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Abstract

Recent studies suggest that projected clusters with ex-
tremely low dimensionality exist in many real datasets. A
number of projected clustering algorithms have been pro-
posed in the past several years, but few can identify clus-
ters with dimensionality lower than 10% of the total num-
ber of dimensions, which are commonly found in some real
datasets such as gene expression profiles. In this paper we
propose a new algorithm that can accurately identify pro-
jected clusters with relevant dimensions as few as 5% of the
total number of dimensions. It makes use of a robust objec-
tive function that combines object clustering and dimension
selection into a single optimization problem. The algorithm
can also utilize domain knowledge in the form of labeled
objects and labeled dimensions to improve its clustering ac-
curacy. We believe this is the first semi-supervised projected
clustering algorithm. Both theoretical analysis and exper-
imental results show that by using a small amount of input
knowledge, possibly covering only a portion of the underly-
ing classes, the new algorithm can be further improved to
accurately detect clusters with only 1% of the dimensions
being relevant. The algorithm is also useful in getting a tar-
get set of clusters when there are multiple possible group-
ings of the objects.

1 Introduction

Recently many studies have suggested the presence of
low dimensional clusters in high-dimensional real datasets.
For example, in a typical microarray gene expression
dataset that contains the expression values of several thou-
sands of genes in different samples, it is common to find that
only several tens of genes have expression patterns unique
to each cluster of samples [14]. The genes are called the
relevant genes, as opposed to the irrelevant genes that do
not help much in identifying the cluster members. Due to

the large number of genes being irrelevant to each clus-
ter, two samples in the same cluster could have low sim-
ilarity when measured by a similarity function that con-
siders the expression values of all genes. The clusters
are thus undetectable by traditional clustering algorithms.
The same kind of low dimensional clusters could also ex-
ist in datasets from various domains such as computer vi-
sion [15], e-commerce [19], text mining and nutrition value
analysis [24].

The projected clustering problem [1] is defined for such
a scenario. Each projected cluster is a set of member ob-
jects with an associated set of relevant dimensions such that
the member objects are similar to each other in the sub-
space formed by the relevant dimensions, but dissimilar to
objects outside the cluster. In this paper we measure object
similarity based on Euclidean distance, so a dimension is
more relevant to a cluster if the projections of its members
on the dimension are closer to each other, but more remote
from the projections of other objects. The goal of a pro-
jected clustering algorithm is to identify clusters of objects
and their relevant dimensions such that a certain objective
function (e.g. average within-cluster similarity along the
relevant dimensions) is optimized.

While the clusters in real datasets can contain an ex-
tremely low percentage of relevant dimensions (less than
10% of all genes in the previous example), it has been
reported that most current projected clustering algorithms
are unable to identify clusters with such low dimensional-
ity [22]. This is mainly due to their use of objective func-
tions that highly rely on the accuracy of some input param-
eters, and the use of similarity calculations that involve all
dimensions, which may not reflect the real similarity be-
tween different objects [22].

In addition, being unsupervised methods, the algorithms
make little use of domain knowledge, despite the fact that
a small amount of domain knowledge is usually available
in some applications. For example, in gene expression
datasets, the functions of a small number of genes are usu-
ally known to the biologists. In text mining, some docu-



ment types have well-known keywords that help identify
the member documents. In order to better utilize domain
knowledge in the clustering process, a number ofsemi-
supervisedclustering algorithms [9] have been proposed,
which we will review in the next section. The basic idea
is to use some domain knowledge to guide the clustering
process. For example, in a semi-supervised k-means algo-
rithm [18], domain knowledge about the relationships be-
tween some objects is used to force the assignment of some
object pairs to the same cluster or to different clusters. As
reported in many studies (e.g. [8, 17]), the clustering ac-
curacy can be greatly improved by inputting only a small
amount of domain knowledge.

It should be noted that while some domain knowledge
is being used, semi-supervised clustering is different from
classification (supervised-learning) in that the knowledge
being used in semi-supervised clustering may not be suit-
able or sufficient for classification. For instance, the knowl-
edge needs not be in the form of objects with class labels
as required by classification. The amount of knowledge for
each class can be so small that is statistically insignificant to
build a classifier that captures the general properties of the
class, and the input knowledge can be biased towards one
side of the class. The input knowledge of semi-supervised
clustering also needs not cover all classes, but it is still pos-
sible to produce all the corresponding clusters.

Previous studies on semi-supervised clustering have
been focused on non-projected clustering, which does not
consider the relevance of dimensions. The semi-supervised
approach is in fact very useful in projected clustering. For
instance, given a small amount of example objects of a clus-
ter (the “labeled objects”, e.g. tumor samples known to be
of a certain type), the relevant dimensions of the cluster can
be estimated by the dimensions along which the objects are
significantly close to each other. Similarly, having a dimen-
sion specified as relevant to a cluster (a “labeled dimen-
sion”, e.g. a gene known to be relevant to a tumor type),
the cluster members can be estimated from regions with un-
expectedly high object densities.

Semi-supervised clustering also has an important ap-
plication in handling datasets that have multiple possible
groupings. For example, in cancer study, patients can be
grouped by their response to a certain treatment, or by the
risk of having cancer recurrence. Unsupervised methods
can only produce a single set of clusters, which may corre-
spond to only one of the groupings, or even none of them.
Using the semi-supervised approach, by supplying differ-
ent input knowledge, a single clustering algorithm can be
guided to produce both kinds of clusters in different runs.

All the above observations motivate the current study,
which has three major contributions:

• Proposing a robust objective function for projected
clustering that naturally involves dimension selection

in the optimization process.

• Proposing the use of domain knowledge (labeled ob-
jects and labeled dimensions) to improve the accuracy
of projected clustering.

• Developing a new algorithm that can (theoretically and
empirically) detect clusters of extremely low dimen-
sionality, and whose accuracy can be further improved
by incorporating some domain knowledge in the clus-
tering process.

In the next section we will review some related work in
projected clustering and semi-supervised clustering. In Sec-
tion 3 we will formally define the semi-supervised projected
clustering problem, as well as the assumptions being made
in this study. In Section4 we will describe our new algo-
rithm. Experimental results will be presented in Section5,
together with some observations and discussions. In Sec-
tion 6 we will summarize the whole study and discuss some
future extensions.

2 Related Work

2.1 Projected Clustering

Existing projected clustering algorithms can be classi-
fied into three categories: partitional, one cluster at a time,
and hierarchical. The partitional approach PROCLUS [1]
is based on the traditional k-medoids approach [13], with a
goal of minimizing the average within-cluster dispersion.
The distance between different cluster members is com-
puted in the relevant subspace of the cluster, which is de-
termined by measuring the average distance between the
medoid and a set of “neighboring objects” that are close to
it when all dimensions are considered. The dimensions with
the smallest average distances to the medoid of each cluster
are selected as the relevant dimensions of the cluster, which
form its relevant subspace.

Another partitional method ORCLUS [2] improves
PROCLUS by selecting principal components so that clus-
ters not parallel to the original dimensions can also be de-
tected. It also adds a hierarchical part that can potentially re-
duce the errors due to inaccurate initial object assignments.

A limitation of these partitional methods is the determi-
nation of neighboring objects based on similarity calcula-
tions that involve all dimensions. Since different members
of a cluster may appear to be dissimilar when all dimensions
are considered, the neighboring objects of a medoid need
not be come from the same real cluster and the relevant di-
mensions suggested by them could be wrong. Also, as the
approaches use an objective function that tends to give bet-
ter scores when fewer dimensions are regarded as relevant
to a cluster [22,24], they require users to supply the average



number of relevant dimensions per cluster, which is usually
unknown to users. If improper values are used, the cluster-
ing accuracy can be seriously affected.

The Monte Carlo methods DOC and FastDOC [15] iden-
tify projected clusters one after another. To find a cluster, an
object is randomly selected as the seed, and some other ob-
jects are randomly sampled to determine the relevant sub-
space of the cluster. A dimension is regarded as relevant to
the cluster if all the objects are within a distanceω from the
seed along the dimension. Each cluster is thus a hypercube
of width 2ω. The more objects and relevant dimensions a
cluster has, the less likely it is formed by chance, and thus it
receives a better score. The relative importance between the
number of objects and relevant dimensions is controlled by
a user parameterβ. The algorithm repeatedly tries different
seeds and neighboring objects and returns the cluster with
the highest score. Then the whole process will be repeated
for a new cluster.

The algorithms perform well when each cluster is in the
form of a hypercube and the parameter values are specified
correctly, but in many cases these requirements cannot be
met and the clustering results are quite unsatisfactory [22].
The number of seeds and neighboring objects required to
try can also be so large that causes the algorithms to run for
a long time.

The hierarchical algorithm HARP is proposed in [22]. Its
basic assumption is that two objects are likely to belong to
the same cluster if they are very similar to each other along
many dimensions. Clusters are allowed to merge only if
they are similar enough in a number of dimensions, where
the minimum similarity and minimum number of similar
dimensions are controlled by two thresholds. At the begin-
ning, the thresholds are set to some harsh values such that
only merges that are very likely to group objects belonging
to the same real cluster are allowed. As the relevant dimen-
sions of each cluster becomes more apparent, the threshold
values are loosened to allow more merges. The process re-
peats until the thresholds reach their baseline values, or a
target number of clusters is reached.

The method successfully avoids extensive distance cal-
culations that involve all dimensions and user parameters
whose values are hard to determine. However, due to the hi-
erarchical nature, the algorithm is intrinsically slow. Also, if
the number of relevant dimensions per cluster is extremely
low (e.g. 5% of the dataset dimensionality), the accuracy of
HARP may drop as the basic assumption will become less
valid due to the presence of large amount of noise values in
the dataset.

In summary, most of the existing projected clustering al-
gorithms make use of objective functions whose effective-
ness rely greatly on the accuracy of some parameter val-
ues that are hard for users to determine. Some of them in-
volve similarity calculations that consider all dimensions,

which can be quite misleading when cluster dimensionality
is small. A thorough survey of the above algorithms and
others proposed for two related problems, namely subspace
clustering [3] and biclustering [7], can be found in [24].

2.2 Semi-supervised Clustering

A recent trend in machine learning research is to com-
bine the techniques developed for unsupervised learning
and supervised learning to handle datasets with partial ex-
ternal information. One of the foci is semi-supervised clus-
tering, which actively uses the available domain knowledge
in guiding the clustering process. These methods can be
categorized according to the kinds of knowledge being in-
put, the time that the knowledge is input, and the way the
knowledge is used to affect the clustering process.

The simplest type of input is labeled objects [4, 9]. In
some cases, users do not know the exact class labels of
objects, but they have some knowledge on which objects
should be/should not be put into the same cluster, which
can be specified by must-links and cannot-links [5,6,11,17,
18]. Some other studies propose the input of classification
rules [16], examples of similar objects [20], or even general
comments like which cluster a particular object should not
be put into [8].

The knowledge can be supplied at different time. It can
be supplied before clustering to guide the clustering pro-
cess [4,5,6,9,11,17,18,20], or after clustering to evaluate
the clusters and guide the next round of clustering [8]. Some
algorithms can also actively request users to supply some
specific information at the most appropriate time [5,11].

There are various ways to use the input knowledge, such
as guiding the formation of seed clusters [4,5,6], forcing or
recommending some objects to be put in the same cluster
or different clusters [17, 18], and modifying the objective
function [5,6,9], similarity function [8,20] or distance ma-
trix [11].

3 Problem Definition

We now formally define the semi-supervised projected
clustering problem. We start with the data model. Given a
datasetD with n objects andd dimensions, the objects can
be partitioned intok clusters{Ci}k

i=1 and a possibly empty
set of outliers. We assume each cluster is a random sample
of the corresponding hidden class, each of which is associ-
ated with a set of relevant dimensions that form a relevant
subspace. DenoteDj andCij as the projections ofD and
Ci on a dimensionvj respectively. Supposevj is relevant to
a subsetRj of the clusters, then for each clusterCi ∈ Rj ,
Cij is a random sample of a local Gaussian population with
a small varianceσ2

ij . The set of all other projected values
on vj , Dj −

⋃
Ci∈Rj

Cij , is a random sample of a global



population with a varianceσ2
j much larger than the local

Gaussians.
Intuitively, in the relevant subspace of a cluster, the clus-

ter members are on average close to each other, but remote
from other objects not in the cluster. Alternatively, given a
cluster with an unknown relevant subspace, a dimension is
more likely to be relevant to the cluster if the projection of
the cluster on the dimension has a smaller variance.

To distinguish the actual clusters due to the hidden
classes and the clusters produced by a clustering algorithm,
we will call the former the “real clusters” and the later sim-
ply the “clusters”. We will also call the dimensions deter-
mined by a clustering algorithm as relevant to a cluster the
“selected dimensions” of it.

The inputs to our semi-supervised projected clustering
algorithm are:

• The datasetD

• The target number of clustersk

• A (possibly empty) setIo of labeled objects (<obj. ID,
class label> pairs), each indicates that the object is a
member of the class. The set may or may not cover all
classes.

• A (possibly empty) setIv of labeled dimensions
(<dim. ID, class label> pairs), each indicates that the
dimension is relevant to the class. Each dimension can
be specified as relevant to multiple classes. The set
may or may not cover all classes.

The outputs of the algorithm arek clusters and their se-
lected dimensions, and a (possibly empty) set of outliers.
The goal is to optimize an objective function whose value
(the objective score) reflects the quality of the clusters.
In the non-projected clustering algorithm k-means [10],
the objective function is defined as the total within-cluster
squared error. It can be shown that the partition of objects
that minimize the function corresponds to the maximum
likelihood hypothesis of the above model when there are no
irrelevant dimensions [12]. In [1], the objective function is
modified for projected clustering such that only relevant di-
mensions are involved in the distance calculations, and the
part of objective score from each cluster is normalized by
the number of selected dimensions. Due to the normaliza-
tion, the function tends to gives better (i.e., smaller) scores
for clusters with fewer selected dimensions [22,24], which
forces the algorithm to request users to supply the average
cluster dimensionality in order not to select only one dimen-
sion per cluster. Also, as the function is based on the sum-
mation of variances among different dimensions, a worse
dimension (one with larger variance) constitutes more to the
objective score. This means if some irrelevant dimensions
are accidentally selected, the objective score can be dom-
inated by the constituents from the irrelevant dimensions,

and it can remain virtually unchanged if some relevant di-
mensions are deselected.

We therefore designed a new objective function with
three goals: 1) it should facilitate the selection of dimen-
sions based on the particular data properties of different
clusters and dimensions, 2) its value should be constituted
more by relevant dimensions, and 3) it should be relatively
robust. The function, denoted asφ, is defined as follows:

φ =
1
nd

k∑
i=1

φi (1)

φi =
∑

vj∈Vi

φij (2)

φij = ni − 1− 1
ŝ2

ij

∑
x∈Ci

(xj − µ̃ij)2 (3)

= (ni − 1)(1−
s2

ij + (µij − µ̃ij)2

ŝ2
ij

), (4)

whereVi is the set of selected dimensions of clusterCi, ni

is the size of (number of objects in)Ci, xj is the projection
of an objectx on dimensionvj , µ̃ij , µij and s2

ij are the
sample median, mean and variance of the projection ofCi

on vj respectively, and̂s2
ij is the selection threshold whose

meaning will be explained later. The objective functionφ
is composed of the score componentsφi of each cluster,
which in turn is the sum of the score componentsφij of
each selected dimension.

There are three major differences betweenφ and the ob-
jective function defined in [1]. First,φi is not normalized by
the number of selected dimensions ofCi, but instead by the
thresholdŝ2

ij . As to be discussed later in this section, this
allows the dimension selection procedure to be based on
the data properties ofCi alongvj (design goal #1). It also
avoids the existence of trivial best score when each clus-
ter selects only one dimension. Second, by settingŝ2

ij to a
value that is always larger than the sample variances2

ij of
each selected dimension,φij is always positive, and a better
dimension (one with smallers2

ij) has a larger constituent to
φi (design goal #2). A better clustering leads to a higherφ
score, so the goal is to maximize the objective score. Third,
within-cluster dispersion is measured by the distance from
the cluster median rather than centroid, which makes the
function less affected by outliers. We will discuss the ro-
bustness ofφ later.

The definition of the objective function leads to the fol-
lowing lemma:

Lemma 1 Given a set of clusters{Ci}k
i=1, the objective

function φ is maximized when all dimensions withs2
ij +

(µij − µ̃ij)2 smaller than̂s2
ij are selected and all other di-

mensions are not selected.



Proof: To maximizeφ, a dimensionvj should be selected
if φij is positive, and should not be selected ifφij is nega-
tive, which correspond to the cases wheres2

ij +(µij− µ̃ij)2

is smaller than and larger than̂s2
ij respectively.

The following dimension selection procedure follows di-
rectly from the lemma:

Procedure SelectDim(Ci: target cluster)
1 Foreach dimensionvj do
2 Selectvj for Ci if and only if s2

ij + (µij − µ̃ij)
2 < ŝ2

ij

End

Listing 1: The dimension selection procedure.

ŝ2
ij is thus called the selection threshold. In the next

section we will describe a simple scheme that determines
the values of̂s2

ij , and a more advanced probabilistic-based
scheme that can be used when certain conditions are satis-
fied. In both cases, only one user parameter is required, the
value of which is not critical to the clustering accuracy.

In this study we confine the scope by a number of as-
sumptions: 1) clusters are disjoint and axis-parallel, 2) ob-
ject similarity is based on a distance function, 3) one class
corresponds to one cluster and 4) the input knowledge is
correct. More information about the assumptions can be
found in [23]. The possibility of relaxing some of them will
be discussed in Section6.

4 The New Algorithm

The outline of the new algorithm SSPC (Semi-
Supervised Projected Clustering) is shown in Listing2.
It is a partitional method similar to the k-medoids algo-
rithms [13]. At the beginning it determines some seeds
(potential medoids) and each cluster draws a medoid from
them. Every object in the dataset is then assigned to the
cluster that gives the greatest improvement to the objective
score, where the value of̃µij in Equation4 is temporarily
substituted by the projection of the medoid onvj . If an ob-
ject does not improve theφi score of any cluster, it will be
put on the outlier list. After assigning all objects, the se-
lected dimensions of each cluster are redetermined and the
overall objective score is computed using the actual medi-
ans. If the new score is the best one encountered so far, the
clusters will be recorded. Otherwise, the best clusters will
be restored. A bad cluster is then identified from the current
best set of clusters, and a new medoid is selected for it with
an attempt to improve the objective score in the next iter-
ation. The medoid of each other cluster is replaced by the
cluster median (the virtual object with projected value along
each dimension equal to the median of the cluster members)
as a medoid could have projected values deviated from the

cluster center along some relevant dimensions according to
the data model in Section3. In the next iteration, the values
of µ̃ij will be substituted by these medians. We will use
the term “cluster representative” to call the medoid or me-
dian that represents a cluster. After replacing the old cluster
representatives, the members of each cluster are removed,
and a new iteration of object assignment, score compari-
son and cluster representatives replacement is carried out.
The process repeats until the best objective score remains
unchanged for a certain number of iterations.

Algorithm SSPC
1 Initialization: determine the seeds and relevant di-

mensions of each cluster
2 For each cluster, draw a medoid from the seeds
3 Assign every object in the dataset to the cluster (or

outlier list) that gives the greatest improvement to the
objective score

4 Call SelectDim(Ci) for each clusterCi, and calculate
the overall objective score

5 Record the clusters if they give the best objective
score so far, restore the best clusters otherwise

6 Replace the cluster representative of each cluster,
then remove its members

7 Repeat 3-6 until no score improvements are observed
for a certain number of iterations

End

Listing 2: The outline of the SSPC algorithm.

There are three main differences between SSPC and
the previous partitional approaches for projected cluster-
ing. First, the seeds are determined based on some do-
main knowledge (labeled objects and labeled dimensions)
if supplied, which is potentially more accurate. Second, un-
like PROCLUS and ORCLUS where the selected dimen-
sions are determined based on some distance calculations
that involve all dimensions, the seeds of each cluster are
associated with an estimated set of relevant dimensions de-
termined during initialization. When a seed is picked as the
medoid of a cluster, either initially or to replace an old clus-
ter representative, the associated dimensions become the se-
lected dimensions of the cluster. As to be seen later, this
process does not rely on distance calculations that involve
all dimensions or any user parameters that are critical to
the clustering accuracy but whose values are hard to deter-
mine. This allows SSPC to identify low-dimensional clus-
ters more accurately. Third, after each iteration, besides re-
placing a bad cluster representative by a new medoid, other
cluster representatives are also replaced by the cluster medi-
ans to avoid problems due to the potential biased projected
values of the medoids as discussed before.

In the coming subsections some core mechanisms of
SSPC will be discussed in detail, followed by an overall
analysis of the whole algorithm.



4.1 Determining ŝ2
ij

In order to use the SelectDim procedure and calculate
the objective scoreφ, we need to determine the values of
ŝ2

ij . As mentioned in Section3, ŝ2
ij should be greater than

the sample variances2
ij for all selected dimensions. Since

the expected variance of a random sample of a population is
the variance of the population, ifs2

ij is no smaller than the
variance of the global population,σ2

j , the members ofCi

are no more similar to each other alongvj than a group of
random objects. So,σ2

j can be viewed as a baseline (max-
imum) value ofŝ2

ij , whose value can be estimated by the
sample variance ofDj , hereafter denoted ass2

j .

We propose two schemes to set the actual value ofŝ2
ij .

The first scheme is to set it toms2
j , wherem ∈ (0, 1] is

a user parameter. A smallerm tightens the selection crite-
rion. The second scheme is based on a probabilistic reason-
ing. Users need to specify a valuep that bounds the max-
imum probability that a dimension irrelevant to a cluster is
selected by chance. SupposeCi is a cluster to which di-
mensionvj is irrelevant. We can writep = Pr(s2

ij < ŝ2
ij).

If the sampling distribution ofs2
ij has a known probability

density function (PDF), the value of̂s2
ij can be computed

accordingly.

For example, suppose the global populations are Gaus-

sian. Then the random variable
(ni−1)s2

ij

σ2
j

has a chi-square

distribution withni − 1 degrees of freedom. Withp spec-
ified andσ2

j approximated bys2
j , the value ofŝ2

ij can be
computed from the inverse of the cumulative chi-square dis-
tribution.

The first scheme is more generic as it does not need to
assume the properties of the global populations. But in case
the sampling distribution ofs2

ij has a known PDF, the sec-
ond scheme is more recommended as parameterp has a
stronger intuitive meaning thanm.

Notice that althougĥs2
ij can take different values for dif-

ferentCi (when parameterp is used) andvj (in both cases),
the objective function and the SelectDim procedure involves
only one user parameter whose value is not critical to the
clustering accuracy, which makes SSPC quite robust. Ac-
cording to the experimental results to be presented in Sec-
tion 5, the range of values ofm andp that give good clus-
tering results is usually much wider than the range ofl val-
ues (average cluster dimensionality) used by PROCLUS. In
general, some reasonable values (e.g.0.3 ≤ m ≤ 0.7,
0.01 ≤ p ≤ 0.2) can be used when the user has no ideas
on the proper value to use. The value can be tuned down if
the clusters appear to have too many selected dimensions,
or tuned up if too many objects are discarded as outliers.

4.2 Initialization

In the initialization step, SSPC determines the seeds and
puts them into different seed groups. Each seed group con-
tains a set of seeds that are expected to come from a sin-
gle real cluster, and a set of dimensions estimated from the
seeds to be relevant to the cluster. Each time a seed of a
seed group is picked as the medoid of a cluster, the esti-
mated dimensions of the seed group are used as the selected
dimensions of the cluster.

SSPC creates two kinds of seed groups: private and pub-
lic. For a cluster with input knowledge, it is easier to form
an accurate seed group (in terms of both the seeds and the
estimated relevant dimensions). A private seed group is thus
created, which is solely used by the cluster. All other clus-
ters share some large number of public seed groups, so that
medoids can be drawn from different seed group combina-
tions. Whenever a cluster needs to draw a new medoid, it
is randomly drawn from its private seed group if it has, or
otherwise one of the public seed groups not currently used
by other clusters.

The order of seed group creation is important. Having
created the seed groups of some clusters accurately, it be-
comes easier to accurately create the remaining seed groups.
This is because objects that are close to the seeds of the pre-
vious seed groups in the corresponding subspaces are likely
members of those clusters, which need not be considered
when determining the seeds of the new seed groups. We will
show in Section4.5that it is easier to create seed groups ac-
curately for clusters with more input knowledge, which sug-
gests that clusters with more input knowledge should have
their seed groups created earlier. Based on the ease of cre-
ating accurate seed groups, SSPC creates seed groups in the
following order: 1) clusters with inputs in bothIo andIv,
2) clusters with inputs inIo only, 3) clusters with inputs in
Iv only, 4) clusters with no inputs. Within each category,
clusters with larger amount of inputs are initialized earlier.

We now discuss the details of the seed group creation
process for the four cases separately. For the first three
cases, a private seed group is created, and we will useCi

to denote the target cluster,Gi the resulting seed group, and
Io
i andIv

i the sets of labeled objects and labeled dimensions
for Ci respectively. SinceGi contains both a set of objects
(the seeds) and a set of estimated relevant dimensions, we
will sometimes treat it as a cluster for the sake of discussion.

4.2.1 Clusters with both kinds of inputs

In this case, the center ofCi is likely to be located near the
median ofIo

i . Also, if the set of objects inIo
i is viewed

as a temporary clusterCi′ , the dimensions with largerφi′j

values are more likely to be relevant toCi.
This leads to a two-step process of seed group creation.



We first identify the seeds inGi to be the objects that are
close to the median ofIo

i along dimensions with largeφi′j

values. Then we set the relevant dimensions of the seed
group to be those selected by SelectDim(Gi) plus the ones
in Iv

i .
We developed a mechanism for the first step based on

a simple idea. If we form a grid (multi-dimensional his-
togram) of the whole dataset using a fixed number of di-
mensions, then if the dimensions are all relevant toCi, a cell
will be found to contain a large number of objects, which
correspond to the center ofCi in the subspace. If some of
the dimensions are irrelevant toCi, the peak density (the
highest number of objects among the cells) will be much
lower. So, multiple grids are built using different sets of di-
mensions, and the objects in the peak cell with the highest
density are chosen as the members ofGi.

A set of grid-building dimensions could be simultane-
ously relevant to multiple clusters, in which case the grid
will contain multiple peaks. Since the cluster center is ex-
pected to be close to the median ofIo

i , it can be located by
performing a localized hill-climbing search starting from
the cell that contains the median ofIo

i . The search also
solves the problem that the median may be biased towards
one side ofCi.

The number of dimensions used to build each grid should
not be too large as the number of cells increases expo-
nentially as the number of building dimensions increases,
which makes each cell to have too few objects and cre-
ates a heavy computational overhead. Normally a three-
dimensional grid serves the purpose quite well.

Dimensions with greater chance of being relevant toCi

should have higher probabilities of being involved in grid
building. Therefore we define a candidate set that includes
the dimensions selected by SelectDim(Ci′ ) as well as those
in Iv

i , where each dimensionvj in the set has a probability
proportional to theφi′j value of being selected as a building
dimension of a grid.

As φi′j involves the computation of the sample variance
s2

i′j , Io
i should contain at least two objects.

4.2.2 Clusters with labeled objects only

The seed group creation process is almost the same as
in the previous case, except that only dimensions from
SelectDim(Ci′ ) are involved in grid building and only those
from SelectDim(Gi) are set as the relevant dimensions of
the seed group.

4.2.3 Clusters with labeled dimensions only

In this case, the temporary clusterCi′ cannot be formed.
Only dimensions inIv

i are involved in grid building, and
each of them has the same probability of being involved.

WithoutCi′ , there is no starting point for the localized hill-
climbing search, so the seeds are chosen from the objects in
the absolute peak of the whole grid.

4.2.4 Clusters with no inputs

In this case, we cannot build the grids directly due to the
lack of input knowledge. An alternative mechanism that
makes use of the information of other seed groups is de-
veloped. It is similar to the max-min mechanism of PRO-
CLUS [1], which identifies an object whose minimum dis-
tance to all the seeds already picked by other seed groups is
maximum. Distance calculations are performed in the sub-
space defined by the relevant dimensions of the seed groups,
normalized by the number of dimensions. The identified
object is remote from all picked seeds, so there is a good
chance that it belongs to one of the clusters whose seed
group has not been created. It is thus used to replace the
median ofIo

i in the previous cases as the starting point of
the hill-climbing search.

An one-dimensional histogram is then constructed for
each dimension of the dataset to measure the object density
around the identified object along the dimension. A dimen-
sion with high object density around the identified object
is likely to be relevant to a cluster that centers around the
object along the dimension. The dimension is thus given a
high probability of being involved in grid building. With
these probabilities determined, the seed group creation pro-
cess for the case with labeled objects only can be performed.

If all clusters have no input knowledge, the object of the
first group is randomly drawn from the dataset.

4.3 Cluster Representatives Replacement

To improve the objective score, SSPC needs to identify
a bad cluster and replace its cluster representative appropri-
ately. Bad clusters most commonly exist when the medoids
of two clusters belong to the same real cluster. As a result,
the two clusters will be quite similar, and they compete for
theφi score of the real cluster. On the other hand, one of
the other real clusters will not be represented by any cluster,
and most of its members will be put on the outlier list.

To detect the occurrence of this situation, one way is to
check if there is a cluster with a very lowφi score, which is
likely the loser of the two competing clusters. Another way
is to look for clusters that are very similar. In both cases, a
bad cluster can be pinpointed and its cluster representative
replaced by a new medoid.

For each other cluster, although the medoid may really
be a member of the cluster, it may not be close to the cluster
center along some relevant dimensions. As a result some
real members located at the other side of the cluster may not
be attracted to this cluster. The cluster can be improved by
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Figure 1. The probability that at least one grid
is formed by relevant dimensions only, when
only labeled objects are available.

replacing the medoid with the median of the cluster, which
is probably closer to the center of the real cluster.

4.4 Complexity

It can be shown [23] that SSPC has a time and space
complexity ofO(knd) andO(nd) respectively. The linear
complexity makes it more practical to cluster large datasets
as compared to some other projected clustering algorithms
such as DOC, HARP and ORCLUS.

4.5 How much input is needed?

In many real situations the amount of available domain
knowledge is very limited. It is therefore important to pre-
dict the relationship between the amount of input knowl-
edge and the resulting clustering accuracy, so as to mini-
mize the amount of input knowledge while getting a satis-
factory accuracy.

We begin with the case where only labeled objects are
available. Suppose a clusterCi receives|Io

i | labeled ob-
jects. The objects form a temporary cluster, which is used
to determine the grid-building dimensions. We want to es-
timate the probability that at least one grid is built from di-
mensions that are really relevant toCi only, which is crucial
to the accuracy of the seed group and the clustering accu-
racy in turn. A closed form formula for the probability is
given in [23]. To visualize the change of this value with
different input sizes, let us consider some real values to be
used in the experiments in Section5. Supposed = 3000,
p = 0.01, each grid involvesc = 3 building dimensions,
g = 20 grids are built for each seed group, and the variance
ratio of a local population to the corresponding global pop-
ulation is 0.15. Figure1 shows the estimated probabilities
that at least one grid is formed by relevant dimensions only
with varying |Io

i | and thedi

d ratio, wheredi is the number
of relevant dimensions ofCi.

The figure shows that for a fixeddi

d ratio, having more
input objects increases the probability of forming a grid
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Figure 2. The probability that at least one grid
with all c building dimensions being relevant
to Ci only is formed, when only labeled di-
mensions are available.

by relevant dimensions only. In addition, each curve has
a sharp increase followed by a flattened region. This means
users can estimate the smallest amount of input that can lead
to a near maximal accuracy. It is an exciting result to see
that whendi

d = 5%, only 5 inputs are enough to have an
almost 100% guarantee that a grid will be formed by rele-
vant dimensions only. The figure also shows that for a fixed
amount of input, the probability increases asdi

d increases,
which suggests that input objects work better when the clus-
ters have more relevant dimensions.

Next, we consider the case with labeled dimensions only.
Suppose dimensionvj is specified as relevant to a cluster
Ci. If an one-dimensional histogram is built fromvj , we
expect to find a peak at the center ofCi. If the cell with the
highest object density is not close to the center ofCi, most
probablyvj is also relevant to another cluster. We want to
know the probability that at least one grid has all building
dimensions being relevant toCi only. The closed form for-
mula can be found in [23]. Using the same parameter values
as before, and settingk = 5, the estimated probabilities at
various|Io

i | and di

d values are shown in Figure2.
In general, the more labeled dimensions being supplied,

the higher is the chance of forming a grid with all build-
ing dimensions being relevant toCi only. The figure also
reveals an interesting phenomenon: while labeled objects
work better whendi

d is large, labeled dimensions work bet-
ter when it is small as the chance for a single dimension to
be relevant to multiple clusters is small. This suggests that
when trying to identify clusters with extremely low dimen-
sionality, which is the main focus of this study, it is more
effective to use labeled dimensions as input knowledge.

Both inferences show that a very small amount of input
knowledge would enhance the accuracy a lot. Finally, since
the two kinds of input complement each other, there is a
synergy when they are supplied at the same time, provided
the amount of input objects is not so small that causes a
large amount of irrelevant dimensions to be used in building
the grids. Some empirical results will be presented in the



next section.

5 Experiments

In this section we present various experimental results
on SSPC and some comparing algorithms. We com-
pare the accuracy of three projected clustering algorithms
HARP [22], PROCLUS [1] and SSPC, using the non-
projected k-medoids clustering algorithm CLARANS [13]
as reference.

As far as we know, there exists no benchmark datasets
that contain projected clusters as low-dimensional as the
ones that are of interest in this study. We therefore generate
our own synthetic datasets in ways that are similar to some
previous studies [1,24], but with the parameters adjusted to
produce datasets with the desired properties. We repeated
each experiment 10 times, and report only the result that
gives the best algorithm-specific objective score.

The performance metric used to evaluate the quality of a
clustering result is the Adjusted Rand Index (ARI) [21] that
compares the produced clusters by the known real clusters.
It measures how similar are the partition of objects accord-
ing to the real clusters (U) and the partition in a clustering
result (V). Denotea, b, c andd as the number of object pairs
that are in the same cluster in both U and V, in the same
cluster in U but not V, in the same cluster in V but not U,
and in different clusters in both U and V respectively, ARI
is defined as follows:

ARI(U, V ) =
2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)
(5)

The more similar are the two partitions, the larger will be
the ARI value. When U and V are identical, the index value
will be one. When V is only as good as a random partition,
the index value will be zero.

If input knowledge is involved in a run of SSPC, the la-
beled objects are removed from the resulting clusters before
computing the ARI values in order to eliminate the direct
performance gain due to the input objects.

Due to limited space, some figures are omitted, and they
can be found in [23].

5.1 Raw accuracy

In the first set of experiments we compared the raw ac-
curacy of the algorithms, i.e., the accuracy without input
knowledge. A series of synthetic datasets were generated
with n = 1000, d = 100 andk = 5. The actual aver-
age dimensionality of the clusters,lreal, varies from 5 to
40, accounting for5%− 40% of the dataset dimensionality.
The datasets were generated according to the data model
described in Section3, with the global distributions being
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Figure 3. The best raw accuracies of the algo-
rithms on datasets with various average clus-
ter dimensionality.

uniform and the local distributions having variances rang-
ing from 1% − 10% of the value range of the global distri-
butions.

We setk to 5 for all algorithms, used default parameter
values for HARP and CLARANS, and tried different val-
ues of the critical parameters of PROCLUS and SSPC. For
PROCLUS, we tried 9 different values ofl for each dataset.
For SSPC, 5 different values ofm andp were used for each
dataset. The best results (the results with the highest ARI
values) after trying different parameter values are shown in
Figure3.

The figure shows that all projected clustering algorithms
performed well when the cluster dimensionality is high as
compared to CLARANS. When the dataset dimensionality
is as low as5% of d, the performance of all three projected
clustering algorithms went down, but SSPC has the mildest
performance drop. It is somewhat unexpected that the raw
performance of SSPC when parameterp is used is close to
the performance when parameterm is used, given the global
distributions are actually non-Gaussian. This may due to the
fact that except the dimension selection procedure, SSPC
makes no assumptions on the global distribution. The per-
formance of the other parts of the algorithm may compen-
sate for the invalid assumptions being made when parameter
p is used.

Figure4 shows the individual clustering results of SSPC
and PROCLUS whenlreal = 10, which captures their typi-
cal change of accuracy at different parameter values. PRO-
CLUS performed well when the value ofl was supplied cor-
rectly, but the performance went down as the input moved
away from the true value. In contrast, SSPC performed well
with the various parameter values being tried, and is thus
more robust.

5.2 Outlier Immunity

In this set of experiments we studied how SSPC is af-
fected by outliers. A series of synthetic datasets were gen-
erated, with the amount of outliers varying from 0% to 25%.
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The results (figures not shown) show that SSPC has a high
noise-immunity, with only moderate accuracy decrease as
the amount of outliers increases. The amount of objects de-
tected as outliers also highly resembles the actual amount
of outliers in the datasets.

5.3 Performance with input knowledge

In this set of experiments, we further lower the average
cluster dimensionality and see if the accuracy of SSPC can
be improved by input knowledge. We generated a dataset
with n = 150, d = 3000, k = 5 andlreal = 30, i.e., 1%
of d. The configuration highly resembles a gene expression
dataset when the goal is to cluster the samples, and the num-
ber of relevant genes of each sample class is as low as1% of
d. We setm = 0.5, and tried 5 coverage ratios (fraction of
clusters receiving inputs), 4 input categories (no inputs,Io

only, Iv only, both), and 8 input sizes. For example, when
coverage=0.6, both kinds of inputs are supplied and input
size=4,0.6× 5 = 3 clusters receive input knowledge, each
with 4 labeled objects and 4 labeled dimensions. No inputs
are supplied for the other 2 clusters.

The inputs are drawn randomly from the real cluster
members and relevant dimensions. Each point in the com-
ing figures is the median of 10 repeated runs with 10 inde-
pendent sets of inputs.

Figure5 shows the accuracy of SSPC when coverage=1.
For reference, the ARI values of HARP and PROCLUS
(with correct l value supplied) are 0.17 and 0.08 respec-
tively, which are much lower than the raw accuracy of SSPC
(at input size 0). In general, SSPC has a larger accuracy im-
provement when more inputs are supplied. The accuracy
becomes stable with 5 objects and 3 dimensions (which is
equal to the default value ofc, the number of building di-
mensions per grid). All these observations are consistent
with the analysis in Section4.5. The accuracy of SSPC
appears to be more stable with labeled dimensions as in-
puts. In particular, an accuracy lower than the raw accu-
racy is observed when only 2 labeled objects are supplied
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Figure 6. The accuracy of SSPC with various
coverage of input knowledge when input size
is 6.

to each cluster. This is due to the large probability that the
two objects are close to each other along many irrelevant
dimensions, which misleads the dimension selection proce-
dure (see Figure1). In contrast, the probability for a pair of
dimensions to be relevant to multiple clusters is much lower
due to the low average cluster dimensionality, which results
in an observable accuracy improvement when 2 labeled di-
mensions are supplied.

Figure6 shows the accuracy of SSPC with changing cov-
erage, when the input size is 6. There is a general trend of
increasing accuracy as the coverage increases. An interest-
ing observation from Figure6 is that the peak performance
is reached at 60% coverage, which suggests that it is not
necessary to input domain knowledge to every cluster. By
using the max-min mechanism (Section4.2.4), clusters with
no input knowledge could also locate their cluster centers if
the seed groups of the other clusters are created accurately.

5.4 Data with multiple possible groupings

As discussed in Section1, an important application of
semi-supervised clustering is to produce different desired
clusters based on different input knowledge. In this set of
experiments we verify the capability of SSPC in achiev-
ing this. We generated two datasets, each withn = 150,
d = 1500, k = 5 and lreal = 30. The members and
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Figure 7. The accuracy of the algorithms on
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relevant dimensions of the clusters in the two datasets are
independent. We then combined the two datasets to pro-
duce a dataset with 3000 dimensions, where the first 1500
come from the first original dataset and the last 1500 come
from the second. The average cluster dimensionality thus
remains at1% of d. We then tested the accuracy of HARP,
PROCLUS and SSPC on the dataset, with correctl value
supplied to PROCLUS. For SSPC, we tested its accuracy in
three different scenarios: without inputs (raw accuracy), in-
put based on the knowledge of the first original dataset, and
input based on the knowledge of the second original dataset.
The ARI values of the algorithms computed from the actual
clusters of the two original datasets are shown in Figure7.

The performance of HARP is seriously affected by the
simultaneous existence of two possible groupings. Objects
not in the same cluster can be close to each other along
many dimensions (as they do belong to the same cluster
in the other grouping), which ruin the threshold loosen-
ing mechanism of HARP. The performance of PROCLUS
is better, but is still not very encouraging. The raw accuracy
of SSPC is better than HARP and PROCLUS when evalu-
ated by the first set of clusters, but worse when evaluated by
the second set. This shows that without any external inputs,
SSPC tends to form clusters that are more similar to the first
set. But as some external inputs were supplied, the accuracy
of SSPC was significantly improved in both cases. The re-
sults confirm the importance of external inputs in guiding
the formation of some desired clusters when there are mul-
tiple possible groupings.

5.5 Scalability

Figures8a and8b show the execution time of 10 repeated
runs of SSPC with an increasing dataset size (n) and di-
mensionality (d) respectively, using the execution time of
PROCLUS as reference. The figures confirm the linear time
complexity of SSPC with respect to bothn andd. Its speed
is comparable to PROCLUS in our implementations.
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Figure 8. The execution time of 10 repeated
runs of PROCLUS and SSPC.

6 Summary and Future Extensions

In this paper, we have discussed some potential limita-
tions of some existing projected clustering algorithms, in-
cluding their inability to detect clusters with very low di-
mensionality, the use of user parameters whose proper val-
ues are hard to determine, and the potential accuracy drop
when improper parameter values are supplied. We have pro-
posed a new projected clustering algorithm that is robust
and is able to detect clusters of extremely low dimension-
ality as it uses a robust objective function and avoids dis-
tance calculations that involve all the dimensions. In ad-
dition, we have proposed ways to utilize any available do-
main knowledge in the form of labeled objects and labeled
dimensions. Experimental results show that there is a clear
accuracy improvement when some input knowledge is in-
corporated in the clustering process. The peak performance
is readily reached when only a small amount of knowledge
is supplied, and when the knowledge covers only some of
the classes.

There are some obvious directions for further study. The
most important one is to test the new algorithm on some real
datasets that are expected to contain projected clusters, such
as gene expression profiles. When applying to complex,
noisy real data, the data model and objective function may
have to be revised according to the observed data properties.

Another direction is to allow incorrect inputs. When in-
puts could be incorrect, they have to be validated before
being used to guide the clustering process, for example by
comparing the assumed data model and the observed data
values. It is also possible to study fuzzy inputs, each of
which contains a confidence level that indicates its chance
of belonging to a cluster, and/or a quality level that specifies
the chance for the object to be of a certain distance from the
cluster center.

It is also interesting to study the case where one class
corresponds to multiple clusters. In [11], an interesting al-
gorithm is proposed that modifies the distance matrix such
that objects of the same class move towards each other to
form a single cluster. The more general approach that al-



lows the formation of multiple clusters per class is not yet
fully studied.
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