and the relevant dimensions suggested by them could be wrong. Also, as the
approaches use an objective function that tends to give better scores when fewer
dimensions are regarded as relevant to a cluster(Yip et al., 2004; Yip, 2003), they
require users to supply the average number of relevant dimensions per cluster, which
is usually unknown to users. If improper values are used, the clustering accuracy
can be seriously affected(Yip et al., 2004).

The Monte Carlo methods DOC and FastDOC(Procopiuc et al., 2002) identify
projected clusters one after another. To find a cluster, an object is randomly
selected as the seed, and some other objects are randomly sampled to determine the
relevant subspace of the cluster. A dimension is regarded as relevant to the cluster
if all the objects are within a distance ω from the seed along the dimension. Each
cluster is thus a hypercube of width 2ω. The more objects and relevant dimensions a
cluster has, the less likely it is formed by chance, and thus it receives a better score.
The relative importance between the number of objects and relevant dimensions is
controlled by a user parameter β. The algorithm repeatedly tries different seeds
and neighboring objects and returns the cluster with the highest score. Then the
whole process is repeated for a new cluster.

The algorithms perform well when each cluster is in the form of a hypercube and
the parameter values are specified correctly, but in many cases these requirements
cannot be met and the clustering results are quite unsatisfactory(Yip et al., 2004).
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The number of seeds and neighboring objects required to try could also be so large
that causes the algorithms to run for a long time.

The hierarchical algorithm HARP is proposed in(Yip et al., 2004). Its basic as-
sumption is that two objects are likely to belong to the same cluster if they are very
similar to each other along many dimensions. Clusters are allowed to merge only if
they are similar enough in a number of dimensions, where the minimum similarity
and minimum number of similar dimensions are controlled by two thresholds. At
the beginning, the thresholds are set to some harsh values such that only merges
that are very likely to group objects belonging to the same real cluster are allowed.
As the relevant dimensions of each cluster becomes more apparent, the threshold
values are loosened to allow more merges. The process repeats until the thresholds
reach their baseline values, or a target number of clusters is reached.

The method successfully avoids extensive distance calculations that involve all
dimensions, and user parameters whose values are hard to determine. However, due
to the hierarchical nature, it is intrinsically slow. Also, if the number of relevant
dimensions per cluster is extremely low (e.g. 5% of the dataset dimensionality),
the accuracy of HARP may drop as the basic assumption becomes less valid due
to the presence of large amount of noise values in the dataset.

Recently, the problem of finding projected clusters from streaming data has also
been studied(Aggarwal et al., 2003).

In summary, most of the existing projected clustering algorithms make use of
objective functions whose effectiveness rely greatly on the accuracy of some param-
eter values that are hard for users to determine. Some of them involve similarity
calculations that consider all dimensions, which can be quite misleading when the
cluster dimensionality is small. A thorough survey of the above algorithms and oth-
ers proposed for two related problems, namely subspace clustering(Agrawal et al.,
1998) and biclustering(Cheng and Church, 2000), can be found in(Yip, 2003).

2.2 Semi-supervised Clustering

A recent trend in machine learning research has been to combine the techniques
developed for unsupervised learning and supervised learning to handle datasets with
partial external information. One of the foci is semi-supervised clustering, which
actively uses the available domain knowledge in guiding the clustering process.
These methods can be categorized according to the kinds of knowledge being input,
the time that the knowledge is input, and the way the knowledge is used to affect
the clustering process.

The simplest type of input is labeled objects(Basu et al., 2002; Demiriz et al.,
1999). In some cases, users do not know the exact class labels of objects, but they
have some knowledge on which objects should be/should not be put into the same
cluster, which can be specified by must-links and cannot-links(Basu et al., 2004;
Bilenko et al., 2004; Klein et al., 2002; Wagstaff and Cardie, 2000; Wagstaff et al.,
2001; Basu et al., 2004). Some other studies propose the input of classification
rules(Talavera and Bejar, 1999), examples of similar objects(Xing et al., 2003), or
even general comments such as which cluster a particular object should not be put
into(Cohn et al., 2003).

The knowledge can be supplied at different time. It can be supplied before
clustering to guide the clustering process(Basu et al., 2002, 2004; Bilenko et al.,
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2004; Demiriz et al., 1999; Klein et al., 2002; Wagstaff and Cardie, 2000; Wagstaff
et al., 2001; Xing et al., 2003; Basu et al., 2004), or after clustering to evaluate the
clusters and guide the next round of clustering(Cohn et al., 2003). Some algorithms
can also actively request users to supply some specific information at the most
appropriate time(Basu et al., 2004; Klein et al., 2002).

There are various ways to use the input knowledge, such as guiding the for-
mation of seed clusters(Basu et al., 2002, 2004; Bilenko et al., 2004; Basu et al.,
2004), forcing or recommending some objects to be put into the same cluster or
different clusters(Wagstaff and Cardie, 2000; Wagstaff et al., 2001), and modifying
the objective function(Basu et al., 2004; Bilenko et al., 2004; Demiriz et al., 1999;
Basu et al., 2004), similarity function(Cohn et al., 2003; Xing et al., 2003; Bilenko
et al., 2004; Basu et al., 2004) or distance matrix(Klein et al., 2002).

A related problem is semi-supervised classification, which aims at using un-
labeled data to build more accurate classifiers. See, for example(Ratsaby and
Venkatesh, 1995; Blum and Mitchell, 1998; Szummer and Jaakkola, 2001) for de-
tails.

3 Problem Definition

In this section we formally define the semi-supervised projected clustering prob-
lem. We first describe the data model. The input dataset D contains n objects and
d dimensions. Each object is either randomly sampled from one of the k underlying
hidden classes, or is a random outlier. The i-th class is represented by a random
vector ci of d variables each corresponding to one of the d dimensions. Each class
is associated with a set of relevant dimensions that form the relevant subspace of
it. Denote cij as the random variable of ci along the j-th dimension vj , and σ2

ij as
the variance of cij . If vj is relevant to ci, then cij follows a Gaussian distribution
with a small σ2

ij . If vj is irrelevant to cij , then cij follows an unknown distribution
with a large σ2

ij .
In dataset D, the samples generated from the k classes can be grouped to form

k clusters {Ci}k
i=1 with the corresponding sample variance along dimension vj as

s2
ij . Denote s2

j as the sample variance of all objects in D along vj . Due to the
underlying class model, s2

ij is expected to be much smaller than s2
j except in the

very rare case that vj is relevant to all classes and all the class centers projected onto
the dimension are very close. In another view, given a cluster with an unknown
relevant subspace, a dimension is more likely to be relevant to the cluster if its
projection on the dimension has a smaller variance.

We will call the above clusters the “real clusters” since they are defined according
to the actual hidden classes. For simplicity, we will simply call the clusters produced
by a clustering algorithm the “clusters”. A clustering algorithm determines the
dimensions relevant to a cluster through the dimension selection process. We will
call them the “selected dimensions” of a cluster.

The semi-supervised projected clustering problem is then defined as follows.
The inputs to the problem are:

• The dataset D

• The target number of clusters k
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• A set Io of labeled objects (<obj. ID, class label> pairs), each states that
the object is a sample of the class. The set may or may not cover all classes.

• A set Iv of labeled dimensions (<dim. ID, class label> pairs), each states
that the dimension is relevant to the class. Each dimension can be specified
as relevant to multiple classes. The set may or may not cover all classes.

• A set Mo of must-link object pairs, each states that the two objects are
samples of the same class.

• A set Co of cannot-link object pairs, each states that the two objects are
samples of different classes.

Each of the sets Io, Iv, Mo and Co can be empty, which means users have the
flexibility to input whatever kinds of knowledge available, or even not to input any
knowledge at all.

The goal is to identify k clusters and their selected dimensions, and a (possibly
empty) list of outliers, such that an objective function (to be described below) is
optimized.

Before clustering, the knowledge being input is preprocessed as follows. Given
a must-link object pair {x, y} ∈ Mo, if the label of either of the objects is given in
Io (e.g. (x, i)), the must-link pair will be removed from Mo and both objects will
have an entry in Io with the specified class ID as label, i.e., both (x, i) and (y, i)
will be in Io.

Then we allow users to choose whether to infer new knowledge from the inputs.
The inference rules are:

1. {x, y} ∈ Mo ∧ {y, z} ∈ Mo ⇒ {x, z} ∈ Mo

2. (x, i) ∈ Io ∧ (y, i) ∈ Io ⇒ {x, y} ∈ Mo

3. {x, y} ∈ Mo ∧ {y, z} ∈ Co ⇒ {x, z} ∈ Co

4. (x, i1) ∈ Io ∧ (y, i2) ∈ Io ∧ i1 6= i2 ⇒ {x, y} ∈ Co.

If the inputs are highly reliable, it is preferable to perform the inference in order
to give maximum guidance to the clustering process. On the other hand, if it is
likely that some inputs are incorrect, performing the inference may result in fake
knowledge that misleads the algorithm and lowers the clustering accuracy. If the
user has good understanding of the inputs, he/she may choose to perform only a
selected subset of the inferences.

We confine the scope of the current study by a number of assumptions, most
of which are also implicitly or explicitly made in previous studies on projected
clustering and semi-supervised clustering. The possibility of relaxing some of them
will be discussed in Section 6.

1. The determination of relevant dimensions is mainly to help identify the object
clusters (as opposed to biclustering(Cheng and Church, 2000) where both
rows and columns are treated equally). In other words, the major goal of the
algorithm is to form good clusters of objects, determining relevant dimension
is simply an auxiliary way to achieve this goal.
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2. Clusters are disjoint and axis-parallel (as opposed to subspace clustering(Agrawal
et al., 1998) and ORCLUS(Aggarwal and Yu, 2000) respectively).

3. Object similarity is based on the difference between projected values (as op-
posed to pattern-based clustering(Pei et al., 2003; Wang et al., 2002)).

4. All objects of a class are close to each other in a certain subspace, so that one
class corresponds to only one real cluster (as opposed to decision trees(Quinlan,
1993) where the objects of one class can form multiple clusters).

5. The knowledge inputs do not contradict with each other (e.g. two objects
are simultaneously must-linked and cannot-linked), although some may be
incorrect.

3.1 Objective Function

As discussed, a cluster of objects is likely to be from the same real cluster if their
projections are unexpectedly close to each other along many dimensions. Intuitively,
we need an objective function that captures the within-cluster dispersion along the
relevant dimensions. We designed the following function φ for this purpose:

φ =
1
nd

k∑

i=1

φi(1)

φi =
∑

vj∈Vi

φij(2)

φij = ni − 1− 1
ŝ2

ij

∑

x∈Ci

(xj − µ̃ij)2 − ρij(3)

= (ni − 1)(1− s2
ij + (µij − µ̃ij)2

ŝ2
ij

)− ρij(4)

ρij = {ωo

∑

(x,i)∈Io∧x/∈Ci

[1− (xj − µ̃ij)2

ŝ2
ij

] +(5)

ωm

2

∑

{x,y}∈Mo∧x∈Ci∧y/∈Ci

[1− (xj − yj)2

ŝ2
ij

] +

ωc

∑

{x,y}∈Co∧x∈Ci∧y∈Ci

(xj − yj)2

ŝ2
ij

},

where ni and Vi are the size and the set of selected dimensions of cluster Ci, xj

is the projection of an object x on dimension vj , µ̃ij , µij and s2
ij are the sample

median, mean and variance of the projection of Ci on vj respectively, and ŝ2
ij are

the selection thresholds. The thresholds are used to normalize φij to [0, 1] such
that the score components of different dimensions become comparable. They also
play an important role in dimension selection (more on φij will be discussed in the
next section). The objective function φ is composed of the score components φi

of each cluster, which in turn is the sum, over all selected dimensions, of the score
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Figure 1 The dimension selection procedure.

Procedure SelectDim(Ci: target cluster)
1 Foreach dimension vj do
2 Select vj for Ci if and only if φij > 0
End

components φij that compute the within-cluster dispersion, deducted by the penalty
ρij . The ω’s (ωo, ωm, ωc) are confidence parameters for specifying how likely the
input items are correct and the relative importance of different types of input. It
is trivial to generalize the objective function such that each input has a separate
weight, as in(Bilenko et al., 2004). But the large number of parameters usually
overwhelms users and in many applications it is good enough to have only one
confidence parameter per type. We thus adopt the simpler formulation. Overall
a higher value of φ indicates a better set of clusters, therefore the goal of our
clustering algorithm is to maximize the value of φ.

The magnitude of a penalty depends on how reasonable it is to violate the input.
If a labeled object is assigned to another cluster, then the closer it is to the center
of the input-specified cluster, the higher will be the penalty. This is because it
is unreasonable to violate the input if assigning the object to the specified cluster
leads to a large increase of the objective score. For must-link object pairs, if the two
objects are put into different clusters, then the closer are the objects, the higher
will be the penalty. The reverse holds for cannot-link pairs. A similar argument
can be found in(Basu et al., 2003). Notice that in(Bilenko et al., 2004), there is a
counter proposal in which if a must-link input is violated, then the penalty is higher
if the two objects are farther apart. The rationale is that such an input conveys
more information as it can potentially cause a more drastic change to the distance
function. However, such an argument does not hold in the current study as we do
not consider the learning of the distance function. Instead, we assume the input
space is suitable for performing clustering, albeit for each cluster only a subset of
the dimensions are relevant.

By summing up terms in the form of 1 - (normalized dispersion) rather than
the dispersions themselves, an irrelevant dimension has relatively little effect to
the objective score, thus algorithms can tolerate more errors. Also, within-cluster
dispersion is measured by the distance from the cluster median rather than mean,
which makes the function less affected by outliers.

4 The SSPC Algorithm

It is easy to observe that given a set of clusters {Ci}k
i=1, the objective function

φ is maximized when all dimensions with positive φij are selected and all other
dimensions are not selected. This leads to the deterministic dimension selection
procedure in Figure 1.

The importance of SelectDim is that if we have an initial guess of the centers
and relevant dimensions of the clusters, k-means(MacQueen, 1967) like iterative
algorithms can be easily modified to identify projected clusters. Based on this
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Figure 2 The outline of the SSPC algorithm.

Algorithm SSPC
1 Initialization: determine the seeds and relevant dimensions of each

cluster
2 For each cluster, draw a medoid from the seeds
3 Assign every object in the dataset to the cluster (or outlier list)

that gives the greatest improvement to the objective score
4 Call SelectDim(Ci) for each cluster Ci, and calculate the overall

objective score
5 Record the clusters if they give the best objective score so far,

restore the best clusters otherwise
6 Replace the cluster representatives (medoids or medians) of each

cluster, then remove its members
7 Repeat 3-6 until no score improvements are observed for a certain

number of iterations
End

idea, we present our new clustering algorithm SSPC (Semi-Supervised Projected
Clustering) (Figure 2). We first give an overview of the algorithm, and then describe
some components in detail in the coming subsections. It is a partitional algorithm
similar to the k-medoids algorithms(Ng and Han, 1994). As in k-medoids, it has two
main stages: initialization and iterative refinement. Each iteration is subdivided
into two phases: object assignment and re-estimation.

Initialization: SSPC determines some seeds (potential medoids) and estimates
the relevant dimensions of the corresponding clusters, and each cluster draws a
medoid from them.

Object assignment: Every object in the dataset is assigned to the cluster that
gives the greatest improvement to the objective score, where the value of µ̃ij in
Equation 6 is initially estimated by the projection of the medoid on vj . If an
object does not improve the φi score of any cluster, it will be put on the outlier list.
Since the clusters being formed depend on the assignment order, when some ω’s are
non-zero, we randomly reorder all the objects before performing object assignment.

Re-estimation: After assigning all objects, the selected dimensions of each clus-
ter are re-determined and the overall objective score is computed using the actual
medians. If the new score is the best one encountered so far, the clusters will be
recorded. Otherwise, the best clusters obtained so far will be restored. A bad
cluster is then identified from the current best set of clusters, and a new medoid is
selected for it with an attempt to improve the objective score in the next iteration.
The medoid of each other cluster is replaced by the cluster median. For simplicity,
we will call the medoid or median that is currently used to represent a cluster its
“cluster representative”. After replacing the old cluster representatives, the mem-
bers of each cluster are removed, and a new iteration will start. The process repeats
until the best objective score remains unchanged for a certain number of iterations.

There are several main differences between SSPC and the previous partitional
approaches for projected clustering. First, the seeds are determined based on some
domain knowledge if supplied, which is potentially more accurate. Second, the
seeds of each cluster are associated with an estimated set of relevant dimensions
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determined during initialization. When a seed is picked as the medoid of a cluster,
the associated dimensions become the selected dimensions of the cluster. As to
be seen later, this process does not rely on distance calculations that involve all
dimensions or any user parameters whose values are hard to determine. This allows
SSPC to identify low-dimensional clusters more accurately. Third, after each itera-
tion, besides replacing a bad cluster representative by a new medoid, other cluster
representatives are also replaced by the cluster medians to avoid problems due to
the potential biased projected values of the medoids.

In the coming subsections we describe several important components of the
algorithm: 1) Determining the values of the selection thresholds ŝ2

ij ; 2) The initial-
ization process; 3) The replacement scheme for “bad” cluster representatives. After
that, we analyze the algorithm in terms of its time complexity and the relationship
between clustering accuracy and the amount of input knowledge.

4.1 Determining ŝ2
ij

In order to use the SelectDim procedure and calculate the objective score φ,
we need to determine the values of the selection thresholds ŝ2

ij . Recall that a
dimension vj is selected for a cluster Ci if and only if its average squared distance
from median is larger than ŝ2

ij when no penalty is applied. Since the expected
variance of a random sample of a population is the variance of the population, if
the within-cluster variance s2

ij is no smaller than the variance of the background
distribution σ2

j , the members of Ci are no more similar to each other along vj than
a group of random objects. Therefore, we use σ2

j (estimated by the sample variance
s2

j ) as an upper bound of ŝ2
ij .

We propose two schemes to set the actual value of ŝ2
ij . The first scheme is to set

it to ms2
j , where m ∈ (0, 1] is a user parameter. A smaller m tightens the selection

criterion.
The second scheme is based on a probabilistic reasoning. Users need to specify

a value p that bounds the maximum probability that a dimension irrelevant to a
cluster is selected by chance. Suppose Ci is a cluster to which dimension vj is
irrelevant, then p = Pr(s2

ij < ŝ2
ij). If the sampling distribution of s2

ij has a known
probability density function (PDF), the value of ŝ2

ij can be computed accordingly.
For example, suppose the background distributions are Gaussian. Then the ran-

dom variable (ni−1)s2
ij

σ2
j

has a chi-square distribution with ni− 1 degrees of freedom.

With p specified and σ2
j approximated by s2

j , the value of ŝ2
ij can be computed from

the inverse of the cumulative chi-square distribution.
The first scheme is more generic as it does not need to assume the properties

of the background distributions. But in case the sampling distribution of s2
ij has a

known PDF, the second scheme is more recommended as parameter p has a stronger
intuitive meaning than m.

Although ŝ2
ij can take different values for different Ci (when parameter p is

used) and vj (in both cases), the objective function and the SelectDim procedure
involves only one single user parameter (m or p). According to the experimental
results to be presented in Section 5, the ranges of values of m and p that give good
clustering results are usually very wide, which suggests that SSPC is quite robust.
It is also possible to use any reasonable value (e.g. 0.3 ≤ m ≤ 0.7, 0.01 ≤ p ≤ 0.2)
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in an initial test run, and then tune it down if the clusters appear to have too many
selected dimensions, or tune it up if too many objects are discarded as outliers.

4.2 Initialization

During initialization, SSPC creates a number of seed groups, each containing a
set of seeds that are expected to come from the same real cluster, and an estimated
set of relevant dimensions of the real cluster. There are two kinds of seed groups:
private and public. For a cluster with direct input knowledge (Io and/or Iv), it is
easier to form an accurate seed group in terms of both the seeds and the estimated
relevant dimensions. A private seed group is thus created, which is solely used by
the cluster. All clusters with no input knowledge share some large number of public
seed groups, so that medoids can be drawn from different seed group combinations.
Whenever a cluster needs to draw a new medoid, it is randomly drawn from the
private seed group if it exists, or otherwise from one of the public seed groups not
currently used by other clusters.

The order of seed group creation is important. Having created the seed groups
of some clusters accurately, it becomes easier to accurately create the remaining
seed groups. This is because objects that are close to the seeds of the previous seed
groups in the estimated relevant subspaces are likely members of those clusters,
which need not be considered when determining the seeds of the new seed groups.
We will show in Section 4.5 that it is easier to create seed groups accurately for
clusters with more input knowledge, which suggests that clusters with more input
knowledge should have their seed groups created earlier. SSPC creates seed groups
in the following order: 1) clusters with inputs in both Io and Iv, 2) clusters with
inputs in Io only, 3) clusters with inputs in Iv only, 4) clusters with no inputs in
either Io or Iv. Within each category, clusters with larger amount of inputs are
initialized earlier. Once an object is chosen as a seed, it will not be used in the
creation of other seed groups.

In the following we discuss the details of the seed group creation process for the
four cases. In the first three cases, a private seed group is created, and we will use
Ci to denote the target cluster, Gi the resulting seed group, and Io

i and Iv
i the sets

of labeled objects and labeled dimensions for Ci respectively. Since Gi contains
both a set of objects (the seeds) and a set of estimated relevant dimensions, we will
sometimes treat it as a cluster for the sake of discussion.

4.2.1 Clusters with both input labeled objects and labeled dimensions

In this case, the center of Ci is likely to be located near the median of Io
i . Also,

if the set of objects in Io
i is viewed as a temporary cluster Ci′ , the dimensions with

larger φi′j values are more likely to be relevant to Ci.
This leads to a two-step process of seed group creation. We first identify the

seeds to form Gi, then we set the relevant dimensions of Gi as the union of Iv
i and

the dimensions selected by SelectDim(Gi).
We developed a mechanism for the first step based on a simple idea. If we form

a grid (multi-dimensional histogram) of the whole dataset using a fixed number of
dimensions, then if the dimensions are all relevant to Ci, some cells will be found to
contain a high density of objects, which correspond to regions close to the center of
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Ci. If some of the dimensions are irrelevant to Ci, the density will be much lower.
The basic idea is thus to build multiple grids using different sets of dimensions,
and then pick the cell, among all built grids, with the highest object density. The
objects in the cell will be chosen as the seeds of Gi.

There is, however, a complication in that a set of dimensions could be simul-
taneously relevant to multiple clusters. In such a case the grid being built will
contain multiple peaks. To identify the peak corresponding to the center of the
current cluster Ci, we perform a local hill-climbing search starting from the cell
that contains the median of Io

i rather than looking for the absolute peak of the
whole grid. The local search also has the ability to correct the estimate of the
cluster center should the input objects bias towards one side of Ci.

The number of dimensions used to build each grid should not be too large as
the number of cells increases exponentially with respect to the number of building
dimensions, which makes each cell to have too few objects and creates a heavy
computational overhead. Normally a three-dimensional grid serves the purpose
quite well.

Dimensions with greater chance of being relevant to Ci should have higher prob-
abilities of being involved in grid building. Therefore we define a candidate set as
the union of Iv

i and the dimensions selected by SelectDim(Ci′), where the proba-
bility for each dimension vj in the set to be used in building a grid is proportional
to φi′j .

As φi′j involves the computation of s2
i′j , Io

i should contain at least two objects.

4.2.2 Clusters with input labeled objects only

The seed group creation process is almost the same as in the previous case,
except that only dimensions from SelectDim(Ci′) are used in grid building and
only those from SelectDim(Gi) are set as the relevant dimensions of Gi.

4.2.3 Clusters with input labeled dimensions only

In this case, the temporary cluster Ci′ cannot be formed. Only dimensions in
Iv
i are involved in grid building, and each of them has the same probability of being

used. Without Ci′ , there is no starting point for the local hill-climbing search, so
the seeds of Gi are the objects in the absolute peak of the whole grid.

4.2.4 Clusters with neither input labeled objects nor labeled dimensions

In this case, we look for objects that have cannot-links with some seeds from
each private seed group. Such objects are good candidates for the members of the
remaining clusters. For each such object, we look for objects that are must-linked to
them directly or transitively. The resulting groups will be queued up in descending
order of their sizes, and be used to initiate the creation of public seed groups as in
the case of clusters with labeled objects as inputs only.

After this step, if we still need more public seed groups, we use a best-effort
approach based on a simple idea: for those clusters with no seed groups created so
far, their member objects are likely to be far away from all created seed groups.
We thus use a max-min mechanism(Aggarwal et al., 1999) to identify an object
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whose minimum distance to all seed group medians is maximum, where the distance
calculations involve only the relevant dimensions of each seed group, normalized by
the number of such dimensions.

The object is used as the starting point of the hill-climbing search. The proba-
bility for a dimension to be involved in grid building is proportional to the object
density around the object in an one-dimensional histogram of the dimension.

In the extreme case that all clusters have no input knowledge, the initiating
object of the first group is randomly drawn from the dataset.

4.3 Cluster Representatives Replacement

One of the big challenges of k-medoids algorithms is to avoid having the medoids
of two clusters coming from the same real cluster. When that happens, the two
clusters will compete for the φi score of the real cluster. On the other hand, one
of the real clusters will not be represented by any cluster, and most of its members
will be put on the outlier list.

One way to detect such a situation is to check if there is a cluster with a very
low φi score as compared to the maximum achievable score and the scores of other
clusters. Another way is to look for clusters that are very similar. In both cases, a
bad cluster will be pinpointed and its cluster representative will be replaced by a
new seed.

For each other cluster, although the medoid may really be a member of the real
cluster, it may not be close to the cluster center along some relevant dimensions.
As a result some real members located at the other side of the cluster may not be
attracted to this cluster. SSPC attempts to improve the cluster by replacing the
medoid with the median of the cluster, which is probably closer to the real cluster
center.

4.4 Complexity

It can be shown(Yip et al., 2004) that SSPC has a time and space complexity
of O(knd) and O(nd) respectively. The linear complexities make it more practical
to cluster large datasets as compared to some other projected clustering algorithms
such as DOC, HARP and ORCLUS.

4.5 How many inputs are needed?

In many real situations the amount of available domain knowledge is very lim-
ited, or it is very costly to obtain such knowledge. It is important to predict the
relationship between the amount of input knowledge and the resulting clustering
accuracy, so as to minimize the amount of input knowledge while getting a satis-
factory accuracy.

We begin with the case where only labeled objects are available. Suppose a
certain cluster Ci receives |Io

i | labeled objects. The objects form a temporary
cluster, which is used to determine the grid-building dimensions. We want to
estimate the probability that at least one grid is built from dimensions that are
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Figure 3 The probability that at least one grid is formed by relevant dimensions only,
when only labeled objects are available.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of input objects

P
ro

b
a
b

il
it

y

di/d=1%

di/d=2%

di/d=5%

di/d=10%

di/d=20%

really relevant to Ci only, which is crucial to the accuracy of the seed group and
the clustering accuracy in turn.

Assume parameter p is used to compute ŝ2
ij . If dimension vj′ is relevant to

cluster Ci, then the probability that it is selected for Ci is q = Pr(s2
ij′ < ŝ2

ij′) =

Pr(
(|Io

i |−1)s2
ij′

σ2
j′

<
(|Io

i |−1)ŝ2
ij′

σ2
j′

), where σ2
j′ is the variance of the underlying class along

vj′ . If σ2
j′ is estimated from the labeled objects and a histogram on vj′ , q can then

be estimated from the cumulative chi-square distribution.
Let di be the number of relevant dimensions of Ci, t and f be the number of

true and false positives (selected dimensions that are actually relevant/irrelevant
to Ci) respectively. t is a binomial random variable with di trials and probability q,
while f is a binomial random variable with d−di trials and probability p. Suppose
each dimension selected by the temporary cluster has the same chance of being
used in grid building. The probability that a grid is built from c dimensions all
being relevant to Ci is:

α =
di∑

t=c

d−di∑

f=0

(di
t )qt(1− q)di−t(d−di

f )pf (1− p)d−di−f (t
c)

(t+f
c )

,(6)

where (n
r ) represents the number of ways to pick r unordered outcomes from n

possibilities. If g grids are built for each cluster, the probability that at least one
of them involves only relevant dimensions is 1− (1− α)g. To visualize the change
of this value with different input sizes, let us consider some real values to be used
in the experiments in Section 5. Suppose d = 3000, p = 0.01, c = 3, g = 20, and
the local-to-background variance ratio is 0.15. We vary |Io

i | from 2 to 15, and the
ratio di

d , from 1% to 20%. Figure 3 shows the estimated probabilities that at least
one grid is built from relevant dimensions only.

The figure shows that for a fixed di

d ratio, having more input objects increases
the probability of building a grid from relevant dimensions only. In addition, each
curve is observed to have a sharp increase followed by a flattened region. This
means it is possible to estimate the smallest amount of input that can lead to a
near maximal accuracy. It is an exciting result to see that when di

d = 5%, only 5
input items are enough to have an almost 100% guarantee that a grid will be built
from relevant dimensions only. The figure also shows that for a fixed amount of
inputs, the probability increases as di

d increases, which suggests that input objects
work better when the clusters have more relevant dimensions.
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Figure 4 The probability that at least one grid with all c building dimensions being
relevant to Ci only is formed, when only labeled dimensions are available.
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Next, we consider the case where only labeled dimensions are available. Suppose
dimension vj is specified as relevant to a cluster Ci. If an one-dimensional histogram
is built from vj , we expect to find a peak at the center of Ci. If the cell with the
highest object density is not close to the center of Ci, most probably vj is also
relevant to another cluster. Suppose there are k clusters, and on average each
cluster has di relevant dimensions. Then the probability that vj is also relevant
to one or more other clusters is 1− (1− di

d )k−1. Denote this probability as γ, the
probability of forming a c-dimensional grid with all c dimensions being relevant to
Ci only is (1 − γ)c. We want to estimate the probability of forming at least one
such grid when g grids are built, which is a good indicator of the chance of forming
an accurate seed group.

Suppose there are |Iv
i | input dimensions, and no two grids are allowed to use

exactly the same set of building dimensions. When (|I
v
i |

c ) ≤ g, the required proba-

bility is 1−(1−(1−γ)c)(
|Iv

i |
c ). When (|I

v
i |

c ) > g, it becomes 1−(1−(1−γ)c)g. Using
the same parameter values as before, and setting k = 5, the estimated probabilities
at various |Io

i | and di

d values are shown in Figure 4.

In general, the more labeled dimensions being supplied, the higher is the chance
of forming a grid with all building dimensions being relevant to Ci only. The figure
also reveals an interesting phenomenon: while labeled objects work better when
di

d is large, labeled dimensions work better when it is small as the chance for a
single dimension to be relevant to multiple clusters is small. This suggests that
when trying to identify clusters with extremely low dimensionality, which is the
main focus of this study, it is more effective to use labeled dimensions as input
knowledge.

Both results show that a very small amount of input knowledge could enhance
the accuracy a lot. Since the two kinds of inputs complement each other, there is
a synergy when they are supplied at the same time, provided the amount of input
objects is not so small that causes a large amount of irrelevant dimensions to be
used in building the grids. Some empirical results will be presented in the next
section.
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5 Experiments

5.1 Synthetic datset

In this section we present various experimental results on SSPC and the compar-
ing projected clustering algorithms HARP(Yip et al., 2004) and PROCLUS(Aggarwal
et al., 1999), using the non-projected k-medoids algorithm CLARANS(Ng and Han,
1994) as reference.

As far as we know, there exist no benchmark datasets that contain projected
clusters as low dimensional as the ones that are of interest in this study. We
therefore generate our own synthetic datasets in ways that are similar to some
previous studies(Aggarwal et al., 1999; Yip, 2003), but with the parameters adjusted
to produce datasets with the desired properties. We repeated each experiment 10
times, and report only the result that gives the best algorithm-specific objective
score, in which the set of clusters produced is probably being adopted in a real
situation when the real clusters are unknown. Meanwhile, we apply SSPC on
real microarray data to show how the input knowledge improves the clustering
performance.

The performance metric used to evaluate clustering results is the Adjusted Rand
Index (ARI)(Yeung and Ruzzo, 2001). ARI measures how similar are the partitions
of objects according to the real clusters (U) and a clustering result (V). Denote a, b, c
and d as the number of object pairs that are in the same cluster in both U and
V, in the same cluster in U but not V, in the same cluster in V but not U, and in
different clusters in both U and V respectively, ARI is defined as follows:

ARI(U, V ) =
2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)
(7)

The more similar are the two partitions, the larger is the ARI value. When U
and V are identical, ARI = 1. When V is only as good as a random partition,
ARI = 0.

If input knowledge is involved in a run of SSPC, the labeled objects are removed
from the resulting clusters before computing the ARI values in order to eliminate
the direct performance gain due to the input objects.

5.1.1 Raw accuracy

In the first set of experiments we compared the raw accuracy of the algorithms
without input knowledge. A series of synthetic datasets were generated with n =
1000, d = 100 and k = 5. The actual average dimensionality of the clusters,
lreal, varies from 5 to 40, accounting for 5% − 40% of the dataset dimensionality.
The datasets were generated according to the data model described in Section 3,
with the background distributions being uniform and the local distributions having
variances ranging from 1%−10% of the value range of the background distributions.

We set k to 5 for all algorithms, used default parameter values for HARP and
CLARANS, and tried different values of the critical parameters of PROCLUS and
SSPC. For PROCLUS, we tried 9 different values of l for each dataset (from 10%
to 90% of the dataset dimensionality). For SSPC, 5 different values of m and p
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Figure 5 The best raw accuracies (based on different parameter values) of the algo-
rithms on datasets with various average cluster dimensionality.
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Figure 6 A comparison of the best and average raw accuracies (based on different
parameter values) of PROCLUS and SSPC on datasets with various average cluster di-
mensionality.
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were used for each dataset (0.3 ≤ m ≤ 0.7, 0.01 ≤ p ≤ 0.09). The best results
(the results with the highest ARI values) after trying different parameter values
are shown in Figure 5. In Figure 6, the best and average results of PROCLUS and
SSPC are shown for the comparison of their relative robustness.

The figure shows that all projected clustering algorithms performed well as
compared to CLARANS when the cluster dimensionality is high. When the dataset
dimensionality is as low as 5% of d, the performance of all three projected clustering
algorithms went down, but SSPC has the mildest performance drop. It is somewhat
unexpected that the raw performance of SSPC when parameter p is used is close
to the performance when parameter m is used, given the background distributions
are actually non-Gaussian. This may due to the fact that except the dimension
selection procedure, SSPC makes no assumptions on the background distribution.
The performance of the other parts of the algorithm may compensate for the invalid
assumptions being made when parameter p is used.

Figure 6 shows that SSPC is more robust than PROCLUS in that the average
accuracies over the use of different parameter values are much closer to the best
accuracies. The individual clustering results when lreal = 10 are shown in Figure 7.
PROCLUS performed well when the value of l was supplied correctly, but the
performance went down as the input moved away from the true value. In contrast,
SSPC performed well with the various parameter values being tried.
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Figure 7 The accuracy of PROCLUS and SSPC on the dataset with lreal = 10 using
various parameter values.
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5.1.2 Performance with input knowledge

In this set of experiments, we further lower the average cluster dimensionality
and see if the accuracy of SSPC can be improved by input knowledge.

We generated a dataset with n = 150, d = 3000, k = 5, and lreal = 30, i.e., 1%
of d. The configuration highly resembles a gene expression dataset when the goal
is to cluster the samples, and the number of relevant genes of each sample class is
as low as 1% of d. We set m = 0.5, and tried 5 coverage ratios (fraction of clusters
receiving input), and 8 input sizes. We first tried 4 input categories: no inputs,
Io only, Iv only, and both. For example, when coverage=0.6, only Io and Iv are
non-empty, and input size=4, 0.6 × 5 = 3 clusters receive input knowledge, each
with 4 labeled objects and 4 labeled dimensions. No input is supplied for the other
2 clusters.

The input items were drawn randomly from the real cluster members and rel-
evant dimensions. Each point in the coming figures is the median of 10 repeated
runs with 10 independent sets of input.

Figure 8 shows the accuracy of SSPC when coverage=1. For reference, the ARI
values of HARP and PROCLUS (with correct l value supplied) are 0.17 and 0.08
respectively, which are much lower than the raw accuracy of SSPC (at input size
0). In general, SSPC has a larger accuracy improvement when more input items
are supplied. The accuracy becomes stable with 5 objects and 3 dimensions (which
is equal to the default value of c, the number of building dimensions per grid). All
these observations are consistent with the analysis in Section 4.5. The accuracy of
SSPC appears to be more stable with labeled dimensions as inputs. In particular,
an accuracy lower than the raw accuracy is observed when only 2 labeled objects
are supplied to each cluster. This is due to the large probability that the two
objects are close to each other along many irrelevant dimensions, which misleads
the dimension selection procedure (see Figure 3). In contrast, the probability for a
pair of dimensions to be relevant to multiple clusters is much lower due to the low
average cluster dimensionality, which results in an observable accuracy improvement
when 2 labeled dimensions are supplied.

Figure 9 shows the accuracy of SSPC with various coverage values, when the
input sizes are 3 and 6 respectively. Again, there is a general trend of increasing
accuracy when the coverage increases, and the increasing trend is more stable at the
larger input size of 6. An interesting observation from Figure 9b is that the peak
performance is reached at 60% coverage, which suggests that it is not necessary to
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Figure 8 The accuracy of SSPC with various amount of input knowledge when the
coverage is 1.
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Figure 9 The accuracy of SSPC with various coverage of input knowledge.
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(b) When input size is 6.

input domain knowledge to every cluster. By using the max-min mechanism (Sec-
tion 4.2.4), clusters with no input knowledge could also locate their cluster centers
provided the seed groups of the other clusters are created accurately. During object
assignment, if members of the clusters with input knowledge are assigned correctly,
the chance for the remaining clusters to identify their members and relevant dimen-
sions correctly is also increased.

We then studied the effectiveness of must-links and cannot-links. We gener-
ated a new dataset with the same number of objects and dimensions, but much
wider variances of the Gaussians. In other words, this dataset is more difficult to
cluster than the one we just used to test the effectiveness of labeled objects and
labeled dimensions. The purpose of using a more difficult dataset is to illustrate
the additional benefits brought by the link inputs.
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For each of the three original input combinations (Io only, Iv only, Io and Iv),
we compared the performance of SSPC with no links as inputs, with Mo only, with
Co only, and with both. Therefore in total 12 input type combinations were tried.
We studied the trend of the accuracy of SSPC with different input sizes. At a
particular input size s, if Mo was used, s objects were selected from each cluster
and all pairs of objects from the same cluster became the must-links. If Co was
used, s objects were selected from each cluster and all pairs of objects from different
clusters became the cannot-links.

Figure 10 shows the best accuracies across multiple runs of SSPC. The figure
shows that the accuracy of SSPC was improved by the link inputs in two ways.
First, for most of the input sizes, having links as inputs gave a better clustering
accuracy than when no links were supplied. Second, the link inputs allowed the
peak accuracy of SSPC to be raised, which can be seen from the higher ARI scores
at large input sizes (7 or larger).

5.1.3 Data with multiple possible groupings

As discussed in Section 1, an important application of semi-supervised clustering
is to produce different desired clusters based on different input knowledge. In this
set of experiments we verify this capability of SSPC. We generated two datasets,
each with n = 150, d = 1500, k = 5 and lreal = 30. The members and relevant
dimensions of the clusters in the two datasets are independent. We then combined
the two datasets to produce a dataset with 3000 dimensions, where the first 1500
come from the first original dataset and the last 1500 come from the second. The
average cluster dimensionality thus remains at 1% of d. We then tested the accuracy
of HARP, PROCLUS and SSPC on the dataset, with correct l value supplied to
PROCLUS. For SSPC, we tested its accuracy in three different scenarios: without
input (raw accuracy), input based on the knowledge of the first original dataset,
and input based on the knowledge of the second original dataset. The ARI values
of the algorithms computed from the actual clusters of the two original datasets
are shown in Figure 11.

The performance of HARP is seriously affected by the simultaneous existence
of two possible groupings. Objects not in the same cluster can be close to each
other along many dimensions (as they do belong to the same cluster in the other
grouping), which ruins the threshold loosening mechanism of HARP. The perfor-
mance of PROCLUS is better, but is still not very encouraging. The raw accuracy
of SSPC is better than HARP and PROCLUS when evaluated by the first set of
clusters, but worse when evaluated by the second set. This shows that without any
external input, SSPC tends to form clusters that are more similar to the first set.
But as some external inputs were supplied, the accuracy of SSPC was significantly
improved in both cases. The results confirm the importance of external inputs in
guiding the formation of some desired clusters when there are multiple meaningful
groupings.

5.1.4 Scalability

Figures 12a and 12b show the execution time of 10 repeated runs of SSPC
with an increasing dataset size (n) and dimensionality (d) respectively (without
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Figure 10 The accuracy of SSPC with and without link inputs.

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9
Input size

A
R

I

IoIvCoMo

IoIvCo

IoIvMo

IoIv

(a) With Io and Iv .

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9
Input size

A
R

I

IoCoMo

IoCo

IoMo

Io

(b) With Io.

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9
Input size

A
R

I

IvCoMo

IvCo

IvMo

Iv

(c) With Iv .

Figure 11 The accuracy of the algorithms on the dataset with two possible groupings.
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Figure 12 The execution time of 10 repeated runs of PROCLUS and SSPC.
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Figure 13 The accuracy of SSPC on datasets with various amount of outliers.
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knowledge input), using the execution time of PROCLUS as reference. The figures
confirm the linear time complexity of SSPC with respect to both n and d. Its speed
is comparable to PROCLUS in our implementations.

5.1.5 Outlier Immunity

Finally we studied how SSPC is affected by outliers. A series of synthetic
datasets were generated with n = 1000, d = 100, k = 5, and lreal = 5. The amount
of outliers varies from 0% to 25%. We set m to 0.5. The clustering accuracies and
the amount of objects on the outlier lists (without knowledge input) are shown in
Figure 13 and Figure 14 respectively.

The results show that SSPC has a high noise-immunity, with only moderate ac-
curacy decrease as the amount of outliers increases. The amount of objects detected
as outliers also highly resembles the actual amount of outliers in the datasets.
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Figure 14 The amount of objects put in the outlier list by SSPC when clustering the
datasets with various amount of outliers.
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5.2 Real dataset

In this subsection, we apply SSPC to a microarray data set SRBCT which
is a gene expression data set presented by Khan et al. (Khan et al., 2001). It
contains the expression levels of 2308 genes for 63 Small Round Blue Cells Tumor
patients belonging to one of the 4 categories: Ewing family of tumors (EWS), rhab-
domyosarcoma (RMS), neuroblastoma (NB) and non-Hodgkin lymphoma (BL). For
this data set, we clustered the samples with the genes as the input dimensions. ARI
is also used here to evaluate the clustering results by calculating the correspondence
between the clusters generated by SSPC and the inherent categories of the data
set.

Various of experiments on SRBCT were conducted to show the performance
of SSPC with input knowledge. For the relevant objects (samples), we randomly
draw them from the four categories. Meanwhile, some genes are identified for each
categories (see Khan et al. (2001)) and the input relevant dimensions were drawn
from these genes. In the experiments, the parameter m was set to 0.5. Each point
in the coming figures is the average of 10 repeated runs with 10 independent sets
of input.

Figure 15 shows the performance of SSPC on SRBCT with different input sizes
when coverage=1. When there is no input knowledge (i.e., input size is 0), SSPC
obtained a bit worse clustering results. However, the clustering performance was
significantly improved when the input items are supplied. From Figure 15, we can
see that the clustering accuracy (measured by ARI) becomes stable when the num-
ber of input labeled dimensions is 6. Meanwhile, the clustering accuracy (measured
by ARI) becomes better with more input labeled objects.

Figure 16 shows the clustering accuracy of SSPC with various coverage values,
when the input sizes are 3 and 7 respectively. In general, there is a general trend of
increase of clustering accuracy when the coverage increases. Again, an interesting
observation from Figure 16b is that the peak performance is reached at 50% cov-
erage (in this case, only 2 (50% × 4) clusters are covered), which suggests that it
is not necessary to input domain knowledge to every cluster. This result is similar
to the experimental results of synthetic data sets, for that the chance of identifying
the clusters with no input knowledge is increased when the members of the clusters
with input knowledge could be assigned correctly.

Also, we studied the effectiveness of must-links and cannot-links on clustering
microarray data. Again, there are 12 input type combinations for Mo and Co based
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Figure 15 The accuracy of SSPC on SRBCT with various amount of input knowledge
when the coverage is 1.
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Figure 16 The accuracy of SSPC on SRBCT with various coverage of input knowl-
edge.
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(a) When input size is 3.
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(b) When input size is 7.
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Figure 17 The Accuracy of SSPC on SRBCT with and without link inputs.
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on the combinations of Io and Iv. Figure 17 shows that the performance of SSPC
was improved by the link inputs in two ways. For most of the input sizes, having
links as inputs gave a better clustering accuracy than when no links were supplied.
In particular, the clustering accuracy reaches its peak point that the number of
input size is 7. This result also suggests that it is not necessary to input much
more domain knowledge for much better clustering result, i.e., small knowledge can
improve the clustering performance.
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6 Summary and Future Extensions

In this paper, we have discussed some potential limitations of some existing
projected clustering algorithms, including their inability to detect clusters with
very low dimensionality, the use of user parameters whose proper values are hard
to determine, and the potential accuracy drop when improper parameter values are
supplied. We have proposed a new projected clustering algorithm that is robust
and is able to detect clusters of extremely low dimensionality as it uses a robust
objective function and avoids distance calculations that involve all the dimensions.
In addition, we have proposed ways to utilize any available domain knowledge in
the form of labeled objects and labeled dimensions. Experimental results show that
there is a clear accuracy improvement when some input knowledge is incorporated
in the clustering process. The peak performance is readily reached when only a
small amount of knowledge is supplied, and when the knowledge covers only some
of the classes.

There are some interesting directions for further study. The current study is
focused on distance-based clustering, i.e., the similarity between different objects
is measured by a distance function. There are more and more applications where
similarity is measured by other means, such as the rise and fall pattern of values.
Since most semi-supervised clustering algorithms are based on some distance-based
methods such as k-means and k-medoids, some adaptations may be required when
trying to incorporate domain knowledge in pattern-based clustering.

It is also interesting to study the case where one class corresponds to multiple
clusters. In(Klein et al., 2002), an interesting algorithm is proposed that modifies
the distance matrix such that objects of the same class move towards each other
to form a single cluster. The more general approach that allows the formation of
multiple clusters per class is not yet fully studied.

While the various kinds of inputs all result in accuracy improvements in the
experiments, the relative effectiveness and the interactions between them are still
unclear. Some more theoretical analysis could probably help gain insights for im-
proving the algorithm.
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