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Networks describe the interactions between different objects. In living systems, knowing

which biological objects interact with each other would deepen our understanding of the

functions of both individual objects and their working modules. Due to experimental limi-

tations, currently only small portions of these interaction networks are known. This thesis

describes methods for computationally inferring the complete networks based on the known

portions and related data. These methods exploit special data properties and problem

structures to achieve high accuracy. The training set expansion method handles sparse

and uneven training data by learning from information-rich regions of the network, and

propagating the information to help learn from the information-poor regions. The multi-

level learning framework combines information at different levels of a concept hierarchy,

and lets the predictors at the different levels to propagate information between each other.

Combined optimization between levels allow the integrated use of data features at different

levels to improve prediction accuracy and noise immunity. Finally, proper incorporation of

heterogeneous data facilitates the identification of interactions uniquely detectable by each

kind of data. This thesis also describes some work on data integration and tool sharing,

which are crucial components of network analysis studies.
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Chapter 1

Introduction

The boat is not the material it is made from, but something else, much

more interesting, which organises the material of the planks: the boat is the

relationship between the planks. Similarly, the study of life should never be

restricted to objects, but must look into their relationships.

– Antoine Danchin, “The Delphic Boat” [45]

In computer science, graphs are used to represent object relationships, with each node

representing an object and each edge between two nodes stating that the two corresponding

objects have a certain relationship. Graphs are also called networks in some domains. For

example, in a computer network, each node is a machine and there is an edge between

two nodes if the machines are physically or logically connected. In a social network of

friends, each node is a person and there is an edge between two nodes if the two persons

know each other. In some contexts, the term “network” specifically means a graph with

weighted edges [24]. We shall not make such a distinction here, and shall treat “graph” and

1



CHAPTER 1. INTRODUCTION 2

“network” as synonyms.

This thesis is about the reconstruction of biological networks by computational means.

In these networks, each node is a biological object, and an edge represents a specific type of

interaction between two biological objects. For example, in a protein interaction network,

each node is a protein, and there is an edge between two nodes if the corresponding proteins

have a physical interaction. In a gene regulatory network, each node is a gene and its

proteins, and there is a directed edge from a node to another if the former regulates the

transcription of the latter. There are many other types of interesting biological networks,

such as metabolic networks, genetic interaction networks and co-evolution networks. A

brief introduction of the underlying biological concepts, as well as other concepts useful for

understanding the content of this thesis, is given in Chapter 2.

Knowing the interconnections between the objects in these networks is an important

first step to the greater goal of understanding the complex dynamics inside the biological

systems [106]. For example, the knowledge of what interaction partners a protein has can

help identify its function [186]. Analyzing the whole interaction network can provide in-

sights into the structures and mechanisms of physical binding, which cannot be obtained by

studying single objects alone [105]. Large-scale genetic and gene-drug interaction networks

are also useful in drug discovery [141].

While it would be ideal to have full access to the biological networks, currently only

small portions of them have been revealed experimentally [90, 177]. On the other hand,

in the past decade many high-throughput experimental techniques have been developed

and popularized to provide different kinds of information about the biological objects, most

notably gene expression measured by microarray [162] and sequence information by second-

generation sequencing [170]. The huge amount of data generated from these experiments
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contain very rich information that can be utilized in predicting the unobserved portions of

the biological networks. As such, computational reconstruction of biological networks has

become an important research topic in bioinformatics [36, 171, 196, 199].

Network reconstruction can be formally cast as a machine-learning problem of the

following general form. The inputs to the problem are:

• A number of objects, each described by a vector of feature values. Some additional

features may be available for pairs of objects, such as the likelihood for a pair of objects

to interact according to some physical experiments that are not totally reliable.

• A gold standard positive set of known interactions.

• A gold standard negative set of known non-interactions.

The goal is to learn a predictor from the inputs, so that when presented any two

arbitrary objects i and j, it will predict the chance that (i, j) is an edge of the network.

Since the network reconstruction problem fits in a standard machine learning setting,

one could tackle it by applying an existing learning algorithm. Indeed, there have been

studies that use support vector machines [17, 174], Bayesian approaches [73, 98] and other

standard machine learning methods [13, 59] to reconstruct biological networks.

While standard machine learning methods could make accurate predictions in some

cases, we claim that if some domain knowledge about the problem structure and data

properties is available, it is possible to design learning algorithms that make good use of

the knowledge to achieve higher prediction accuracy. In the first part of this thesis, we

demonstrate how this abstract idea is turned into practice in several studies.
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In Chapter 3, we study the problem of supervised learning of protein interaction net-

works. We discuss several major difficulties in this problem, namely the large number of

node pairs (18 million for the 6,000 nodes of yeast), the small number of known interac-

tions and non-interactions, and the uneven distribution of these gold-standard examples

across the different nodes, and the existence of sub-class structures. We tackle the prob-

lem by building local models with training set expansion [203], which consists of semi-

supervised methods [34] that augment the original training sets by propagating information

from information-rich regions of the training network to information-poor regions. We show

that the resulting algorithms outperform a series of state-of-the-art algorithms when tested

on multiple benchmark datasets.

In Chapter 4, we continue to explore the idea of training set expansion for the protein

interaction network. In addition to making horizontal expansion (generating more training

examples for other nodes), in this case the expansion is also vertical (generating more

training examples for nodes at other levels). This idea is inspired by a special hierarchical

structure of the protein interaction network: each protein interaction involves corresponding

domain interactions, which in turn involve residue interactions. Each of the three levels of

interactions contains unique data features for learning the corresponding network. We

show that by considering all three levels of network reconstruction together, it is possible

to improve the prediction accuracy at each level [204].

In Chapter 5, we focus on the protein and domain levels, and study how inference

at the domain level could be affected by the errors at the protein level, which is a real

concern given the high false positive and false negative rates of protein interaction networks

constructed from high-throughput experiments, which are commonly used as the protein

level input. We propose different methods to perform consistent predictions at the two
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levels, using maximum likelihood and constrained optimization. The resulting algorithms

display improved noise immunity.

In Chapter 6, we switch to the problem of predicting gene regulatory networks in

an unsupervised setting, which is more realistic for organisms that are not well studied.

We consider two types of data features, namely steady-state gene expression profiles after

gene knockout, and dynamic expression time series after an initial perturbation. While the

two types of data provide complementary information for predicting gene regulation, many

existing algorithms have overlooked the potential of the gene knockout expression profiles.

By developing a new procedure for identifying gene regulation from such profiles, we were

able to combine the information hidden in the two types of data and make more accurate

predictions. The effectiveness of the algorithm was demonstrated in a public challenge

using benchmark datasets, in which our algorithm achieved the best accuracy among 28

other teams [202].

While the content in the first part of the thesis represents work in the core step of a

typical network reconstruction study, we emphasize that a successful study also implicitly

involves a lot of non-trivial tasks before and after the actual reconstruction stage. In the

second and third parts of the thesis, we explore two of them, namely data integration and

software sharing.

In the second part of the thesis, we discuss our work on data gathering and integration,

which is a difficult task as biological data are distributed and involve multiple naming

conventions and data formats. We study two different approaches to integrating biological

data. In Chapter 7, we use the knowledge representation formalism of semantic web [20]

to build a common platform called YeastHub [39] for integrating heterogeneous data from

different sources.
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We treat the integration of data by semantic web as a long-term endeavor, as it involves

collaborative ontology building, large-scale data conversion, infrastructure and application

software design and development, and extensive training for software engineers and users.

To provide a short-term solution, in Chapter 8, we discuss our work in using Web 2.0 tech-

niques [140] in integrating life sciences data. With the simple user-friendly interfaces, biol-

ogists could easily build reusable modules for performing their daily data integration tasks

without writing any programs or scripts. We explore the potential and current limitations

of such techniques in several applications in public health and molecular biology [40, 165].

At the end of the chapter, we compare the two data integration approaches, and suggest

possible future directions.

While it is scientifically significant to demonstrate the effectiveness of new algorithms on

some specific datasets, the research community would benefit much more if the algorithms

are made publicly accessible, so that other groups could apply them on their own data

without spending extra resources on re-implementation. In the third part of the thesis, we

describe two web platforms that we developed for sharing our algorithms.

In Chapter 9, we describe tYNA (the Yale Network Analyzer) [206], which is a web

tool for network analysis. Its functionality includes statistics calculations, motif finding,

visualization, and network comparisons. The tool has been used by around 200 researchers

worldwide to analyze around 1,500 networks.

In Chapter 10, we describe a tool for studying residue co-evolution [205], which can

be viewed as a special kind of network with each node representing an amino acid residue

and two nodes are connected if the corresponding residues have undergone co-evolution

across different species. There are many ways to mathematically quantify the likelihood of

co-evolution between two residues. On the web site, we provide the implementation of more
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than 100 variations of such co-evolution scoring functions, and allow users to study the

co-evolution networks of their own proteins. The site has processed more than 1,000 tasks,

and the programs have been downloaded and installed locally on the servers of a number

of other research groups to facilitate their large-scale studies of residue co-evolution.

We conclude the thesis in Chapter 11 and point out potential future directions.



Chapter 2

Biological Background

In this chapter, we introduce some basic biological concepts and experimental tech-

niques. The goal is to explain the important terms useful for understanding this thesis,

without delving into too much detail. A lot of related basic concepts will be omitted, and

some concepts will be presented in a simplified way. In particular, exceptions will not be

mentioned if they are rare. Additional concepts will be introduced in later chapters when

the need arises.

2.1 DNA, RNA and proteins

The basic unit of living systems is the cell. For most species, the heritable information

that distinguishes one organism from another is stored in the deoxyribonucleic acid (DNA)

sequences in living cells. Each DNA sequence is a linear chain of nucleotides. There are

four types of nucleotides in DNA sequences: adenine (A), cytosine (C), guanine (G) and

8



CHAPTER 2. BIOLOGICAL BACKGROUND 9

thymine (T). A DNA sequence can thus be represented by a string using an alphabet with

four characters.

In a cell, DNA sequences are arranged in a double-stranded helical structure, where

the nucleotides on the two strands are complementary to each other so that A is paired

with T, G is paired with C, and vice versa.

The DNA in a cell can be divided into different parts called chromosomes. All chro-

mosomes together form the genome of an organism. If an organism has two copies of the

set of chromosomes, it is said to be diploid. If there is only one copy, it is haploid.

For higher organisms such as humans, DNA is stored in the nucleus of a cell. Organisms

having cells with a clear nucleus are called eukaryotes. Organisms without clear cell nucleus

are called prokaryotes.

In a DNA sequence, there are parts that can be used as templates to generate products

called ribonucleic acids (RNA). These parts are called genes, while the other parts are

called intergenic regions. The process of generating RNA from DNA is called transcription.

Like DNA, an RNA sequence is also composed of nucleotides. There are four such types

of nucleotides in RNA: A, C, G and Uracil (U). The transcription process ensures that the

resulting RNA is complementary to the DNA on the gene, with A being complementary to

U in this case.

After transcription, some unwanted parts on the RNA are removed in higher organisms.

The corresponding DNA of the retained and removed parts are called exons and introns,

respectively. Most genes do not have RNA as their end products, but rather the RNA is

further used as a template to generate amino acid chains, which after folding into particular

three-dimensional structures are called proteins. The process of creating protein from RNA
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is called translation. The translation of RNA into amino acids is again based on fixed rules.

The DNA sequence is read 3 at a time, with each triple (called a codon) encoding one of

the twenty types of amino acid.

When two amino acids are joined together, a water molecule is expelled from the

bonding called peptide bond. Each remaining amino acid is thus given the name of a

residue (what is left after expelling water). In other words, residues will be used as the

basic units of proteins, just as nucleotides are the basic units of DNA and RNA. Although

logically the chain of amino acids of a protein should be called an amino acid sequence, it is

more commonly called a protein sequence and we will follow this convention. Be cautious

that a protein sequence is not a sequence of multiple proteins, but the sequence of multiple

amino acid residues of a protein.

The content of DNA is subject to change by mutations. If a DNA region is important,

so that mutations in the region could cause serious survival problems, the region in survived

organisms all have relatively few mutations and therefore look more similar to each other:

the region is said to be more conserved. For example, if two species both require a certain

protein to survive, then the encoding DNA sequence will be highly conserved across the two

genomes. To identify the well-conserved and poorly-conserved regions, the DNA/protein

sequence of the same gene/protein can be used to form an alignment by using alignment

algorithms that try to minimize the number of mutations required to change one to the

other. The idea can be generalized to involve more than two sequences, and the resulting

alignment is called a multiple sequence alignment (MSA).

Protein sequences have been compared to look for conserved regions. The conserved

sequences have been named motifs and domains, usually for shorter and longer sequences,

respectively. They are crucial to the functions and structures of proteins, and their inter-
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actions with other biological objects.

Based on the concept of conservation, one may ask which species has a certain gene

based on a reference sequence of the gene and a similarity/mutation threshold. By exam-

ining multiple species, each gene receives a binary vector with each bit indicating whether

the gene is present in a given species. The vector is called a phylogenetic profile of the gene.

The cell contains not only the nucleus, but also many other compartments. A protein

typically resides in only some of the compartments. A binary vector similar to a phylogenetic

profile can be constructed for a protein based on the cell compartments where it can be

found. The resulting data is called the localization profile.

Another type of large-scale dataset for genes is their RNA expression levels as measured

by microarray experiments. A microarray consists of many small wells, each containing

many copies of one type of target sequence, such as the complementary sequence of a gene

region. To measure how much RNA produced by the gene is present in a sample, a small

portion of sample is added to the well. The RNA in the sample is hybridized (bound) to the

complementary sequences in the well. The amount is detected by fluorescence. By adding

a portion of the sample to every well, the resulting measurements tell the relative RNA

expression levels of different genes in the sample. The whole set of experiments can also be

repeated for other samples, for example from the same cells in different conditions, which

would produce data allowing for comparison of the activity of the genes across different

conditions.

A gene can be artificially disabled by knockout experiments such as mutagenesis. For a

diploid organism, it is possible to knock out only one of the copies, or both. The resulting

strain of the former is called heterozygous and the latter is called homozygous.
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2.2 Biological networks

In this thesis our primary interest is not individual biological objects, but the inter-

action between different objects in networks. There are many different types of biological

networks.

A protein-protein interaction (PPI) network records which proteins have physical inter-

actions with each other. The edges are undirected. We will assume that the interactions are

binary, i.e., involving only two proteins. Real biological systems contain protein complexes

that involve multiple proteins (and also multiple copies of the same proteins) physically

binding together. Each complex can be represented by a set of binary interactions.

In this thesis, we define an edge of a protein-protein interaction network as two proteins

that interact in at least one condition. We do not consider whether the proteins are per-

manently bound together or just transiently interacting. We also do not consider whether

two protein interactions can simultaneously occur.

Protein interactions can be detected by small-scale experiments such as western blot-

ting. Large-scale detection methods have also been proposed. The two most popular meth-

ods are yeast-two-hybrid (Y2H) and tandem affinity purification with mass spectrometry

(TAP-MS). The former detects binary interactions happening in the cell nucleus, while

the latter pulls down whole complexes without revealing the connections within. Though

neither of them provides the complete set of binary interactions and both have high error

rates, these experiments are the current state-of-the-art in large-scale detection of protein

interactions.

In gene-regulatory networks, edges are drawn from a regulator to its target. Transcrip-

tion is controlled by regulators called transcription factors (TFs). They are proteins that
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recognize and bind to certain gene regions, to either activate or suppress the transcription.

In graph-theoretic terms, the edges are directed and signed, where a positive sign means

activation and a negative sign means suppression.

There are large-scale experiments for detecting TF binding, including chromatin im-

munoprecipitation with microarray (ChIP-chip) or with sequencing (ChIP-seq).

Metabolic networks are more commonly called metabolic pathways, which involve the

conversion of metabolites from one form to another through enzymatic actions. The most

common representation has the metabolites as nodes. There is an edge from one node to

another if the former can be converted into the latter by the action of an enzyme. The

enzyme is used as the label of the directed edge. Some reactions are reversible. In such

cases, there are two edges between the nodes, one from the first node to the second, and

the other from the second back to the first.

In co-evolution networks, each node is a biological object and two nodes are connected

if they are evolutionarily linked so that mutations of one would trigger corresponding mu-

tations of the other. Co-evolution networks can be defined at multiple levels, from single

nucleotides in DNA, to single residues in the same protein or different proteins, to whole

proteins.

The term “genetic interaction” sometimes refers generally to the interaction between

different genes and their products [70], and sometimes refers specifically to the situation

that the absence or change of dosage of the products of two genes together (the genotypes)

causes some unexpected outcomes (the phenotypes) [182]. The most well known example

is synthetic lethality, in which a cell can survive the deletion of either of two genes, but it

cannot survive if both genes are deleted. By having each gene as a node and putting an
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edge between two genes that have a certain type of genetic interaction, the resulting genetic

interaction network reflects some interesting special relationships between the genes. For

example, it has been shown that genes that have synthetic lethality are more likely to be

in parallel biological pathways [102].

A related network is the gene-drug network, in which there are two sets of nodes, one

for genes and one for drugs. An edge is drawn from a drug to a gene if the latter is the target

of the former. The network is thus a directed, bipartite graph. Since a drug could cause

inhibition of proteins, applying a drug to a cell has a net effect similar to knocking out (or

partially knocking out, i.e., knocking down) the encoding genes of the proteins. By carefully

comparing the genetic interaction network and gene-drug network, one could predict drug

targets and get more insights about the biological pathways a protein participates in.



Part I

Reconstructing Biological

Networks
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Chapter 3

Exploiting Data Properties:

Training Set Expansion

3.1 Introduction

Biological networks offer a global view of the relationships between biological objects.

In recent years high-throughput experiments have enabled large-scale reconstruction of the

networks. However, as these data are usually incomplete and noisy, they can only be used as

a first approximation of the complete networks. For example, a recent study reports that the

false positive and negative rates of yeast two-hybrid protein-protein interaction data could

be as high as 25%-45% and 75%-90% respectively [90], and a recently published dataset

combining multiple large-scale yeast-two-hybrid screens is estimated to cover only 20% of

the yeast binary interactome [207]. As another example, as of July 2008, the synthetic

lethal interactions in the BioGRID database [29] (version 2.0.42) only involve 2505 yeast

16
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genes, while there are about 5000 non-essential genes in yeast [72]. A large part of the

genetic network is likely not yet discovered.

To complement the experimental data, computational methods have been developed

to assist the reconstruction of the networks. These methods learn from some example

interactions, and predict the missing ones based on the learned models.

This problem is known as supervised network inference [187]. The input to the problem

is a graph G = (V,E, Ē) where V is a set of nodes each representing a biological object

(e.g. a protein), and E, Ē ⊂ V × V are sets of known edges and non-edges respectively,

corresponding to object pairs that are known to interact and not interact respectively. For

each of the remaining pairs, whether they interact is not known (Figure 3.1(a)). A model

is to be learned from the data, so that when given any object pair (vi, vj) as input, it will

output a prediction y ∈ [0, 1] where a larger value means a higher chance of interaction

between the objects.

The models are learned according to some data features that describe the objects. For

example, in predicting protein-protein interaction networks, functional genomic data are

commonly used. In order to learn models that can make accurate predictions, it is usually

required to integrate heterogeneous types of data that contain different kinds of information.

Since the data are in different formats (e.g. numeric values for gene expression, strings for

protein sequences), integrating them is non-trivial. A natural choice for this complex data

integration task is kernel methods [164], which unify the data representation as special

matrices called kernels and facilitate easy integration of these kernels into a final kernel K

through various means [111] (Figure 3.1(b)). As long as K is positive semi-definite, K(vi, vj)

represents the inner product of objects vi and vj in a certain embedded space [130], which

can be interpreted as the similarity between the objects. Kernel methods then learn the
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Figure 3.1. The supervised network inference problem. (a) Adjacency matrix of known in-
teractions (black boxes), known non-interactions (white boxes), and node pairs with an un-
known interaction status (gray boxes with question marks). (b) Kernel matrix, with a darker
color representing a larger inner product. (c) Partially-complete adjacency matrix required
by the supervised direct approach methods, with complete knowledge of a submatrix. In the
basic local modeling approach, the dark gray portion cannot be predicted.

models from the training examples and the inner products [2]. Since network reconstruction

involves many kinds of data, in this study we will focus on kernel methods for learning.

The supervised network inference problem differs from most other machine learning

settings in that instead of making a prediction for each input object (such as a protein),

the learning algorithm makes a prediction for each pair of objects, namely how likely these

objects interact in the biological network. Since there is a quadratic number of object pairs,

the computational cost could be very high. For instance, while learning a model for the

around 6000 genes of yeast is not a difficult task for contemporary computing machines,

the corresponding task for the around 18 million gene pairs remains challenging even for

high-end computers. Specialized kernel methods have thus been developed for this learning

problem.

For networks with noisy high-throughput data, reliable “gold-standard” training sets
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are to be obtained from data verified by small-scale experiments or evidenced by multiple

methods. As the number of such interactions is small, there is a scarcity of training data.

In addition, the training data from small-scale experiments are usually biased towards some

well-studied proteins, creating an uneven distribution of training examples across proteins.

In the next section, we review some existing computational approaches to reconstruct-

ing biological networks. One recent proposal is local modeling [21], which allows for the

construction of very flexible models by letting each object construct a different local model,

and has been shown promising in some network reconstruction tasks. However, when there

is a scarcity of training data, the high flexibility could turn out to be a disadvantage, as

there is a high risk of overfitting, i.e., the construction of overly complex models that fit

the training data well but do not represent the general trend of the whole network. As a

result, the prediction accuracy of the models could be affected.

In this study we propose methods called training set expansion that alleviate the prob-

lem of local modeling while preserving its modeling flexibility. They also handle the issue

of uneven training examples by propagating knowledge from information-rich regions to

information-poor regions. We will show that the resulting algorithms are highly competi-

tive with the existing approaches in terms of prediction accuracy. We will also present some

interesting findings based on the prediction results.
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3.2 Related work: existing approaches for network recon-

struction

3.2.1 The pairwise kernel approach

In the pairwise kernel (Pkernel) approach [17], the goal is to use a standard kernel

method (such as SVM) to make the predictions by treating each object pair as a data

instance (Figure 3.2(a,b)). This requires the definition of an embedded space for object

pairs. In other words, a kernel is to be defined, which takes two pairs of objects and returns

their inner product. With n objects, the kernel matrix contains O(n4) entries in total.

One systematic approach to constructing such pairwise kernels is to build them on top

of an existing kernel for individual objects, in which each entry corresponds to the inner

product of two objects. For example, suppose a kernel K for individual objects is given,

and v1, v2, v3, v4 are four objects, the following function can be used to build the pairwise

kernel [17]:

K ′((v1, v2), (v3, v4)) = K(v1, v3)K(v2, v4) + K(v1, v4)K(v2, v3) (3.1)

Loosely speaking, two object pairs are similar if the two objects in the first pair are

respectively similar to different objects in the second pair.

3.2.2 The direct approach

The direct approach [199] avoids working in the embedded space of object pairs. In-

stead, only a kernel for individual objects is needed. Given such an input kernel K and
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a cutoff threshold t, the direct approach simply predicts each pair of objects (vi, vj) with

K(vi, vj) ≥ t to interact, and each other pair to not interact. Since the example interactions

and non-interactions are not used in making the predictions, this method is unsupervised.

The direct approach is related to the pairwise kernel approach through a simple pairwise

kernel:

K ′((v1, v2), (v3, v4)) = K(v1, v2)K(v3, v4) (3.2)

With this kernel, each object pair (vi, vj) is mapped to the point K(vi, vj) on the real

line in the embedded space of object pairs. Thresholding the object pairs at a value t

is equivalent to placing a hyperplane in the embedded space with all pairs (vi, vj) having

K(vi, vj) ≥ t on one side and all other pairs on the other side. Therefore, if this pairwise

kernel is used, then learning a linear classifier in the embedded space is equivalent to learning

the best value for threshold t.

To make use of the training examples, two supervised versions of the direct approach

have been proposed. They assume that the sub-network of a subset of objects is completely

known, so that a submatrix of the adjacency matrix is totally filled (Figure 3.1(c)). The

goal is to modify the similarity values of the objects defined by the kernel to values that

are more consistent with the partial adjacency matrix. Thresholding is then performed on

the resulting set of similarity values.

The two versions differ in the definition of consistency between the similarity values and

the adjacency matrix. In the kernel canonical correlation analysis (kCCA) approach [199],

the goal is to identify feature f1 from the input kernel and feature f2 from the diffusion

kernel derived from the partial adjacency matrix so that the two features have the highest
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correlation under some smoothness requirements. Additional feature pairs orthogonal to

the previous ones are identified in similar ways, and the first l pairs are used to redefine the

similarity between objects.

In the kernel metric learning (kML) approach [187], a feature f1 is identified by op-

timizing a function that involves the distance between known interacting objects. Again,

additional orthogonal features are identified, and the similarity between objects is redefined

by these features.

3.2.3 The matrix completion approach

The em approach [184] (which is theoretically related to the expectation-maximization

(EM) framework) also assumes a partially complete adjacency matrix. The goal is to com-

plete it by filling in the missing entries, so that the resulting matrix is closest to a spectral

variant of the kernel matrix as measured by KL-divergence. The algorithm iteratively

searches for the filled adjacency matrix that is closest to the current spectral variant of the

kernel matrix, and the spectral variant of the kernel matrix that is closest to the current

filled adjacency matrix. When convergence is reached, the predictions are read from the

final completed adjacency matrix.

3.2.4 The local modeling approach

A potential problem of the previous approaches is that one single model is built for

all object pairs. If there are different subgroups of interactions, a single model may not be

able to separate all interacting pairs from non-interacting ones. For example, protein pairs

involved in transient interactions may use a very different mechanism than those involved



CHAPTER 3. EXPLOITING DATA PROPERTIES: TRAINING SET EXPANSION 23

in permanent complexes. These two types of interactions may form two separate subgroups

that cannot be fitted by one single model.

A similar problem has been discussed in Myers and Troyanskaya [135]. In this work,

the biological context of each gene is taken into account by conditioning the probability

terms of a Bayesian model by the biological context. The additional modeling power of

having multiple context-dependent sub-models was demonstrated by improved accuracy in

network prediction.

Another way to allow for a more flexible modeling of the subgroups is local modeling [21].

Instead of building a single global model for the whole network, one local model is built

for each object, using the known interactions and non-interactions of it as the positive and

negative examples. Each pair of objects thus receives two predictions, one from the local

model of each object. In our implementation, the final prediction is a weighted sum of the

two according to the training accuracy of the two local models.

Figure 3.2 illustrates the concept of local modeling. Part (a) shows an interaction

network, with solid green lines representing known interactions, dotted red lines representing

known non-interactions, and the dashed black line representing an object pair of which the

interaction status is unknown. Part (b) shows a global model with the locations of the

object pairs determined by a pairwise kernel. The object pair (v3, v4) is on the side with

many positive examples, and is predicted to interact. Part (c) shows a local model for

object v3. Object v4 is on the side with a negative example, and (v3, v4) is predicted to not

interact.

Since each object has its own local model, subgroup structures can be readily handled

by having different kinds of local models for objects in different subgroups.
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Figure 3.2. Global and local modeling. (a) An interaction network with each green solid
edge representing a known interaction, each red dotted edge representing a known non-
interaction, and the dashed edge representing a pair of objects with an unknown interaction
status. (b) A global model based on a pairwise kernel. (c) A local model for object v3.

3.3 Our proposal: the training set expansion approach

Local modeling has been shown to be very competitive in terms of prediction accu-

racy [21]. However, local models can only be learned for objects with a sufficiently large

amount of known interactions and non-interactions. When the training sets are small, many

objects would not have enough data for training their local models. Overfitting may occur,

and in the extreme case where an object has no positive or negative examples, its local

model simply cannot be learned. As to be shown in our empirical study presented below,

this problem is especially serious when the embedded space is of very high dimension, since

very complex models that overfit the data could be formed.

In the following we propose ways to tackle this data scarcity issue while maintaining

the flexibility of local modeling. Our idea is to expand the training sets by generating

auxiliary training examples. We call it the training set expansion approach. Obviously these

auxiliary training examples need to be good estimates of the actual interaction status of the

corresponding object pairs, for expanding the training sets by wrong examples could further
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worsen the learned models. We propose two methods for generating reliable examples:

prediction propagation and kernel initialization.

3.3.1 Prediction propagation (pp)

Suppose v1 and v2 are two objects, where v1 has sufficient training examples while v2

does not. We first train the local model for v1. If the model predicts with high confidence

that v1 interacts with v2, then v1 can later be used as a positive example for training the

local model of v2. Alternatively, if the model predicts with high confidence that v1 does not

interact with v2, v1 can be used as a negative example for training the local model of v2.

This idea is based on the observation that predictions that a model is most confident

with are more likely correct. For example, if the local models are support vector machines,

the predictions for objects far away from the separating hyperplane are more likely correct

than those for objects falling in the margin. Therefore, to implement the idea, each pre-

diction should be associated with a confidence value obtained from the local model. When

expanding the training sets of other objects, only the most confident predictions should be

involved.

We use support vector regression [172] to produce the confidence values. When training

the local model of an object vi, the original positive and negative examples of it are given

labels of 1 and -1 respectively. Then a regression model is constructed to find the best fit.

Objects close to the positive examples will receive a regressed value close to 1, meaning

that they correspond to objects that are likely to interact with vi. Similarly, objects close

to the negative examples will receive a regressed value close to -1, and hence correspond to

objects that are likely to not interact with vi. For other objects, the model is less confident in
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telling whether they interact with vi. Therefore the predictions with large positive regressed

values can be used as positive examples for training other local models, and those with large

negative regressed values can be used as negative examples, where the magnitudes of the

regressed values represent the confidence.

Each time we use p% of the most confident predictions to expand the training sets of

other objects, where the numbers of new positive and negative examples are in proportion

to the ratio of positive and negative examples in the original training sets. The parameter

p is called the training set expansion rate.

To further improve the approach, we order the training of local models so that ob-

jects with more (original and augmented training examples) are trained first, as the models

learned from more training examples are generally more reliable. Essentially this is han-

dling the uneven distribution of training examples by propagating knowledge from the

information-rich regions (objects with many training examples) to the information-poor

regions (objects with no or few training examples).

Theoretically prediction propagation is related to co-training [22], which uses the most

confident predictions of a classifier as additional training examples of other classifiers. The

major differences are that in co-training, the classifiers are to make predictions for the same

set of data instances, and the classifiers are complementary to each other due to the use of

different data features. In contrast, in prediction propagation, each model is trained for a

different object, and the models are complementary to each other due to the use of different

training examples.

Instead of regression, one can also use support vector classifier (SVC) to determine the

confidence values, by measuring the distance of each object from the separating hyperplane.
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Since we only use the ranks of the confidence values to deduce the auxiliary examples but

not their absolute magnitudes, we would expect the results to be similar. We implemented

both versions and tested them in our experiments. The two sets of results are indeed

comparable, with SVR having slightly higher accuracy on average, as we will see in the

experiment section.

3.3.2 Kernel initialization (ki)

The prediction propagation method is effective when some objects have sufficient input

training examples at the beginning to start the generation of auxiliary examples. Yet if all

objects have very few input training examples, even the object with the largest training

sets may not be able to form a local model that can generate accurate auxiliary examples.

An alternative way to generate auxiliary training examples is to estimate the interaction

status of each pair of objects by its similarity value given by the kernel. This is in line with

the idea of the direct approach, that object pairs with a larger similarity value are more

likely to interact. However, instead of thresholding the similarity values to directly give

the predictions, they are used only to initialize the training sets for learning the local

models. Also, to avoid generating wrong examples, only the ones with the largest and

smallest similarity values are used, which correspond to the most confident predictions of

the unsupervised direct method.

For each object, p% of the objects with the largest/smallest similarity values given by

the kernel are treated as positive/negative training examples in proportion to the positive

and negative examples in the original training sets. These auxiliary examples are then

combined with the original input examples to train the local models.
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The kernel initialization method can be seen as adding a special prior to the object

pairs, which assigns a probability of 1 to the most similar pairs of each object and 0 to

the most dissimilar pairs. We have also tried normalizing the inner products to the [0,1]

range and using them directly as the initial estimate of the confidence of interaction. Yet

the performance was not as good as the current method, which could be due to the large

variance of confidence values of the object pairs with moderate similarity.

The two training set expansion methods fall within the class of semi-supervised learning

methods [34], which make use of both the training examples and some information about all

data instances to learn the model. Prediction propagation exploits the information about

each object pair produced by other local models to help train the current local model.

Kernel initialization utilizes the similarity between objects in the feature space to place soft

constraints on the local models, that the objects most similar to the current object should

be put in the positive class and those most dissimilar to the current object should be put

in the negative class.

3.3.3 Combining the two methods (pp+ki)

Since kernel initialization is applied before learning while prediction propagation is

applied during learning, the two can be used in combination. In some cases this leads to

additional performance gain in our experiments.
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3.4 Prediction accuracy

3.4.1 Data and setup

To test the effectiveness of the training set expansion approach, we compared its pre-

diction accuracy with the other approaches on three protein-protein interaction networks

of the yeast Saccharomyces cerevisiae from BioGRID [29], DIP [160], MIPS [131] and iP-

fam [63]. The BioGRID-10 dataset contains all BioGRID interactions of Saccharomyces

cerevisiae (version 2.0.44) that satisfy the following criteria:

1. Having one of the following physical interaction types:

• FRET

• Protein-peptide

• Co-crystal Structure

• Co-fractionation

• Co-purification

• Reconstituted Complex

• Biochemical Activity

• Affinity Capture-Western

• Two-hybrid

• Affinity Capture-MS

2. From one of the small-scale studies, defined as studies that report less than 10 physical

interactions to BioGRID
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3. The proteins/genes involved in the interactions have valid values from all the features

for learning

The cutoff (10 physical interactions) was chosen so that the network is large enough to have

relatively few missing interactions, while small enough to run the different algorithms in

reasonable time. The dataset contains 5,126 interactions that involve 2,328 yeast proteins.

The BioGRID-200 dataset is similar to BioGRID-10, except that small-scale studies

are defined as studies that report less than 200 physical interactions to BioGRID. Notice

that since the four high-throughput datasets used as data features all have more than 200

interactions, they are not included in this dataset. The dataset contains 12,155 interactions

that involve 3,222 yeast proteins.

The DIP MIPS iPfam dataset contains the union of all interactions from DIP (7 Oct

2007 version), MIPS (18 May 2006 version) and iPfam (version 21 of Pfam) that satisfy the

following criteria:

1. For interactions in DIP, only those identified in small-scale experiments or multiple

experiments are considered

2. For interactions in MIPS, only the physical, non-Yeast two hybrid and non-TAP-MS

ones are considered

3. The involving proteins/genes have valid values from all the features for learning

The dataset contains 3,201 interactions that involve 1,681 yeast proteins.

We use BioGRID-10 as the main dataset for comparison, while DIP MIPS iPfam repre-

sents a high quality but smaller dataset, and BioGRID-200 represents one with few missing
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Table 3.1. List of datasets used in the comparison study. Each row corresponds to a dataset
from a publication in the Source column, and is turned into a kernel using the function in the
Kernel column, as in previous studies [ 21, 199].

Code Data type Source Kernel
phy Phylogenetic profiles COG v7 [181] RBF (σ=3,8)
loc Sub-cellular localization [92] Linear
exp-gasch Gene expression [68] RBF (σ=3,8)

(environmental response)
exp-spellman Gene expression [176] RBF (σ=3,8)

(cell-cycle)
y2h-ito Yeast two-hybrid [97] Diffusion (β=0.01)
y2h-uetz Yeast two-hybrid [185] Diffusion (β=0.01)
tap-gavin Tandem affinity purification [69] Diffusion (β=0.01)
tap-krogan Tandem affinity purification [108] Diffusion (β=0.01)
int Integration Summation

interactions, but is too large that the pairwise kernel method could not be tested as it

caused our machine to run out of memory. The three datasets together allow us to show

the effectiveness of training set expansion in a wide spectrum of scenarios.

We tested the performance of the different approaches on various kinds of genomic

data features, including phylogenetic profiles, sub-cellular localization and gene expression

datasets using the same kernels and parameters as in previous studies [21, 200]. We also

added in datasets from tandem affinity purification with mass spectrometry using the dif-

fusion kernel, and the integration of all kernels by summing them after normalization, as in

previous studies [21, 200]. The list of datasets used is shown in Table 3.1.

We performed ten-fold cross validations and used the area under the receiver operator

characteristic curve (AUC) as the performance metric. The cross validations were done in

two different modes. In the first mode, as in previous studies [21, 199], the proteins were
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divided into ten sets. Each time one set was left out for testing, and the other nine were

used for training. All known interactions with both proteins in the training set were used as

positive training examples. As required by some of the previous approaches, the sub-network

involving the proteins in the training set was assumed completely known (Figure 3.1(c)).

As such, all pairs of proteins in the training set not known to interact were regarded as

negative examples. All pairs of proteins with exactly one of the two proteins in the training

set were used as testing examples (light gray entries in Figure 3.1(c)). Pairs with both

proteins not in the training set were not included in the testing sets (dark gray entries in

Figure 3.1(c)), as the original local modeling method cannot make such predictions.

Since all protein pairs in the submatrix are either positive or negative training examples,

there are O(n2) training examples in each fold. In the pairwise kernel approach, this

translates to a kernel matrix with O(n4) elements. This is of the order of 1012 for 1,000

proteins, which is too large to compute and to learn the SVC and SVR models. We therefore

did not include the pairwise kernel method in the experiments that used the first mode of

cross-validation.

Since some protein pairs treated as negative examples may actually interact, the re-

ported accuracies may not completely reflect the absolute performance of the methods.

However, as the tested methods were subject to the same setting, the results are still good

indicators of the relative performance of the approaches.

In the second mode of cross-validation, we randomly sampled protein pairs not known

to interact to form a negative training set with the same size as the positive set, as in

previous studies [17, 151]. Each of the two sets was divided into ten subsets, which were

used for left-out testing in turn. The main difference between the two modes of cross-

validation is that the train-test split is based on proteins in the first mode and protein pairs
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in the second mode. Since the training examples do not constitute a complete submatrix,

the kCCA, kML and em methods cannot be tested in the second mode. The second mode

represents the more general case, where the positive and negative training examples do not

necessarily form a complete sub-network.

We used the Matlab code provided by Jean-Philippe Vert for the unsupervised direct,

kCCA, kML and em methods with the first mode of cross-validation. We implemented the

other methods with both the first and second modes of cross-validation. We observed almost

identical accuracy values from the two implementations of the direct approach in the first

mode of cross-validation with the negligible differences due only to random train-test splits,

which confirms that the reported values from the two sets of code can be fairly compared.

For the pairwise kernel approach, we used the kernel in Equation 3.1.

We used the ε-SVR and C-SVC implementations of the Java version of libsvm [33]. In

a preliminary study, we observed that the prediction accuracy of SVR is not much affected

by the value of the termination threshold ε, while for both SVR and SVC the performance

is quite stable as long as the value of the regularization parameter C is not too small. We

thus fixed both parameters to 0.5. For PP and KI, we used a grid search to determine the

value of the training set expansion rate p.

3.4.2 Results

Since we use datasets different from the ones used in previous studies, the prediction

results are expected to be different. To make sure that our implementations are correct and

the testing procedure is valid, we compared our results on the DIP MIPS iPfam dataset

with those reported in Bleakley et al. [21] as the size of this dataset is most similar to the



CHAPTER 3. EXPLOITING DATA PROPERTIES: TRAINING SET EXPANSION 34

one used by them. Our results (Table 3.4) display a lot of similarities with those in Bleakley

et al. [21]. For example, in the first mode of cross-validation, local modeling outperformed

the other previous approaches when object similarity was defined by phylogenetic profiles

and yeast two-hybrid data. Also, the em method had the best performance among all

previous approaches with the integrated kernel in both studies. We are thus confident that

our results represent a reliable comparison between the methods.

The comparison results for our main dataset, BioGRID-10, are shown in Table 3.2. In

the table pp, ki and pp+ki are written as local+pp, local+ki and local+pp+ki, respectively,

to emphasize that the two training set expansion methods are used on top of basic local

modeling. Notice that the accuracies in the second mode of cross-validation are in general

higher. We examined whether this is due to the presence of self-interactions in the gold-

standard set of the second mode of cross-validation but not in the first mode, by removing

the self-interactions and re-running the experiments. The results suggest that the perfor-

mance gain due to the removal of self-interactions is too small to explain the performance

difference between the two modes of cross-validation. The setting in the second mode may

thus correspond to an easier problem. The reported accuracies of the two modes should

therefore not be compared directly.

From the table, the advantages of the training set expansion methods over basic local

modeling are clearly seen. In all cases, the accuracy of local modeling was improved by

at least one of the expansion methods, and in many cases all three combinations (pp, ki

and pp+ki) performed better than basic local modeling. With training set expansion, local

modeling outperformed all the other approaches in all 9 datasets.

Inspecting the performance of local modeling without training set expansion, it is

observed that although local modeling usually outperformed the other previous methods,
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Table 3.2. Prediction accuracy (percentage of AUC) of the different approaches on the
BioGRID-10 dataset. The best approach for each kernel and each mode of cross-validation
is in bold face.

phy loc exp-gasch exp-spellman y2h-ito y2h-uetz tap-gavin tap-krogan int
Mode 1
direct 58.04 66.55 64.61 57.41 51.52 52.13 59.37 61.62 70.91
kCCA 65.80 63.86 68.98 65.10 50.89 50.48 57.56 51.85 80.98
kML 63.87 68.10 69.67 68.99 52.76 53.85 60.86 57.69 73.47
em 71.22 75.14 67.53 64.96 55.90 53.13 63.74 68.20 81.65
local SVM 71.53 71.17 70.35 68.98 67.26 67.25 64.59 67.48 74.77
local+pp SVM 72.07 69.64 76.02 73.54 71.50 71.46 74.41 71.09 82.94
local+ki SVM 71.72 71.15 75.84 71.00 69.32 69.03 70.66 71.89 81.75
local+pp+ki SVM 71.78 70.40 76.73 71.37 70.42 70.43 73.49 72.47 83.19
local SVR 71.67 71.41 72.66 70.63 67.27 67.27 64.60 67.48 75.65
local+pp SVR 73.89 75.25 77.43 75.35 71.60 71.51 74.62 71.39 83.63
local+ki SVR 71.68 71.42 75.89 70.96 69.40 69.05 70.53 72.03 81.74
local+pp+ki SVR 72.40 75.19 77.41 73.81 70.44 70.57 73.59 72.64 83.59
Mode 2
direct 59.99 67.81 66.18 59.22 54.02 54.64 62.28 63.69 72.34
Pkernel 72.98 69.84 78.61 77.30 57.01 54.65 71.16 70.36 87.34
local SVM 76.17 78.68 76.07 73.46 72.26 72.23 68.39 72.48 81.29
local+pp SVM 75.85 73.66 79.71 75.61 74.05 73.80 75.89 75.10 87.80
local+ki SVM 76.06 78.70 79.02 73.32 72.68 72.03 71.22 75.55 85.53
local+pp+ki SVM 76.32 73.73 79.99 75.48 73.58 73.35 74.98 75.87 87.62
local SVR 76.89 78.73 79.72 77.32 72.93 72.89 68.81 73.15 82.82
local+pp SVR 77.71 80.71 82.56 80.62 74.74 74.41 76.36 75.12 88.78
local+ki SVR 76.76 78.73 80.62 76.44 73.39 72.76 72.42 76.22 86.12
local+pp+ki SVR 77.45 80.57 81.93 78.92 74.14 74.01 75.59 76.59 88.56
Mode 3
direct 57.72 66.69 64.23 56.86 51.36 52.01 60.10 61.60 70.75
Pkernel 72.01 68.89 77.89 76.37 56.24 53.97 71.48 69.67 87.13
local SVM 76.47 78.56 76.27 73.88 72.57 72.54 68.64 72.81 81.39
local+pp SVM 75.84 73.41 79.93 76.16 74.48 74.21 76.38 75.63 87.79
local+ki SVM 76.40 78.57 79.56 73.90 72.92 72.35 71.63 75.94 85.43
local+pp+ki SVM 76.51 73.43 80.32 75.66 73.70 73.60 75.62 76.24 87.62
local SVR 77.17 78.71 79.87 77.56 73.21 73.18 69.05 73.44 82.97
local+pp SVR 78.18 80.44 82.57 80.41 75.05 74.83 76.76 75.70 88.87
local+ki SVR 77.10 78.71 80.74 76.41 73.51 72.97 72.72 76.53 85.96
local+pp+ki SVR 77.52 80.51 81.73 78.51 74.27 74.09 76.10 76.85 88.55
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its performance with the integration kernel was unsatisfactory. This is probably due to

overfitting. When kernels are summed, the resulting embedded space is the direct product

of the ones defined by the kernels [164]. Since the final kernel used for the integrated dataset

is a summation of 8 kernels, the corresponding embedded space is of very high dimension.

With the high flexibility and the lack of training data, the models produced by basic local

modeling were probably overfitted. In contrast, with the auxiliary training examples, the

training set expansion methods appear to have largely overcome the problem.

Comparing the two training set expansion methods, in most cases prediction propa-

gation resulted in a larger performance gain. This is reasonable since the input training

examples were used in this method, but not in kernel initialization.

The results for BioGRID-200 and DIP MIPS iPfam are shown in Table 3.3 and Ta-

ble 3.4, respectively. They exhibit similar patterns as in the case of BioGRID-10, and thus

the above discussion also applies to them.

To better understand how the two training set expansion methods improve the pre-

dictions, we sub-sampled the gold-standard network at different sizes, and compared the

performance of local modeling with and without training set expansion using the second

mode of cross-validation. The results for two of the kernels are shown in Figure 3.3, which

show the two typical cases observed.

In general training set expansion improved the accuracy the most with moderate gold-

standard set sizes, at around 3000 interactions. For prediction propagation, this is expected

since when the training set was too small, the local models were too inaccurate that even

the most confident predictions could still be wrong, which made propagation undesirable.

On the other hand, when there were many training examples, there were few missing in-
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Table 3.3. Prediction accuracy (percentage of AUC) of the different approaches on the
BioGRID-200 dataset. The best approach for each kernel and each mode of cross-validation
is in bold face.

phy loc exp-gasch exp-spellman y2h-ito y2h-uetz tap-gavin tap-krogan int
Mode 1
direct 58.89 66.32 65.44 59.68 51.87 51.28 63.98 64.56 71.59
kCCA 69.14 66.36 72.30 62.74 53.52 50.85 63.23 58.49 85.73
kML 65.86 68.57 73.79 73.41 55.00 56.12 64.41 62.67 68.82
em 73.60 75.78 68.66 67.55 56.10 53.47 68.76 70.48 80.89
local SVM 76.67 76.78 78.92 77.49 75.08 75.07 71.24 75.34 82.56
local+pp SVM 76.35 75.85 80.02 78.29 75.86 76.48 77.63 76.51 85.36
local+ki SVM 75.88 76.71 80.42 78.04 75.55 75.27 75.15 76.91 85.46
local+pp+ki SVM 76.51 75.73 80.68 78.00 75.91 75.83 76.83 77.10 85.57
local SVR 77.18 76.48 80.23 79.02 75.08 75.07 71.91 75.34 83.09
local+pp SVR 77.60 78.92 81.98 80.59 76.10 76.48 76.67 76.54 85.98
local+ki SVR 75.79 76.50 80.87 78.59 75.59 75.33 75.03 76.96 85.42
local+pp+ki SVR 76.06 78.94 81.71 79.58 75.98 75.94 76.73 77.15 85.83
Mode 2
direct 60.52 66.81 66.97 61.41 54.01 53.70 65.19 65.81 72.50
local SVM 83.37 83.96 84.94 83.22 81.74 81.75 75.47 81.95 88.76
local+pp SVM 83.26 83.14 86.15 84.23 81.68 81.89 81.34 82.85 91.37
local+ki SVM 81.84 84.00 86.02 82.77 81.30 80.98 78.31 82.63 89.99
local+pp+ki SVM 82.20 83.06 86.17 82.38 81.54 81.54 80.91 82.76 91.16
local SVR 83.88 83.30 86.79 85.54 82.68 82.71 76.36 82.89 89.92
local+pp SVR 84.37 85.62 88.12 87.00 82.43 82.87 80.61 83.65 91.82
local+ki SVR 82.31 83.29 86.93 84.16 82.29 81.99 79.02 83.65 90.17
local+pp+ki SVR 82.63 85.55 87.02 85.03 82.44 82.54 81.09 83.80 91.51
Mode 3
direct 58.91 65.99 65.61 59.81 52.10 51.79 63.74 64.40 71.37
local SVM 83.63 84.16 85.15 83.55 82.04 82.06 75.72 82.25 88.90
local+pp SVM 83.32 83.70 86.71 84.60 82.33 82.45 81.79 83.59 91.46
local+ki SVM 82.07 84.20 86.54 83.22 81.78 81.49 78.77 83.11 90.05
local+pp+ki SVM 82.50 83.55 86.66 82.75 82.10 82.02 81.64 83.45 91.28
local SVR 84.10 83.51 86.99 85.78 82.99 83.01 76.61 83.20 90.09
local+pp SVR 84.74 85.71 88.21 87.00 82.82 83.37 81.29 84.31 91.88
local+ki SVR 82.49 83.51 87.35 84.27 82.65 82.39 79.41 84.03 90.18
local+pp+ki SVR 82.67 85.74 87.43 85.11 82.79 82.87 81.67 84.25 91.55
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Table 3.4. Prediction accuracy (percentage of AUC) of the different approaches on the
DIP MIPS iPfam dataset. The best approach for each kernel and each mode of cross-
validation is in bold face.

phy loc exp-gasch exp-spellman y2h-ito y2h-uetz tap-gavin tap-krogan int
Mode 1
direct 63.09 64.23 68.60 62.24 53.40 57.34 63.46 64.58 73.68
kCCA 68.78 62.24 70.93 66.85 55.25 56.70 62.88 62.59 74.45
kML 65.04 67.58 70.09 69.80 58.12 59.90 63.72 61.19 77.58
em 63.22 67.90 65.15 61.74 56.23 58.31 68.02 62.92 78.46
local SVM 72.45 69.90 71.45 69.02 66.56 66.53 64.95 66.92 74.28
local+pp SVM 73.00 70.38 75.69 74.12 72.10 72.10 75.84 71.83 83.26
local+ki SVM 73.67 69.89 76.89 72.01 69.80 69.25 72.75 72.41 82.44
local+pp+ki SVM 72.93 70.76 77.46 72.17 70.86 70.78 74.47 72.81 83.20
local SVR 72.85 70.50 72.89 70.60 66.58 66.56 64.97 66.93 74.76
local+pp SVR 74.48 74.99 78.09 75.89 72.02 72.09 75.88 71.56 83.72
local+ki SVR 74.03 70.47 76.87 72.87 69.88 69.39 72.80 72.43 82.41
local+pp+ki SVR 73.62 74.92 78.35 75.08 70.93 70.97 74.48 73.01 83.39
Mode 2
direct 67.57 66.48 71.54 66.24 57.74 61.52 67.46 68.86 76.53
Pkernel 73.51 68.24 78.91 77.08 58.10 58.51 72.65 69.98 85.04
local SVM 77.78 77.79 76.67 73.99 72.93 72.98 68.68 73.23 81.10
local+pp SVM 77.42 75.15 79.94 77.10 76.21 76.20 78.45 76.28 87.10
local+ki SVM 78.31 77.80 80.86 75.24 75.52 73.99 74.65 77.51 85.95
local+pp+ki SVM 77.71 74.93 81.38 75.46 75.61 75.83 77.37 78.03 86.75
local SVR 78.78 77.80 79.84 77.38 73.46 73.49 69.01 73.72 82.12
local+pp SVR 79.25 81.65 83.01 81.67 76.76 76.88 79.75 76.99 88.26
local+ki SVR 78.88 77.80 81.55 77.83 76.11 74.62 75.56 78.07 86.51
local+pp+ki SVR 78.78 81.68 82.60 79.90 76.08 76.20 77.79 78.72 87.68
Mode 3
direct 63.77 64.30 68.19 62.24 52.71 56.94 63.61 65.17 73.78
Pkernel 72.66 66.76 78.42 75.88 57.31 56.90 73.18 69.76 85.63
local SVM 77.91 77.88 76.83 74.23 73.34 73.40 68.58 73.68 81.18
local+pp SVM 77.81 75.17 79.91 76.99 75.93 75.76 78.28 77.45 86.80
local+ki SVM 78.49 77.88 80.82 75.64 74.94 73.45 73.96 77.05 85.30
local+pp+ki SVM 78.17 75.32 81.02 75.28 75.25 75.04 76.87 77.53 86.58
local SVR 78.95 77.89 80.09 77.66 73.95 74.00 69.02 74.28 82.40
local+pp SVR 79.05 80.91 82.42 80.88 76.33 76.30 79.10 77.45 87.54
local+ki SVR 78.86 77.90 81.36 77.39 75.34 73.87 74.60 77.45 85.74
local+pp+ki SVR 78.34 80.85 82.15 79.01 75.39 75.26 77.22 77.92 87.32
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Figure 3.3. Prediction accuracy at different gold-standard set sizes. (a) Using the int kernel.
(b) Using the exp-gasch kernel.
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teractions, so that the augmented training examples became relatively less important. The

latter argument also applies to kernel initialization, that it resulted in larger performance

gain when the gold-standard set was not too large. However, it is surprising to see that

using the integrated kernel (Figure 3.3(a)), kernel initialization resulted in a drop in accu-

racy when there were only 500 interactions. Since the kernel remained the same at different

gold-standard set sizes, one would expect to see a stable performance gain for kernel initial-

ization regardless of the size of the gold-standard set. This stable performance gain is indeed

observed when the Gasch or phylogenetic profile kernel was used (Figure 3.3(b) and Figure

S1). In contrast, prediction propagation, being dependent on the raw accuracy of local

modeling, performed poorly when there were only 500 interactions for all 9 datasets. This

suggests that when the dataset is expected to contain a lot of missing interactions, kernel

initialization is potentially more useful, but it also depends on the feature used in learning.

On the other hand, prediction propagation is more useful when the dataset contains enough

interactions for local modeling to achieve a reasonable accuracy.

3.5 Analysis

With the observed performance gain of training set expansion, we would like to know

what kind of correct predictions it could make that were ranked low by other methods.

To answer the question, for each known interaction in the gold-standard positive set of

BioGRID-10, we computed its rank in the predictions made by local+pp and local+ki

using the integrated kernel in the first mode of cross-validation. Then we computed the

highest rank of the interaction given by kCCA, kML, em and local, and calculated the

difference between the two. If the former is much higher than the latter (i.e., there is a
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large rank difference), then the interaction is uniquely identified by training set expansion

but not by any of the four other methods.

Among the 2,880 interactions in the gold-standard set that were tested by both lo-

cal+pp and the four comparing methods, the ranks of 2,121 of them are higher in the

predictions made by local+pp than in any of the four methods. For each of them, we

computed the minimum degree (number of known interactions in the gold-standard set) of

the two interacting proteins as an indicator of the number of available training examples

for the pair. Then we correlated the minimum degree with the rank difference. The re-

sulting graph (Figure 3.4) shows a significant negative correlation (Spearman correlation

= −0.38, p < 10−16), which confirms that the correct predictions made by local+pp that

were missed by the other four methods correspond to the protein pairs with few known

examples. We have also tested the average degree instead of the minimum, and the Pearson

correlation instead of Spearman correlation. The results all lead to the same conclusion

(Figure S2).
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Figure 3.4. Correlating the number of gold-standard examples and the rank difference be-
tween local+pp and the four methods.
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A concrete example of a gold-standard interaction predicted by local+pp but ranked

low by the four methods is the one between SEC11 and SPC1. They are both subunits of

the signal peptidase complex (SPC), and are reported to interact in BioGRID according to

multiple sources. In the BioGRID-10 dataset, SPC1 is the only known interaction partner

of SEC11, while SPC1 only has one other known interaction (with SBH2). The extremely

small numbers of known examples make it difficult to identify this interaction. Indeed,

the best of the four previous methods could only give it a rank at the 74th percentile,

indicating that they were all unable to identify this interaction. In contrast, local+pp was

able to rank it at the top 7th percentile, i.e., with a rank difference of 67 percentiles (see

Figure 3.4). This example illustrates that interactions with very few known examples, while

easily missed by the previous methods, could be identified by using prediction propagation.

For local+ki, among the 2,880 commonly tested gold-standard interactions, 2,025 re-

ceived a higher rank from this method than from any of the four comparing methods.

Again, there is a negative correlation between the rank difference and the minimum de-

gree and average degree (Figure S2), which shows that kernel initialization is also able to

predict interactions for proteins with few training examples. In addition, there is a posi-

tive correlation with moderate significance between the rank difference and the similarity

between the interacting proteins according to the kernel (Figure S2, Spearman correlation

= 0.04, p = 0.04), which is expected as the kernel initialization method uses protein pairs

with high similarity as auxiliary positive training examples. Interestingly, for local+pp, a

negative correlation is observed between the rank difference and protein similarity (Figure

S2), which suggests that the prediction propagation method is able to identify non-trivial

interactions, where the two interacting proteins are not necessarily similar according to the

kernel.
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3.6 Discussion

Training set expansion is a general concept that can also be applied to other problems

and used with other learning methods. The learning method is not required to make

very accurate predictions for all object pairs, and the data features do not need to define

an object similarity that is very consistent with the interactions. As long as the most

confident predictions are likely correct, prediction propagation is useful, and as long as the

most similar objects are likely to interact and the most dissimilar objects are unlikely to

interact, kernel initialization is useful. In many biological applications at least one of these

requirements is satisfied.

In the next chapter, we continue our exploration of the idea of training set expansion.

In addition to expanding the training sets of other objects at the same level, we also study

ways to expand the training sets of objects at other levels in a natural concept hierarchy of

protein interactions.



Chapter 4

Utilizing Problem Structures:

Multi-level Learning

4.1 Introduction

In the previous chapter we described methods for predicting protein interactions, and

how we improved prediction accuracy by training set expansion. While some of the methods

could predict which proteins interact with high accuracy, they do not explain how the

proteins interact. For instance, if protein A interacts with both proteins B and C, whether

B and C could interact with A simultaneously remains unknown, as they may or may not

compete for the same binding interface of A. This observation has led to the recent interest

in refining PPI networks by structural information about domains [6, 16, 104]. It has also

called for the prediction of protein interactions at finer granularities.

Since binding interfaces of proteins are enriched in conserved domains in permanent

44
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interactions [31], it is possible to construct a second-level interaction network with protein

interactions annotated by the corresponding domain interactions. An even finer third-level

interaction network involves the residues mediating the interactions (Figure 4.1).

Protein
interactions

Domain
interactions

Residue
interactions
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i. Independent 
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iii. Bidirectional
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Figure 4.1. Schematic illustration of multi-level learning concepts. (a) The three levels of
interactions. Top: the PDB structure 1piw of the homo-dimer yeast NADP-dependent alcohol
dehydrogenase 6. Middle: each chain contains two conserved Pfam domain instances,
PF00107 (inner) and PF08240 (outer). The interaction interface is at PF00107. Bottom:
two pairs of residues predicted by iPfam to interact: 283 (yellow) with 287 (cyan), and 285
(purple) with 285. Visualization by VMD [ 94]. (b) The three information flow architectures.
i: independent levels, ii: unidirectional flow (illustrated by download flow), iii: bidirectional
flow. (c) Coupling mechanisms for passing information from one level to another. 1: passing
training information to expand the training set of the next level, 2: passing predictions as an
additional feature of the next level, 3: passing predictions to expand the training set of the
next level.

As will be described in the next section, some recent studies have started to perform

interaction predictions at the domain and residue levels. The data features used by each

level are quite distinct. While protein level features are mostly from functional genomic

and proteomic data such as gene expression and sub-cellular localization of whole genes and

proteins, domain level features are mainly evolutionary information such as phylogenetic-
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occurrence statistics of the domain families, and residue level features are largely structural

or physical-chemical information derived from the primary sequences.

In the literature of domain-level prediction, the term “domain” is usually used to mean

a domain family, which could have multiple occurrences in different proteins. In this study

we use the terms “domain family” and “domain instance” to refer to these two concepts

respectively, in order to make a clear distinction between them. For example, PF07974 is

a domain family from Pfam, where ADP1 YEAST.PF07974 is a domain instance in the

protein ADP1 YEAST.

Since the data features of the three levels describe very different aspects of the biological

objects, potentially they could contribute to the prediction of different portions of the

interaction networks. For example, some protein interactions could be difficult to detect

using whole-protein level features since they lack fine-grained physical-chemical information.

These can be supplemented by the residue level features such as charge complementarity.

Likewise, for the protein interactions that occur within protein complexes, there could

be a high correlation between the expressions of the corresponding genes. With proper gene

expression datasets included in the protein features, there is a good chance of correctly

predicting such protein interactions. Then if one such interaction involves a pair of proteins

each with only one conserved domain, it is very likely that the domain instances actually

interact.

One may worry that if the predictions at a particular level are inaccurate, the errors

would be propagated to the other levels and worsen their predictions. As we will discuss, this

issue can be handled algorithmically by carefully deciding what information to propagate

and how it is propagated. With a properly designed algorithm, combining the predictions
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and utilizing the data features of all three levels can improve the predictions at each level.

In this work we propose a new multi-level machine-learning framework that combines

the predictions at different levels. Since the framework is also potentially useful for other

problems in computational biology that involve a hierarchy, such as biomedical text mining

(a journal contains papers and a paper contains key terms), we start with a high-level

description of multi-level learning and discuss three key aspects of it. Then we suggest a

practical algorithm for the problem of predicting interactions at the protein, domain and

residue levels, which integrates the information of all three levels to improve the overall

accuracy. We demonstrate the power of this algorithm by showing the improvements it

brings to the prediction of yeast interactions relative to the predictions from independent

levels.

4.2 Related work

Two main ingredients of protein-protein interaction predictions are the selection of a

suitable set of data features, and an appropriate way to integrate them into a learning

method. Many kinds of features have been considered [199], including sub-cellular localiza-

tion [92], gene expression [55, 176], and phylogenetic profiles [146]. With the many different

kinds of data features, Bayesian approaches [98] and kernel methods [17, 21, 199] are natural

choices for integrating them into a single learning algorithm. The former unifies the whole

inference process by a probabilistic framework, while the latter encodes different kinds of

data into kernel matrices that can be combined by various means [111].

Predictions of interactions between domain families are related to the more general goal

of identifying protein interaction interfaces. While some studies tackle the problem using
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features at the domain level only [100], most other work assumes that a set of protein-protein

interactions are known a priori, and the goal is to predict either domain family interactions

(i.e., which domain families have their instances interact in at least one pair of proteins) or

domain-instance interactions (i.e., through which domain instances do proteins interact in

known interactions) [3, 18, 23, 37, 48, 58, 78, 79, 82, 83, 96, 100, 113, 120, 127, 137, 138,

156, 161, 178, 190, 191]. The data features are mainly derived from statistics related to the

parent proteins. For example, for a pair of domain families, the frequency of co-occurrence

in interacting proteins is an informative feature, since a higher frequency may indicate a

larger chance for them to be involved in mediating the interactions.

At a finer level, identifying protein interaction interfaces involves the prediction of

residue interactions, which could be divided into two sub-tasks: 1) predicting which residues

are in any interaction interfaces of a protein [41], and 2) predicting which of these interfaces

interact [42]. Data features are mainly derived from the primary protein sequences or from

crystal structures if they are assumed available. Docking algorithms [163] represent related

approaches, but have a fundamentally different focus: Their goal is to utilize largely physical

information to deduce the structure of the complex from the unbound protein structures, a

considerably harder problem. Therefore, we do not consider them in this article and focus

on large-scale techniques.

From a theoretical perspective, our multi-level learning framework is loosely related

to co-training [22] and the meta-learning technique called stacking [195]. We will compare

them with our framework after introducing the information flow architectures and the cou-

pling mechanisms in Sections 4.4.1 and 4.4.2 respectively. Also, our framework by nature

facilitates semi-supervised learning [34]. We will briefly discuss semi-supervised learning

and its relationships with PSI-BLAST [7] in Section 4.4.2.
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4.3 Problem definition

We now formally describe the learning problem we tackle in this study. The inputs of

the problem consist of the following:

• Objects: a set of proteins, each containing the instances of one or more conserved

domains, each of which contains some residues. Each protein, domain instance and

residue is described by a vector of feature values. Some additional features are avail-

able for pairs of objects, such as the likelihood for a pair of proteins to interact

according to a high-throughput experiment.

• Gold standard1 positive sets of known protein-protein, domain instance-domain in-

stance and residue-residue interactions. The positive sets could be 1) contaminated

with false positives, and 2) incomplete, with false negatives, and a pair of upper-level

objects in the positive set may not have any corresponding lower-level object pairs

known to be in the positive sets.

• Gold standard negative sets of non-interactions at the three levels.

We assume no crystal structures are available except for the proteins in the gold-

standard positive sets, so that the input features cannot be derived from known structures.

This is a reasonable assumption given the small number of known structures as compared

to the availability of other data features.

The objective is to use the gold standard sets and the data features to predict whether

the object pairs outside the gold standard sets interact or not. Prediction accuracies are
1As in other studies on protein interaction networks, we use the term “gold standard set” to mean a set

of sufficiently reliable data useful for the prediction purpose, instead of a ground-truth set that is absolutely
correct.
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estimated by cross-validation using holdout testing examples in the gold standard sets not

involved in the training process.

In this study we focus on kernel methods [164] for learning from examples and making

predictions. The main goal of this study is to explain how the predictions at the different

levels can be integrated, and to demonstrate the resulting improvements in accuracy. We do

not attempt to boost the accuracy at each individual level to the limit. It may be possible

to improve our predictions by using other features, learning algorithms, and parameter

values. As we will see, the design of our algorithm provides the flexibility for plugging in

other state-of-the-art learning methods at each level. We expect that the more accurate the

individual algorithms are, the more benefits they will bring to the overall accuracy through

the multi-level framework.

4.4 Methods

In order to develop a method for predicting interactions at all three levels in a cohe-

sive manner, we need to define the relationships between the levels, which is the topic of

Section 4.4.1. We first describe two information flow architectures already considered in

previous studies, and then propose a new architecture that maximally utilizes the available

data. In Section 4.4.2 we discuss various possible approaches to coupling the levels, i.e.,

ways to pass information between levels. In Section 4.4.3 we discuss the data sparsity issue.

In particular, we describe the idea of local modeling, which is also useful for network pre-

dictions in general. Finally, in Section 4.4.4 we outline the actual concrete algorithm that

we have developed and used in our experiments.
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4.4.1 Information flow architectures

Architecture 1: independent levels

A traditional machine-learning algorithm learns patterns from one single set of training

examples and predicts the class labels of one single set of testing instances. When there are

three sets of examples and instances instead, the most straightforward way to learn from all

three levels is to handle them separately and make independent predictions (Figure 4.1bi).

We use this architecture to set up the baseline for evaluating the performance of the other

two architectures.

Architecture 2: unidirectional flow

A second architecture is to allow downward (from protein to domain to residue) or

upward (from residue to domain to protein) flow of information, but not both (Figure 4.1bii).

This architecture is similar to some previous domain-level interaction methods described

above, which also use information from the protein level. However, in our case protein

interactions are not assumed to be known with certainty. So only the training set and the

predictions made from the training set at the protein level can be used to assist the domain

and residue levels.

Architecture 3: bidirectional flow

A third architecture is to allow the learning algorithm of each level to access the

information of any other levels, upper or lower (Figure 4.1biii). By allowing both upward

and downward flow of information, this new architecture is the most flexible among the

three, and is the architecture that we explore in this study. Theoretically, this architecture

is loosely related to co-training [22], which assumes the presence of two independent sets of
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features, each of which is capable of predicting the class labels of a subset of data instances.

Here we have three sets of features, each of which is capable of predicting a portion of

the whole interaction network. Practical extensions to the ideal co-training model allow

partially dependent feature sets and noisy training examples, which fit our current problem.

Learning proceeds by iteratively building a classifier from one feature set, and adding the

highly confident predictions as if they were gold-standard examples to train another classifier

using the other feature set. The major difference between our bidirectional-flow architecture

and co-training is the presence of a hierarchy between the levels in our case, so that each

set of features makes predictions at a different granularity.

4.4.2 Different approaches to coupling the levels

To design a concrete learning algorithm, we need to specify what information is to be

passed between different levels and how it is passed. Here we suggest several possibilities,

and briefly discuss the pros and cons of each of them.

What information to pass

i. Training data

One simple idea is to pass training data to other levels (Figure 4.1c, arrow 1). This

can be useful in filling in the missing information at other levels. For example, many

known protein interactions do not have the corresponding 3D structures available, so there

is no information regarding which domain instances are involved in the interactions. The

known protein interactions can be used to compute statistics for helping the prediction of

domain-level interactions.

ii. Training data and predictions
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The major limitation of passing only training data is that the usually much larger set of

data instances not in the training sets (the “unlabeled data”) would not benefit from multi-

level learning. In contrast, if the predictions made at a level are also passed to the other

levels, much more data instances could benefit (Figure 4.1c, arrow 2 and 3). For instance,

if two domain instances are not originally known to interact, but they are predicted to

interact by the domain-level features with high confidence, this information directly implies

the interaction of their parent proteins.

Algorithms adopting this idea are semi-supervised in nature [34], since they train on

not only gold-standard examples, but also predictions of data instances that are originally

unlabeled in the input data set. Note that the idea of semi-supervised learning has been

explored in the bioinformatics literature. For instance, in the PSI-BLAST method [7],

sequences that are highly similar to the query input are iteratively added as seeds to retrieve

other relevant sequences. These added sequences can be viewed as unlabeled data, as they

are not specified in the original query input.

How the information is passed

i. Combined optimization

To pass information between levels, a first approach is to combine the learning prob-

lems of the different levels into a single optimization problem. The objective function

could involve the training accuracies and smoothness requirements of all three levels. This

approach enjoys the benefits of being mathematically rigorous, and being backed by the

well-established theories of optimization. Yet the different kinds of data features at the

different levels, as well as noisy and incomplete training sets, make it difficult to define a

good objective function. Another drawback is the tight coupling of the three levels, so that
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it is not easy to reuse existing state-of-the-art prediction algorithms for each level.

ii. Predictions as additional features

Another approach is to have a separate learning algorithm at each level, and use the

predictions of a level as an additional feature of another level (Figure 4.1c, arrow 2). For

example, if each pair of proteins is given a predicted probability of interaction, it can be used

as the value of an additional feature ’parent proteins interacting’ of the domain instance

pairs and residue pairs. In this approach the different levels are loosely coupled, so that

any suitable learners can be plugged into the three levels independently, and the coupling

of the levels is controlled by a meta-algorithm.

A potential problem is the weighting of the additional features from other levels relative

to the original ones. If the original set of features is large, adding one or two extra features

without proper weighing would have negligible effects on the prediction process. Finding

a suitable weight may require a costly external optimization or cross-validation procedure.

For kernel methods, an additional challenge is integrating the predictions from other levels

into the kernel matrix, which could be difficult as its positive semi-definiteness has to be

conserved.

The idea of having a meta-algorithm that utilizes the predictions of various learners is

also used in stacked generalization, or stacking [195]. It treats the predictions of multiple

learners as a new set of features, and uses a meta-learner to learn from these predictions.

However, in our setting, the additional features come from other levels instead of the same

level.

iii. Predictions as augmented training examples

A similar approach is to add the predictions of a level to the training set of another
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level (Figure 4.1c, arrow 3). The resulting training set involves the original input training

instances and augmented training data from other levels, with a coefficient reflecting how

much these augmented training data are to be trusted according to the training accuracy

of the supplying level. This approach also has the three levels loosely coupled.

A potential problem of this training set expansion approach is the propagation of errors

to other levels. The key to addressing this issue is to perform soft coupling, i.e., to associate

confidence values to predictions, and propagate only highly confident predictions to other

levels [203]. For kernel methods, this means ignoring objects falling in or close to the margin.

This approach is similar to PSI-BLAST mentioned above, which selectively includes only

the most similar sequences in the retrieval process.

In this study, we focus on this third approach. It requires a learning method for each

level, while the control of information flow between the different levels by means of training

set expansion forms the meta-algorithm. Since each level involves only one set of features

and one set of data instances, traditional machine learning methods can be used. We

chose support vector regression (SVR) [52], which is a type of kernel method. We used

regression instead of the more popular support vector machine classifiers [26] because the

former can accept confidence values of augmented training examples as inputs, and produce

real numbers as output, which can be converted back into probabilities that reflect the

confidence of interactions.

4.4.3 Global vs. local modeling, and data sparsity issues

Global modeling

Taking a closer look at the prediction problem at each individual level, one would realize
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that applying a traditional learning method is actually non-trivial since we are dealing with

network data. In a traditional setting, each training instance has a class label and the

job of a learning algorithm is to identify patterns in the feature values for predicting the

class label of each unlabeled object. In our current situation, each data instance is a pair

of biological objects (proteins/domain instances/residues), with two possible class labels:

interacting and non-interacting. In order to construct a learner, one would need features for

pairs of objects. A model can then be learned using a traditional machine learning method

for all object pairs. We call this ‘global modeling’ since a single regression model is built

for all the data instances. Global modeling has a number of major drawbacks:

1. Features for object pairs: it is not easy to construct features for pairs of objects, since

most available data features are for single objects. This is particularly a problem for

kernel methods, which require a kernel matrix to encapsulate the similarity between

each pair of data instances. For network data, this means a similarity value for each

pair of object pairs. While methods have been proposed to construct such kernel

matrices [17], the resulting kernels, while formally correct, are difficult to interpret.

2. Time complexity: working with pairs of objects squares the time requirement with

respect to the number of objects in the dataset. While state-of-the-art implementa-

tions of kernel methods could easily handle thousands of proteins, it would still be

challenging to deal with millions of protein pairs, let alone the even more daunting

numbers of domain instance pairs and residue pairs.

3. Space complexity: the kernel matrix has a size quadratic in the number of data

instances. With n objects at a level, there are O(n2) pairs and thus the kernel matrix

contains O(n4) entries.
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4. Sub-clusters: the two classes of data instances may contain many sub-clusters that

cannot be handled by one single global model [21, 203]. For instance, proteins involved

in permanent complexes may use a very different interaction mechanism from transient

interactions in signaling pathways.

Local modeling

To avoid these problems, one alternative is local modeling [21], which we have described

in the previous chapter. Briefly, instead of building one single global model for all object

pairs, one local model is built for each object. For example, if the dataset contains n

proteins, then n models are built, one for each protein, for predicting whether this protein

interacts with each of the n proteins. The advantages of local modeling are obvious: 1) data

features are needed for individual objects only, 2) the time complexity is smaller than global

modeling whenever the learning method has a super-linear time complexity, 3) much less

memory space is needed for the kernel matrix, and 4) each object can have its very specific

local model. For all these benefits, in our experiments we only considered local modeling.

Local modeling is also not free from problems, but they are solvable. The most signif-

icant problem is data sparsity – some objects may have insufficient training examples (or

none at all) for building local models. For example, among the millions of yeast protein

pairs, there are only a few thousand known interactions, so many proteins have very few

known interactions. An object with zero or few known interaction partners would not have

enough training examples for building its local model.

Our proposed solution uses concepts related to semi-supervised learning: use high

confidence predictions to augment training sets [203]. Suppose protein A has sufficient

known positive and negative examples in the original training sets, and the local model
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learned from these examples predicts with high confidence protein B to be an interaction

partner with A. Then when building the local model for B, A can be used as a positive

training example. Predicted non-interactions can be added as negative examples in a similar

way.

This idea is consistent with the training set expansion method proposed above for

inter-level communication. As a result, the information flow both between levels and within

a level can be handled in a unified framework. The expanded training set of a level thus

involves the input training data, highly confident predictions of the local models of the level,

and highly confident predictions from other levels.

Practically, training set expansion within the same level requires an ordered construc-

tion of the local models. Objects with many (input or derived) training examples should

have their local models constructed first, as more accurate models are likely to be obtained

from larger training sets. As these objects are added as training examples of their pre-

dicted interaction partners and non-partners, they would progressively accumulate training

examples for their own local models.

4.4.4 The concrete algorithm

We now explain how we used the ideas described in the previous sections, namely bidi-

rectional information flow, coupling by predictions passing, and local modeling with training

set expansion, to develop our concrete learning algorithm for prediction of protein, domain

instance and residue interactions. We first give a high-level overview of the algorithm, then

explain the components in more detail.

The main steps of the algorithm are:
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1. Set up a learning sequence of the levels.

2. Use the model learned for the first level in the sequence to predict interactions at the

level.

3. Propagate the most confident predictions to the next level in the sequence as auxiliary

training examples.

4. Repeat the previous two steps for the second and third levels, and so on.

Learning at each level

We use training set expansion with support vector regression (SVR) to perform learning

at each level, similar to the idea in [203]. Each pair of objects in the positive and negative

training sets is given a class label of 1 and 0, respectively. A SVR model is learned for

the object (e.g. protein) with the largest number of training examples (denoted as A). The

model predicts a real value for each object, indicating the likelihood that it interacts with

A. The ones with the largest and smallest predicted values are treated as the most confident

positive and negative predictions, and are used to expand the training set. For example,

if B is an object with the largest predicted value, then A and B are predicted to interact,

and A is added as an auxiliary positive training example of B. After training set expansion,

the next object with the largest number of training examples is re-determined, its SVR is

learned, and the most confident predictions are used to expand the training set in the same

manner. The whole process then repeats until all models have been learned. Finally, each

pair of objects A and B received two predicted values, one from the model learned for A and

one from the model learned for B. The two values are weighted according to the training

accuracies of A and B to produce the predicted value for the pair. Sorting the predicted

values in descending order gives a list of predictions from the pair most likely to interact to
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the one least likely. The list can then be used to evaluate the accuracy by metrics such as

the area under the receiver operator characteristic curve (AUC) [88].

Setting up the learning sequence

One way to set up the learning sequence is to use the above procedure to deduce the

training accuracy of the three levels when treated independently, then order the three levels

into a learning sequence according to their accuracies. For example, if the protein level

gives the highest accuracy, followed by the domain level, and then the residue level, the

sequence would be “PDRPDR...”, where P, D and R stand for the protein, domain and

residue levels, respectively. Having the level with the highest training accuracy earlier in

the sequence ensures the reliability of the initial predictions of the whole multi-level learning

process, which is important since all latter levels depend on them. Notice that after learning

at the last level, we feed back the predictions to the first level to start a new iteration of

learning.

In our computational experiments we also tested the accuracy when only two levels are

involved. In such situations, we simply bypassed the left-out level. For example, to test

how much the domain and residue levels could help each other without the protein level,

the learning sequence would be “DRDR...”.

Propagating predictions between levels

The mechanism of propagating predictions from a level to another depends on the

direction of information flow.

For an upward propagation (R→D, R→P or D→P), each object pair in the next level

receives a number of predicted values from its children at the previous level. For example, if

predictions are propagated from the domain level to the protein level, each pair of domain
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instances provides a predicted value to their pair of parent proteins. We tried two methods

to integrate these values. In the first method, we normalize the predicted values to the [0,

1] range as a proxy of the probability of interaction, then use the noisy-OR function [190] to

infer the chance that the parent objects interact. Let X and Y be the two sets of lower-level

objects, and p(x, y) denotes the probability of interaction between two objects x ∈ X and

y ∈ Y , then the chance that the two parent objects interact is 1 −
∏

x∈X,y∈Y (1 − p(x, y)),

i.e., the parent objects interact if and only if at least one pair of its children objects interact.

In the second method, we simply take the maximum of the values. In the ideal case where

all predicted values are either 0 or 1, both methods are exactly the same as taking the OR

of the values. When the values are noisy, the former is more robust as it does not depend

on a single value. Yet its value is dominantly affected by a large number of fuzzy predicted

values with intermediate confidence, and is thus less sensitive. Since in our tests it does not

provide superior performance, in the following we report results for the second method.

For a downward propagation (P→D, P→R or D→R), we inherit the predicted value of

the parent pair as the prior belief that the object pairs from the two parents will interact.

In both cases, after computing the probability of interaction for each pair of objects

in the next level based on the predicted values at the current level, we again add the most

confident positive and negative predictions as auxiliary training examples for the next level,

with the probabilities used as the confidence values of these examples.

In the actual implementation, we used the Java package libsvm [33] for SVR, and the

Java version of lapack2 for some matrix manipulations.
2http://www.netlib.org/lapack/

http://www.netlib.org/lapack/
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Table 4.1. Data features at the protein level.
Feature Feature of Data type Kernel
COG (version 7) phylogenetic profiles [181] Proteins Binary vectors RBF (σ = 8)
Sub-cellular localization [92] Proteins Binary vectors Linear
Cell cycle gene expression [176] Proteins Real vectors RBF (σ = 8)
Environment response gene expression [68] Proteins Real vectors RBF (σ = 8)
Yeast two-hybrid [97, 185] Protein pairs Unweighted graph Diffusion (β = 0.01)
TAP-MS [69, 108] Protein pairs Weighted graph Diffusion (β = 0.01)

4.5 Experiments

We tested the effectiveness of multi-level learning by predicting protein, domain in-

stance and residue interactions of the yeast Saccharomyces cerevisiae.

4.5.1 Data

Protein level

Data features were gathered from multiple sources (Table 4.1), including phylogenetic

profiles, sub-cellular localization, gene expression, and yeast two-hybrid and TAP-MS net-

works. Each of them was turned into a kernel matrix and the final kernel was the summation

of them, as in previous studies [21, 199, 203].

A gold standard positive set was constructed from the union of experimentally verified

or structurally determined protein interactions from MIPS [131], DIP [160] and iPfam [63]

with duplicates removed. The MIPS portion was based on the 18 May 2006 version, and

only physical interactions not obtained from high throughput experiments were included.

The DIP portion was based on the 7 Oct 2007 version, and only interactions from small-

scale experiments or multiple experiments were included. The iPfam portion was based on

version 21 of Pfam [64]. A total of 1681 proteins with all data features and at least one
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Table 4.2. Data features at the domain level. *: These two features were used with the
unidirectional and bidirectional flow architectures only since they involve information about
the training set of the protein level.

Feature Feature of Data type Kernel
Phylogenetic tree correlations [76] of Pfam
alignments

Domain family pairs Real matrix Empirical kernel map [183]

In all species, number of proteins containing
an instance of the domain family

Domain families Integers Polynomial (d=3)

In all species, number of proteins containing
domain instances only from the family

Domain families Integers Polynomial (d=3)

Number of domain instances of parent protein Domain instances Integers Polynomial (d=3)
Fraction of non-yeast interacting protein pairs
containing instances of the two domains re-
spectively are mediated by the domain in-
stances*

Domain family pairs Real matrix Constant shift embedding [157]

Fraction of protein pairs containing instances
of the two domains respectively are known to
be interacting in the PPI training set*

Domain family pairs Real matrix Constant shift embedding

interaction were included in the final dataset, forming 3201 interactions. A gold standard

negative set with the same number of protein pairs was then created from random pairs of

proteins not known to interact in the positive set [17, 37].

Domain level

We included two types of features at the domain level: co-evolution and statistics

related to parent proteins (Table 4.2). These are similar to the features used by previous

studies for domain family/domain instance interaction predictions [100, 178].

The gold standard positive set was taken from iPfam, where two domain instances are

defined as interacting if they are close enough in 3D structure and some of their residues are

predicted to form bonding according to their distances and chemistry. After intersecting

with the proteins considered at the protein level, a total of 422 domain instance interactions

were included, which involves 272 protein interactions and 317 domain instances from 223

proteins and 252 domain families. A negative set with the same number of domain instance
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Table 4.3. Data features at the residue level.
Feature Feature of Data type Kernel
PSI-BLAST profiles Residues and neighbors Vectors of real vectors Summation of linear
Predicted secondary structures Residues and neighbors Vectors of real vectors Summation of linear
Predicted solvent accessible surface areas Residues and neighbors Vectors of real numbers Summation of circular

pairs was then formed from random pairs of domain instances in the positive set. All known

yeast Pfam domain instances of the proteins were involved in the learning, many of which do

not have any known interactions in the gold standard positive set. Altogether 2389 domain

instances from 1681 proteins and 1184 domain families were included.

Residue level

We used three data features derived from sequences (Table 4.3). Charge complemen-

tarity and other features likely useful for interaction predictions are implicit in the sequence

profiles. The features are similar to those used in a previous study [42]. However, as we

do not assume the availability of crystal structures of unlabeled objects, the secondary

structures and solvent accessible surface areas we used were algorithmically predicted from

sequence instead of derived from structures. We used SABLE [1] to make such predictions.

In a previous study [42], the feature set of a residue involves not only the features of

the residue itself, but also neighboring residues closest to it in the crystal structure, which

allows for the possibility that some of them are involved in the same binding site and thus

have dependent interactions. In the absence of crystal structures, we instead included a

window of residues right before and after a residue in the primary sequence to construct its

feature set. We chose a small window size of 5 to make sure that the included residues are

physically close in the unknown 3D structures.

The gold standard positive set was taken from iPfam. Since there is a large number

of residue pairs, we only sampled 2000 interactions, which involve 228 protein pairs, 327
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domain instance pairs and 3053 residues from 195 proteins, 279 domain instances and 224

domain families. Only these 3053 residues were included in the data set. A negative set

was created by randomly sampling from these residues 2000 residue pairs that do not have

known interactions in iPfam.

4.5.2 Evaluation procedure

We used ten-fold cross validation to evaluate the performance of our algorithm. Since

the objects in the three levels are correlated, an obvious performance gain would be obtained

if in a certain fold the training set of a level contains some direct information about the

testing set instances of another level. For example, if a residue interaction in the positive

training set comes from a protein pair in the testing set, then the corresponding protein

interaction can be directly inferred and thus the residue interaction would create a fake im-

provement for the predictions at the protein level. This problem was avoided by partitioning

the object pairs in the three levels consistently. First, the known protein interactions in

iPfam were divided into ten folds. Then, each domain instance interaction and each residue

interaction was put into the fold in which the parent protein interaction was assigned. Fi-

nally, the remaining protein interactions and all the negative sets were randomly divided

into ten folds.

Each time, one of the folds was held out as the testing set and the other nine folds were

used for training. We used the area under the ROC (Receiver Operator Characteristics)

curve (AUC) [88] to evaluate the prediction accuracies. For each level, all object pairs in the

gold standard positive and negative sets were sorted in descending order of the predicted

values of interaction they received when taking the role of testing instances. The possible

values of AUC range from 0 to 1, where 1 corresponds to the ideal situation where all
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positive examples are given a higher predicted value than all negative examples, and 0.5 is

the expected value of a random ordering.

We compared the prediction accuracies in three cases: independent levels, unidirec-

tional flow of training information only, and bidirectional flow of both training information

and predictions. For the latter two cases, we compared the performance when different

combinations of the three levels were involved in training.

For independent levels, we trained each level independently using its own training set,

and then used the predictions as initial estimates to retrain for ten feedback iterations. This

iterative procedure was to make sure that any accuracy improvements observed in the other

architectures were at least in part due to the communications between the different levels,

instead of merely the effect of semi-supervised learning at a single level. For unidirectional

flow, we focused on downward flow of information. The levels were always arranged with

upper levels coming before lower levels.

4.5.3 Results

Table 4.4 summarizes the prediction accuracies of the three levels. All numbers corre-

spond to the average results among the ten feedback iterations. Each row represents the

results of one level. For unidirectional flow and bidirectional flow, the levels involved in

training are also listed. For example, the PR column of unidirectional flow involves the use

of the protein-level training sets in setting up the initial estimate of the residue interactions.

This has no effect on the predictions at the protein level since information only flows down-

ward. The cell at the row for protein interactions is therefore left blank. The best result in

each row is in bold face.
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Table 4.4. Prediction accuracies (AUC) of the three levels with different information flow
architectures and training levels.

Independent levels Unidirectional flow Bidirectional flow
Level PD PR DR PD PR DR PDR
Proteins 0.7153 0.7205 0.7227 0.7257
Domains 0.5214 0.5854 0.7015 0.6796 0.6986
Residues 0.5675 0.5296 0.5128 0.6581 0.6182 0.7361

We first notice that the results for independent levels are consistent with our expecta-

tions. Having many diverse data features, the protein level has a satisfactory accuracy. On

the other hand, the accuracies of the domain and residue levels were relatively low due to

their weak and noisy features. Note that we are predicting whether two arbitrary domain

instances or two arbitrary residues interact, rather than only those in known interacting

protein pairs. This setting is more realistic for organisms with no known protein interaction

network, and the problem is significantly harder than when the protein interaction network

is available.

Downward flow of training information did help the prediction of domain instance in-

teractions. However, the results of the residue level are quite unsatisfactory, with accuracies

even lower than those with independent levels no matter assisted by the training examples

of the protein level or domain level.

In contrast, the results for bidirectional flow are encouraging. In all cases, the accuracies

are higher than the other two architectures. For example, while using the domain level

to help the residue level decreased the accuracy of the latter from 0.5675 to 0.5128 with

unidirectional flow, the accuracy was increased to 0.6182 with bidirectional flow. As an

illustration of the difference in performance of the three architectures, the various ROC

curves of residue interaction predictions are shown in Figure 4.2.
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Figure 4.2. Receiver operator characteristic (ROC) curves of residue interaction predictions
with different frameworks and training levels.

The improvements for both the domain and residue levels are quite dramatic, with

maximum AUC gains of more than 0.15. This clearly shows the benefits of passing not only

training information, but also highly confident predictions. Consider a domain instance pair

in the testing set of a certain fold. Since the corresponding parent protein pair must not be

in the training set at the protein level of the fold, the passing of training information does

not directly help predict the interaction status of the domain instance pair. On the other

hand, if the interaction status of the protein pair is predicted correctly with high confidence,

passing this information to the domain level can make a direct influence on the prediction

of the domain instance interaction. For instance, if the protein pair is correctly predicted

as not interacting, the domain instance pair would probably be correctly predicted as not

interacting, too.

In general, it is observed that levels with a higher raw accuracy with independent

levels could offer a bigger improvement to the other levels. For example, the protein level
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increased the accuracy of the residue interaction predictions from 0.5675 to 0.6581, while

the domain level could only increased it to 0.6182.

However, it is also crucial to note that although the domain level has a low accu-

racy with independent levels, it could still make good improvements to the prediction of

residue interactions. This observation supports our design of passing only highly confident

predictions in avoiding the propagation of errors.

The combination of all three levels has the potential to further improve accuracy. For

both the protein and residue levels, the best results were obtained when all three levels were

involved in training. In particular, while each of the protein and domain levels improved the

residue level by a certain amount, the combination of them provided yet another significant

amount of improvement.

4.6 Discussion

The experimental results have demonstrated the great potential of linking up the pre-

diction problems at the different levels. This initial success encourages deeper investigations

of the idea along various directions.

Algorithmically, other approaches to combining the different levels, including combined

optimization and predictions as extra features, need to be studied. Currently the features

at the domain and residue levels are weak, as reflected by their low accuracy when learned

independently, and the small improvement they could cause to the protein level. It is

interesting to study ways to improve the predictions at these two levels, and more directly

extract the complementary information hidden in these levels that are useful for the protein
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level.

To predict the whole interaction network, we need to reduce the time and space re-

quirements. One possible way is to intelligently select what data to exclude, such as residues

that are predicted to be buried deep inside the core of a protein. Another idea is to group

objects into interaction groups so that each cluster can be handled independently.

More insights could be gained by studying some theoretical aspects of multi-level learn-

ing, such as the hierarchical structure of the prediction problems, and the issue of noisy

and incomplete training sets. With multiple levels, performance evaluation is very tricky.

As we discussed, careless definitions of training and testing sets could produce biases to the

resulting performance. It is instrumental to study the optimal way of evaluation.

Biologically, there are many interesting follow-up questions to be studied. The intricate

interactions between the different levels are not yet clear, and could form a larger study

of how the predictions change after receiving information from the other levels. One could

compare different kinds of data features at the three levels and identify the ones with the

greatest complementary effects. Another direction is to choose different kinds of residue

samples (e.g., only charged residues) and inspect the relative improvements they provide

to the protein and domain levels, to determine the residues that are more significant in a

protein interaction.



Chapter 5

Handling Errors in Data:

Consistent Prediction of

Interactions at Different Levels

5.1 Introduction

In the previous chapter we study the interactions between proteins by analyzing the

corresponding interactions at the domain and residue levels. In this chapter we concentrate

on the protein and domain levels, and study a topic that is both interesting within the

context of multi-level learning and in machine learning in general: handling errors in training

sets. In particular, we study how errors at the protein level would affect the inference at

the domain level, and how we can handle such errors to improve prediction accuracy.

It has been shown that the binding interfaces in obligatory interactions are more con-

71
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served than the rest of the protein surface [31]. Various groups have thus attempted to ex-

plain protein interactions by the corresponding interactions of their conserved regions [171],

with the conserved regions defined in domain or motif databases [64, 93, 95, 119, 150, 152,

194], or directly discovered from the proteins [11, 41, 42]. For simplicity, in the following

we will use the term “domain” to mean all different types of conserved subsequences.

Different methods have been used to infer the domain-domain interactions (DDI) be-

tween interacting proteins. The association methods [3, 58, 127, 137, 178] look for domains

that could distinguish interacting proteins from non-interacting ones, for example by com-

puting the fraction of protein pairs that interact among all protein pairs that a domain pair

occurs. The idea is extended by the lowest p-value method [138], which performs statistical

tests with a null hypothesis that a domain pair does not affect a protein interaction. A sep-

arate study using statistical tests demonstrates the importance of negative sets [83]. Max-

imum likelihood methods search for a set of interacting domains (or domain occurrences)

that could maximize the likelihood of the observed protein interactions [48, 78, 79, 161, 190].

Variations of the maximum likelihood methods involve the integration of information from

multiple species [113, 120], and the use of likelihood difference before and after disallow-

ing a pair of domains to interact as an assessment of its chance of mediating a protein

interaction [156, 191]. In some studies, co-evolution signals are used to predict [100] and

analyze [201] domain interactions. There are also methods that use maximum parsimony

through probabilistic linear programming [82], message passing formalism [96] and stan-

dard machine learning methods such as SVM [23] and random decision forest [37] to predict

domain interactions. Methods have also been proposed to elucidate domain interactions

within complexes instead of simple binary interactions [18].

Most of these methods require as input a protein-protein interaction (PPI) network,
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either from high-throughput assays such as Y2H or TAP-MS, or from large-scale databases

of protein interactions [4, 10, 29, 103, 131, 148, 160, 211]. The accuracy of the inferred

domain interactions depends on the quality of the input PPI network. False positives and

false negatives in the network could lead to biased or wrong inference of domain interactions.

In the extreme case, such errors could result in a mathematical system with no solutions [82,

96]. For example, if a pair of domains simultaneously occurs in a pair of interacting proteins

with no other domains, and in a pair of non-interacting proteins, then the two protein pairs

would draw contradictory conclusions regarding whether the domains interact.

In the previous studies, errors at the protein level have been dealt with passively

during the inference of domain interactions. The probabilistic model in Wang et al. [190]

allows a domain occurrence to be inactive, and a protein interaction to be explained by

a “spurious binding” variable unrelated to domain interactions, to handle false negatives

and false positives in the input protein network, respectively. Their later work also retain

the concept of spurious protein interactions [191]. The linear programming method in

Guimarães et al. [82] randomizes the linear constraints, so that in each problem instance

only a subset of the protein interactions need to be explained. The model in Iqbal et al. [96]

softens the Heaviside θ-functions, so that protein interactions not explained by any domain

interactions still have a non-zero likelihood equal to the value of a parameter ε.

None of the above work studies extensively the effect of errors at the input PPI network

to the inference of DDI. Also, none of the algorithms actively avoids errors at the protein

level. In this study we first show the performance degradation caused by false positives

and false negatives in the PPI network, and then propose methods for actively handling the

errors.
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5.2 How is DDI inference affected by noise in PPI network?

To study the effect of noise in the PPI network to the inference of DDI, we create noisy

networks by first obtaining a high-confidence network with a low expected noise level, then

introducing different amounts of controlled errors. For each resulting network, we apply a

number of DDI prediction methods and observe their performance change with respect to

the noise level.

PPI network: We take the BioGRID-10 dataset [203] as the high-confident gold-

standard PPI network, which consists of all yeast protein interactions in BioGRID [29]

reported by studies that report no more than 10 interactions. The threshold ensures a good

coverage of PPIs while keeping false positives at a low level. Keeping only proteins with at

least one Pfam-A [64] domain and all data features (see Section 5.3.2), the network contains

3,543 interactions between 1,677 proteins.

Controlled errors: We generate false negatives by randomly removing interactions

from the positive set. False positives are then generated by adding random pairs of proteins

residing in different cellular compartments [92], which are unlikely to interact [98].

Inferring DDI from PPI: We test several methods that infer DDI from a given PPI

network.

The basic expectation maximization (EM) method [48] defines the likelihood of the

observed PPI network based on the probabilities of interaction of the corresponding domain

pairs. An EM algorithm is used to search for the interaction status of domain pairs in order

to reach a local maximum of the likelihood function.

The InSite method [191] defines a probabilistic model for computing the probability
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of the observed PPI network based on the probabilities of interaction of the corresponding

domain pairs. The method caters for possible unexplained PPIs due to noise by adding

in a spurious binding variable so that models with unexplained PPIs still have non-zero

likelihood. Also, instead of using the estimated binding affinities as a direct indicator of

how likely two domains interact, the method tests the likelihood difference when the domains

are not allowed to interact. A large likelihood drop would indicate that the interaction of

the domains is crucial for the PPI.

The message passing method [96] uses belief propagation (BP) to identify potential

interacting domains. Again, some probabilities are assigned to the likelihood of each PPI

that cannot be explained by DDIs.

Performance evaluation: Ideally, the performance of DDI inference methods should

be evaluated by known DDIs. However, since there are relatively few known DDIs, we also

use the accuracy of inferred PPIs as an auxiliary measure.

The gold-standard DDIs are taken from the crystal structures in iPfam [63]. It contains

337 interactions between 252 domain families. For comparison purpose, we also construct

a set of non-interacting domain families, formed by the same number of random domain

family pairs not known to interact.

We use the area under the receiver operator characteristic (ROC) curve [88], AUC, as

the performance metric. Since the input PPI network contains no direct information about

domain interactions, we simply use the whole PPI network to predict DDIs, and compare

the predictions against the gold-standard.

The gold-standard PPIs are taken from the BioGRID-10 dataset, and a negative set

with the same number of protein pairs is generated from protein pairs in different cellular
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compartments. This negative set is generated independent of the false positive examples.

We use 10-fold cross-validation to evaluate the performance of the methods in inferring

back the PPI network. For the BioGRID-10 PPI network without controlled errors, we

hide one-tenth of the gold-standard positives and negatives as the holdout testing set.

The resulting partial PPI network is sent to a DDI prediction method. For InSite, PPI

probabilities are provided as the program output. For EM and BP, we use the noisy-OR

function [190] to back-infer the probability of interaction for each pair of proteins i and j

based on the domain pairs D(i, j) that occur between them:

Pr(i, j) = 1−
∏

(m,n)∈D(i,j)

(1− λmn), (5.1)

where λmn = Pr(m, n) is the probability for domains m and n to interact.

The function assumes independence between DDIs, so that the probability for proteins

i and j to interact is equal to one minus the probability that none of their domain pairs

interacts.

The PPI probabilities of the different folds are combined to compute the AUC value of

the predicted PPI network.

For the networks with controlled errors, the error-containing training sets are again cut

into ten folds. Each time nine folds are used for training and inferring PPI probabilities.

However, instead of evaluating the accuracy against the error-containing holdout set, the

AUC value is computed based on gold-standard positives and negatives not in the training

fold. In other words, in all experiments, the predictions are evaluated against the same
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gold-standard PPIs in the original BioGRID-10 dataset and the fixed set of gold-standard

negatives.

Results:

Figure 5.1 shows the accuracy of the three methods as the noise level increases.
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Figure 5.1. Accuracy of the three methods as the noise level increases. (a) Accuracy of PPI
prediction. (b) Accuracy of DDI prediction.

It is clearly seen that the prediction accuracies at both the protein and domain levels

drop as the noise level increases. The accuracies at noise level 0.4 are substantially lower

than when the datasets contain no controlled errors. As the false positive and negative rates

of high-throughput PPI networks can be as high as 25%-45% and 75%-90% respectively [90],

while small-scale experiments have covered only a small portion of the real interactions

(approximately 20% for the BioGrid-10 dataset), the prediction of PPI and DDI networks

could be seriously hampered by the noise in the input PPI network based on the results

above.

We notice that although InSite and BP have built-in mechanisms for handling false

positives and false negatives in the input PPI network, and EM also has a global estimate
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of the false positive and false negative rates in the input PPI network, their performance

is still substantially affected by noise. This observation motivates the development of new

methods for handling errors in the PPI network.

5.3 Handling errors in the PPI network

It is not easy to detect errors in the input PPI network using only the information of

domain occurrence at different proteins, as the numbers of domain pairs between protein

pairs are usually large enough to explain erroneous PPI networks without causing contra-

dictions. On the other hand, some protein features are very useful in identifying errors. For

instance, if the expression patterns of two genes are highly correlated, and they co-occur in

the same subset of genomes, they are likely to interact. It would thus be dubious to find the

pair in the negative training set. As such, it would be useful to incorporate protein-level

features in the process of DDI inference.

We propose a method to extend the EM algorithm to use protein level features. Before

explaining the method, we first describe the original EM algorithm in more detail.

5.3.1 The original EM algorithm

The original EM algorithm [48] takes as input a set T+ of observed interacting pro-

tein pairs and a set T− of observed non-interacting protein pairs. The two sets together

constitute the observed protein pairs T = T+
⋃

T−. Each observation is subject to noise:

an interacting pair can be in the negative set with a certain false negative rate, and a non-

interacting pair can be in the positive set with a certain false positive rate. Let Oij be a



CHAPTER 5. HANDLING ERRORS IN DATA: CONSISTENT PREDICTION OF
INTERACTIONS AT DIFFERENT LEVELS 79

Boolean variable denoting whether the protein pair (i, j) is in the positive set (Oij = 1) or

the negative set (Oij = 0), and Pij be the actual interaction status, then Oij and Pij are

related by the false positive rate fp and false negative rate fn as follows:

Pr(Oij = 1) = Pr(Pij = 1)(1− fn) + Pr(Pij = 0)fp (5.2)

Each pair of proteins (i, j) contains a corresponding set of domain pairs D(i, j). Let

Boolean variable Dmn denotes whether domains m and n interact, and λmn = Pr(Dmn = 1)

be the probability for the domains to interact. Then Pij and Dmn are related by the noisy

OR function stated in Equation 5.1.

The false positive rate fp is common to all protein pairs (i, j), and is estimated as

follows:

fp = Pr(Oij = 1|Pij = 0) (5.3)

=
Pr(Oij = 1, Pij = 0)

Pr(Pij = 0)

≤ Pr(Oij = 1)
Pr(Pij = 0)

=
|T+|

total no. of protein pairs - no. of real interaction pairs
,

where the total number of protein pairs is
(
1667

2

)
in our case and we approximate the number

of real interaction pairs as 15,000 based on a recent large-scale experimental study [207].

The false negative rate fn is again common to all protein pairs (i, j), and is estimated
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as follows:

fn = Pr(Oij = 0|Pij = 1) (5.4)

= 1− Pr(Pij = 1, Oij = 1)
Pr(Pij = 1)

≥ 1− Pr(Oij = 1)
Pr(Pij = 1)

= 1− |T+|
no. of real interaction pairs

The goal is to find the values of λmn in the parameter vector λ such that the likelihood

of the observed data is maximized:

L(λ) =
∏

(i,j)∈T

[Pr(Oij = 1|λ)]Oij [1− Pr(Oij = 1|λ)]1−Oij (5.5)

The values of λmn are estimated by the EM algorithm. The observed data consist

of the pairs in the positive and negative sets {Oij} = T . The hidden data consist of the

variables Dij
mn, which denote whether domains m and n interact between proteins i and j.

The actual protein interaction status Pij is also hidden, but it is fully determined by Dij
mn:

Pij = ∨(m,n)∈D(i,j)Dmn, and thus does not need to be separately handled. The observed

and hidden data together form the complete data.

The EM algorithm starts by having an initial estimate of the parameters λmn, by

counting the fraction of times domains m and n participate in interacting protein pairs:
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λ(0)
mn =

|P(m,n)
⋂

T+|
|P(m,n)|

, (5.6)

where P(m,n) denotes the set of protein pairs that contain m and n respectively.

In the E-step, the expectation of the hidden data is determined based on the previous

estimation of the parameter values:

E[Dij
mn|Oab,∀a, b, λ(t−1)] = Pr(Dij

mn = 1|Oab,∀a, b, λ(t−1)) (5.7)

= Pr(Dij
mn = 1|Oij , λ

(t−1))

=
Pr(Oij |Dij

mn = 1, λ(t−1))Pr(Dij
mn = 1|λ(t−1))

Pr(Oij |λ(t−1))

=
Pr(Oij |Dij

mn = 1)Pr(Dij
mn = 1|λ(t−1))

Pr(Oij |λ(t−1))

=
(1− fn)Oij fn1−Oijλ

(t−1)
mn

Pr(Oij |λ(t−1))
,

where the denominator can be computed from Equations 5.1 and 5.2.

The M-step finds the maximum likelihood estimator (MLE) of the parameters of the

expected log-likelihood of the complete data over all possible values of Dij
mn. Denote Dij =

{Dij
mn : (m,n) ∈ D(i, j)} as the set of domain pair variables for protein pair (i, j), D =

{Dij
mn} as the whole set of domain pair variables, and O = {Oij} as the whole set of protein

interaction variables, the expected log-likelihood is expressed as
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Ed[lnL] = Ed[lnPr(O,D|λ)] (5.8)

= Ed[lnPr(O|D,λ)Pr(D|λ)]

= Ed[ln
∏

(i,j)∈T

Pr(Oij |Dij)Pr(Dij |λ)]

= Ed[
∑

(i,j)∈T

lnPr(Oij |Dij)Pr(Dij |λ)]

=
∑

(i,j)∈T

Ed[lnPr(Oij |Dij) + lnPr(Dij |λ)],

where the expectation is taken over all possible values of D.

To find the MLE, we differentiate the expected log-likelihood with respect to each

parameter λmn. Since the first log term is independent of all λmn and for the second log

term, only Pr(Dij
mn) depends on it, we have

∂Ed[lnL]
∂λmn

=
∂

∑
(i,j)∈P(m,n) Ed[lnPr(Dij

mn|λ)]

∂λmn
(5.9)

=
∂

∑
(i,j)∈P(m,n)[prob lnPr(Dij

mn = 1|λmn) + (1− prob) ln Pr(Dij
mn = 0|λmn)]

∂λmn

=
∂

∑
(i,j)∈P(m,n)[prob lnλmn + (1− prob) ln(1− λmn)]

∂λmn

=
∑

(i,j)∈P(m,n)

(
prob
λmn

− 1− prob
1− λmn

),

where prob is the probability Pr(Dij
mn = 1|Oab,∀a, b, λ(t−1)) we obtained in the E-step.

Now, setting the equation to zero, we have
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∑
(i,j)∈P(m,n)(

prob
λmn

− 1−prob
1−λmn

) = 0 (5.10)

⇒
∑

(i,j)∈P(m,n)(prob− λmn) = 0

⇒ λmn =
P

(i,j)∈P(m,n) probP
(i,j)∈P(m,n) 1

⇒ λmn =
P

(i,j)∈P(m,n) prob

|P(m,n)| ,

which is the fraction of protein pairs containing the domain pair that interacts.

The two steps are repeated until convergence, and the final probability for a pair of

domains (m,n) to interact is read off from the final estimate of λmn.

5.3.2 Incorporating protein features

We modify the EM algorithm by incorporating protein features. Instead of treating

protein pairs in the training sets T+ and T− as ground truth, we use them only to estimate

the likelihood of protein features.

Let Fij be the vector of feature values for protein pair (i, j), we define the new likelihood

as follows:

L(λ) =
∏

(i,j)∈T

Pr(Fij |λ) (5.11)

=
∏

(i,j)∈T

[Pr(Fij , Oij = 1|λ) + Pr(Fij , Oij = 0|λ)]

=
∏

(i,j)∈T

[Pr(Fij |Oij = 1)Pr(Oij = 1|λ) + Pr(Fij |Oij = 0)Pr(Oij = 0|λ)]



CHAPTER 5. HANDLING ERRORS IN DATA: CONSISTENT PREDICTION OF
INTERACTIONS AT DIFFERENT LEVELS 84

In the E-step, we need to determine the expectation of the missing data Dmn
ij :

E[Dij
mn|Fab,∀a, b, λ(t−1)] (5.12)

= Pr(Dij
mn = 1|Fab,∀a, b, λ(t−1))

= Pr(Dij
mn = 1|Fij , λ

(t−1))

= Pr(Dij
mn = 1, Oij = 1|Fij , λ

(t−1)) + Pr(Dij
mn = 1, Oij = 0|Fij , λ

(t−1))

= Pr(Dij
mn = 1|Oij = 1, λ(t−1))Pr(Oij = 1|Fij , λ

(t−1)) +

Pr(Dij
mn = 1|Oij = 0, λ(t−1))Pr(Oij = 0|Fij , λ

(t−1))

=
Pr(Oij = 1|Dij

mn = 1)Pr(Dij
mn = 1|λ(t−1))Pr(Fij |Oij = 1)

Pr(Fij |λ(t−1))
+

Pr(Oij = 0|Dij
mn = 1)Pr(Dij

mn = 1|λ(t−1))Pr(Fij |Oij = 0)
Pr(Fij |λ(t−1))

=
λ

(t−1)
mn

Pr(Fij |λ(t−1))
[(1− fn)Pr(Fij |Oij = 1) + fnPr(Fij |Oij = 0)]

=
λ

(t−1)
mn [(1− fn)Pr(Fij |Oij = 1) + fnPr(Fij |Oij = 0)]

Pr(Oij = 1|λ(t−1))Pr(Fij |Oij = 1) + Pr(Oij = 0|λ(t−1))Pr(Fij |Oij = 0)
,

We use a simple model to estimate the likelihood Pr(Fij |Oij). We assume the features

are independent given the real observation, as in a Naive Bayes classifier. The likelihood is

estimated by the MLE of the Gaussian given the training data:

Pr(Fij |Oij = oij) =
∏
k

Pr(Fijk|Oij = oij) (5.13)

=
∏
k

1
σkoij

(2π)1/2
exp[−1

2
(
Fijk − µkoij

σkoij

)2]
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where k is the feature index, µkoij
and σkoij

are the sample mean and standard deviation

of the values of feature k of the training data of class oij :

µk1 =

∑
(a,b)∈T+ Fabk

|T+|
(5.14)

µk0 =

∑
(a,b)∈T− Fabk

|T−|
(5.15)

σk1 = [

∑
(a,b)∈T+(Fabk − µk1)2

|T+|
]1/2 (5.16)

σk0 = [

∑
(a,b)∈T−(Fabk − µk0)2

|T−|
]1/2 (5.17)

Estimating the likelihood by the MLE Gaussian results in a posterior classifier Pr(Oij=oij |Fij=1)
Pr(Oij=oij |Fij=0)

equivalent to one obtained by logistic regression [133].

In the M-step, we re-estimate the parameters λmn. The expected log-likelihood is

defined as follows:

Ed[lnL] = Ed[lnPr(F,O,D|λ)] (5.18)

= Ed[lnPr(F |O)Pr(O|D)Pr(D|λ)]

= Ed[ln
∏

(i,j)∈T

Pr(Fij |Oij)Pr(Oij |Dij)Pr(Dij |λ)]

= Ed[
∑

(i,j)∈T

lnPr(Fij |Oij)Pr(Oij |Dij)Pr(Dij |λ)]

=
∑

(i,j)∈T

Ed[lnPr(Fij |Oij) + lnPr(Oij |Dij) + lnPr(Dij |λ)]
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Again, only the term lnPr(Dij |λ) depends on λ, so the MLE for each λmn remains the

same as in Equation 5.10.

A variation of this method is to consider not only protein pairs in the training set T , but

all pairs of proteins. On the positive side, this approach utilizes also the features of protein

pairs outside the training set, which could potentially discover more domain interactions.

On the negative side, if the protein-level predictions are not too accurate, this approach

might introduce more noise to the DDI inference. We study the performance of the new

EM algorithm and this variation empirically in the next section.

5.3.3 Empirical study

We use the new EM algorithm and its variation to predict DDI and PPI as before,

and compare the results with those of the other methods. Protein features include phylo-

genetic profiles, gene expression data and high-throughput data we used in the training set

expansion study. Cell localization is not included as it is used to define the gold-standard

negative set. We take the protein kernels constructed in the training set expansion study,

and use their elements as the feature values of protein pairs.

We would also want to study if any potential performance gain of the new algorithms

can be trivially achieved by first running a protein-level classifier to predict PPI from the

training set, and then use the results to infer DDI. To this end, we also include an approach

that uses a Naive Bayes classifier to predict protein interactions, and then use the predicted

probabilities to initialize the value of λmn in the original EM method. Again, we have two

variations here, one uses only the predicted probabilities of the protein pairs in the training

set T , and the other uses all predicted probabilities.
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Figure 5.2 shows the prediction accuracy of the various methods.
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Figure 5.2. Comparing the accuracy of the new methods with the original EM algorithm.
(a) Accuracy of PPI prediction. (b) Accuracy of DDI prediction. Old EM: the original EM
algorithm by Deng et al. Old EM + Naive Bayes (training): the original EM algorithm, with
initial parameter values estimated by the Naive Bayes predictions of the protein pairs in the
training set. Old EM + Naive Bayes (all): the original EM algorithm, with initial parameter
values estimated by the Naive Bayes predictions of all protein pairs. New EM (training): the
new EM algorithm, with variables defined for protein pairs in the training set only. New EM
(all): the new EM algorithm, with variables defined for all protein pairs. Naive Bayes: the
Naive Bayes predictions.

The figure shows that the new EM algorithm predicts protein interactions with a higher

accuracy than the original EM algorithm when the training set is error free. It is also much

less sensitive to errors in the training set. The performance gain is not only due to a

more accurate PPI network input, as initializing the original EM algorithm with Naive
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Bayes predictions results in only a small accuracy improvement. Furthermore, the new EM

algorithm is more accurate than Naive Bayes alone in predicting protein interactions. This

result suggests that the new EM algorithm is able to utilize the information from both the

protein and domain levels to make more accurate predictions.

The two variations have very similar performance, with the one considering all protein

pairs having slightly higher accuracy at high noise level.

The DDI performance is intriguing. When only protein pairs in the training set are

considered, the new EM algorithm is slightly more accurate than the original EM algorithm,

but is still very sensitive to noise. However, when all protein pairs are considered, the new

EM algorithm has a very stable accuracy regardless of the noise level. It appears that by

considering all protein pairs, this approach is dominantly affected by the initial likelihood

estimations that are based on information at the protein level only.

This result suggests that using only information at the protein level to estimate feature

likelihood could make it difficult to predict some domain interactions. We would want to

devise a method to estimate feature likelihood using also information at the domain level.

5.3.4 Constrained likelihood estimation

Intuitively, if two protein pairs share a large number of common domain pairs, it is

desirable to predict the interaction status of the two protein pairs consistently, so that if

the first pair has a large likelihood, the second pair should also have a large likelihood.

This idea can be formally described as a constrained optimization problem over a graph.

Consider a graph in which each node represents a pair of proteins, labeled with its feature

likelihood. An edge is drawn from a node p to a node q if the latter pair of proteins shares
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some domain pairs as the former pair. The weight of the edge is equal to the fraction of

common domain pairs:

wpq =
|D(p)

⋂
D(q)|

|D(p)|
(5.19)

We would like to assign a new set of labels to the nodes, so that 1) nodes connected by

edges with large weights have similar labels, and 2) the new node labels do not deviate too

much from the original labels. The first criterion originates from the idea that protein pairs

that share common domain pairs should have similar feature likelihood, while the second

criterion ensures that information at the protein level continues to play a role in the final

likelihood estimations. These two criteria can be formulated mathematically as follows. Let

x be the vector of original labels and y be the vector of new labels. Define the following

objective function f :

f(y) =
1
n

∑
p

(yp − xp)2 + α
2

n(n− 1)

∑
p<q

wpq(yq − yp)2 (5.20)

=
1
n
||y − x||2 +

2α

n(n− 1)
yT (I −W )y,

where n is the number of protein pairs, α is a tradeoff parameter between the two criteria,

I is the identity matrix, and W is the weight matrix defined as Wpq = wpq. Again, the

summations can be taken over only protein pairs in the training set T , or all protein pairs.

To minimize the objective function, we differentiate it with respect to y:
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∂f(y)
∂y

=
2
n

(y − x) +
2α

n(n− 1)
[(I −W )T + (I −W )]y (5.21)

=
2
n

(y − x) +
4α

n(n− 1)
(I −W ∗)y,

=
2
n

[(n− 1 + 2α)I − 2αW ∗]y − 2
n

x

where W ∗ is the symmetrized weight matrix W ∗pq = wpq+wqp

2 . By setting the equation to

zero, the analytical solution of the y that minimizes f(y) is [(n − 1 + 2α)I − 2αW ∗]−1x.

Since W is an n × n matrix where n is the number of protein pairs, which is of the order

of millions, taking the inverse directly is infeasible. Instead, the equation can be solved by

Jacobi iterations [44]. The initial estimate of y is simply x:

y(0) = x (5.22)

Subsequent approximations are based on this update formula:

y(t) =
n− 1

n− 1 + 2α
x +

2α

n− 1 + 2α
W ∗y(t−1) (5.23)

The value of a particular component p of the vector is:
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y(t)
p =

n− 1
n− 1 + 2α

x + (5.24)

2α

n− 1 + 2α

∑
(m,n)∈D(p)

{
∑

q∈P(m,n),q 6=p

1
2
[

1
|D(p)|

+
1

|D(q)|
]y(t−1)

q }

Brute-force summation is still infeasible if some domain pairs are shared by a large

number of protein pairs. However, the term in curly brackets can be rewritten as

∑
q∈P(m,n),q 6=p

1
2
[

1
|D(p)|

+
1

|D(q)|
]y(t−1)

q (5.25)

=
1

2|D(p)|
∑

q∈P(m,n)

y(t−1)
q +

1
2

∑
q∈P(m,n)

y
(t−1)
q

|D(q)|
−

y
(t−1)
p

|D(p)
,

where the first two terms can be pre-computed for each domain pair and the last term can

be obtained in constant time.

By considering different possible values of the tradeoff parameter α, we can obtain

an intuitive interpretation of the update formula in Equation 5.23. The estimation of any

component yp of y at time t involves the initial estimate xp and a weighted sum of the

neighbors of p. If α = 0, the formula reduces to x, which corresponds to the case that

the estimation is made using protein-level information only. When α = 0.5, the weight of

x is n − 1 times the weight of each neighbor. Since there are at most n − 1 neighbors,
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and each element in W ∗ is no larger than 1, this value of α is the upper threshold that

guarantees protein-level information would have an effect at least as strong as the domain-

level information. When α = n−1
2 , the weight of x is the same as any of the neighbors.

Finally, when α � n−1
2 , the second term dominates and the value of y is totally determined

by the labels of the neighbors according to domain-level information.

As long as α ≤ n−1
2 , the matrix (n − 1 + 2α)I − 2αW ∗ remains diagonally dominant,

which ensures the convergence of the Jacobi iterations.

We use this method to compute constrained likelihood for the new EM algorithm with

several values of α. The prediction accuracy at the different values is similar, and the results

for α = 100 are shown in Figure 5.3.
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Figure 5.3. Comparing the accuracy of the new EM algorithm with constrained and uncon-
strained likelihood. (a) Accuracy of PPI prediction. (b) Accuracy of DDI prediction.

The performance of EM is observed to improve slightly when predicting PPI with

constrained likelihodd, and remain largely the same when predicting DDI.
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5.4 Discussion

Since some DDI prediction algorithms have built-in error detection mechanisms, an-

other way to handle errors in the PPI network is to actively correct the training sets by

detecting dubious training examples, and either removing them from the training sets, or

swapping them from the positive set to the negative set, or vice versa.

We have tried this approach by identifying protein pairs that have the largest difference

between the input and predicted probabilities of interaction. For example, if a protein pair

is in the positive training set, and an algorithm predicts the two proteins to have a very

low probability of interaction according to their domain information, this protein pair is

a potential false positive. We tested if the prediction accuracy of InSite and BP could be

improved by removing these examples or swapping to the opposite training set.

The results suggest that statistically false positives do tend to be predicted with a

smaller probability of interaction than true positives according to a Wilcoxin rank sum test

of the probabilities of the two set. Similarly, false negatives do tend to be predicted with a

larger probability of interaction than true negatives. Yet the precision of error detection is

not high enough to be useful in correcting errors. Swapping is observed to be not feasible

as it would create even more errors. For example, when the positive training set contains

10% false positives, among the protein pairs in the positive set with the lowest predicted

probabilities of interaction, the percentage of real false positives is between 15%-20%. While

this percentage is higher than the average false positive rate in the whole positive set, the

remaining 80%-85% are true positives. Adding the detected dubious protein pairs to the

negative would thus increase the error rate. On the other hand, while removing the examples

is guaranteed to reduce the average error rate, it also reduces the size of the training set,
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so that less domain interactions would find evidence from the positive protein pairs.

It thus seems more effective to deal with PPI errors by working on the input PPI

network before it is used in DDI inference. We have shown that incorporating protein

features is one way to reduce noise. Another way is to enforce PPI predictions to consider

domain occurrence. The constrained likelihood method is one possible approach, yet more

work is still needed to improve its effectiveness.

In general, it is advantageous to incorporate more data if they contain some new

information. The main challenge is finding a proper way to extract such knowledge and

integrate with existing data in learning. In the next chapter we describe a study in which

we successfully incorporated new data into our learning method and outperformed other

prediction algorithms.



Chapter 6

Adding New Perspectives to

Existing Problems: Discovering

New Information in New Data

6.1 Introduction

In this chapter we switch our focus from the protein interaction network to the gene

regulatory network. The expression of genes is tightly controlled by the regulatory ma-

chinery in the cell, by regulator proteins called transcription factors (TFs). Taking the

simplified view that each gene encodes for a protein, transcription regulation can be mod-

eled as a directed graph with each node representing a gene and its encoded protein, and an

edge from one node to another if the former is a regulator of the latter. In addition to the

directionality, the edges are also signed, with a positive sign indicating a positive regulation

95
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(activation) and a negative sign indicating a negative regulation (suppression).

Methods have been proposed for computationally reconstructing regulatory networks.

One common approach is to use differential equations to model how the expression levels

of genes change according to the abundance of their regulator proteins over time [25, 67,

129, 188]. Since it has only recently been possible to quantitatively measure the abundance

of proteins in each cell for many proteins simultaneously by flow cytometry [43], protein

abundance has been approximated in two ways: 1) the expression level of mRNA has been

used as a proxy of the quantity of the corresponding protein; 2) a multi-cell average has

been used as a proxy of the quantity in individual cells. With the use of mRNA level to

approximate protein abundance, both the data for estimating the expression level of a gene

and the activity of its regulators are obtained from the same mRNA microarray assays.

Each set of experiments involves an initial experimental condition (e.g., an environmental

perturbation such as a heat shock), which affects the expression levels of some genes reacting

to the condition. Then additional expression profiles are obtained at different time points

as a measure of the changing internal state of the cell.

In the resulting dataset, each data point measures the expression level of a gene in

a specific condition at a certain time point. Each such observed value is a mixture of

many different factors, including the previous expression level of the gene, the activity of its

regulators, decay of mRNA transcripts, randomness, and measurement errors. The many

entangled parameters make it difficult to reconstruct the regulatory network based on this

type of data alone.

To decode this kind of complex systems, one would want to reduce it to a series of

subsystems with manageable sizes by keeping the values of most parameters constant and

varying only a small number of them. Thanks to the creation of large-scale deletion li-
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braries [72], it is now possible to carry out this divide-and-conquer strategy. A deletion

library contains different strains of a species (e.g. yeast), each of which has one of the genes

of the species disabled – completely (knocked out) by mutagenesis [72] or partially (knocked

down) by RNA inference (RNAi) [101]. Profiling the expression of each gene in a deletion

strain allows one to study the sub-network that is affected by the deleted gene. For instance,

if the deleted gene encodes for a protein that is the only activator of another gene, then the

expression level of the latter would be dramatically decreased in the deletion strain of the

former as compared to the wild-type strain in which the regulator gene is intact.

While deletion data is good for detecting simple, direct regulatory events, they may

not be sufficient for decoding those that are more complicated. For example, if a gene

is up-regulated by two TFs in the form of an OR circuit, so that the gene is expressed

normally as long as one of the TFs is active, these edges in the regulatory network cannot

be uncovered by single-gene deletion data. In such a scenario, traditional time course data

could supplement the deletion data in detecting the missing edges. For instance, if at a

certain time point both the TFs have a low abundance and the expression rate of the gene

is observed to be impaired, this observation could help reconstruct the OR circuit if it

provides a good fit to a differential equation model.

In this study we demonstrate how these two types of data can be used in combination

to reconstruct regulatory networks. We propose methods for predicting regulatory edges

from each type of data, and a meta-method for combining their predictions. Using a set of

fifteen benchmark datasets, we show the effectiveness of our approach, which led our team

to get the first place in the public challenge of the third Dialogue for Reverse Engineering

Assessments and Methods (DREAM) [50]. We will also discuss potential weaknesses of our

approach, and directions for future studies.
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6.2 Problem definition

We first formally define our problem of reconstructing regulatory networks. The target

network is a directed graph with n nodes. The edges are completely unobserved, and we

are to predict them from the data features alone. In other words, this is an unsupervised

learning setting. The edges are signed, but these signs are not considered in our experimental

evaluation. The goal is thus to learn a model from the data features, such that given an

ordered pair of two genes (i, j), one can predict whether i is a regulator of j.

We use two types of data features: perturbation data and deletion data. Deletion data

are further sub-divided into homozygous deletion and heterozygous deletion.

In a perturbation time series dataset, an initial perturbation is performed at time 0 by

setting the expression levels of each gene to a certain level. Then the regulatory system is

allowed to adjust the internal state of the cell by up- and down-regulating genes according

to the abundance of the TFs. The expression level of each gene is taken at subsequent time

points. Thus, for each perturbation experiment, each gene is associated with a vector of

real numbers that correspond to its expression level at different time points after the initial

perturbation. If there are m perturbation experiments and the i-th one involves ti time

points, then each gene is associated with a vector of
∑m

i=1 ti expression values.

In a deletion dataset, a gene is deleted (knocked-out or knocked-down), and the result-

ing expression level of each gene at steady state is measured. By deleting each gene one

by one, and adding the wild-type (no deletion) as control, each gene is associated with a

vector of n+1 values, corresponding to its steady-state expression level in the n+1 strains.

For diploid organisms (with two copies of each gene in the genome), the deletion can be

homozygous (with both copies deleted, i.e., “null mutant”) or heterozygous (with only one
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copy deleted).

We assume both types of deletion data, as well as perturbation data, are available,

although it is trivial to modify our algorithm by simply removing the corresponding sub-

routines if any kind of data is missing.

6.3 The learning method

Our basic strategy is to learn the simple regulation cases from deletion data using

noise models, and to learn the more complex ones from perturbation data using differential

equation models. We first describe the two kinds of models and how we learn the parameter

values from data, and then discuss our method to combine the two lists of predicted edges

into a final list of predictions.

6.3.1 Learning noise models from deletion data

We consider a simple noise model for deletion data, that each data point is the super-

position of the real signal and a reasonably small Gaussian noise independent of the gene

and the time point. The Gaussian noise models the random nature of the biological system,

and the measurement error. Based on this model, the larger is the change of expression

of a gene a from wild type to the deletion strain of a gene b, the more unlikely that the

deviation is due to the Gaussian noise only, and thus the larger chance that a is directly or

indirectly regulated by b.

Notice that the regulation could be direct (b regulates a) or indirect (b regulates c

that directly or indirectly regulates a). There are studies that try to separate the direct
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regulation from the indirect ones using methods such as graph algorithms [189] and condi-

tional correlation analysis [155]. In this study we do not attempt to distinguish direct and

indirect regulation, and show that even assuming all significant deviation in deletion data

to be direct regulation could already provide substantial performance improvements over

approaches that focus on perturbation data only.

Given the observed expression level xb
a of a gene a in the deletion strain of gene b, and

its real expression level in wild type, xwt∗
a , we would like to know whether the deviation

xb
a − xwt∗

a is merely due to noise. To answer this question, we would need to know the

variance σ2 of the Gaussian, assuming the noise is non-systematic and thus the mean µ

is zero. If the value of σ2 is known, then the probability for observing a deviation as

large as xb
a − xwt∗

a due to random chance only is simply 2[1− Φ( |x
b
a−xwt∗

a |
σ )], where Φ is the

cumulative distribution function of the standard Gaussian distribution. The complement,

pb→a = 1 − 2[1 − Φ( |x
b
a−xwt∗

a |
σ )] = 2Φ( |x

b
a−xwt∗

a |
σ ) − 1 is the probability that the deviation is

due to a regulation event. One can then rank all the gene pairs (b, a) in decreasing order of

pb→a.

To implement the above procedure, it is necessary to estimate σ2 from data, which is

standardly done by using the non-biased sample variance of data points that are not affected

by the deleted gene from the wild-type expression. However, this involves two difficulties.

First, the set of genes not affected by the deleted gene is unknown and is exactly what

we are trying to learn from the data. Second, the observed expression value of a gene in

the wild-type strain xwt
a is also subjected to random noise, and thus cannot be used as the

gold-standard reference point xwt∗
a in the calculations.

We propose an iterative procedure to progressively refine our estimation of pb→a. We

start by assuming the observed wild-type expression levels xwt
a are reasonable rough esti-
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mates of the real wild type expression levels xwt∗
a . Using them as the initial reference points,

we repeat the following three steps for a number of iterations:

1. Calculate the probability of regulation pb→a for each pair of genes (b, a) based on the

current reference points xwt
a . Then use a p-value of 0.05 to define the set of potential

regulation: if the probability for the observed deviation from wild type of a gene a in

a deletion strain b to be due to random chance only is less than 0.05, we treat b → a as

a potential regulation. Otherwise, we add (b, a) to the set P of gene pairs for refining

the error model.

2. Use the set P to re-estimate the variance of the Gaussian noise, σ2 =
P

(b,a):P (xb
a−xwt

a )2

|P |−1 .

3. For each gene a, we re-estimate its wild-type expression level by the mean of its

observed expression levels in strains in which the expression level of a is unaffected

by the deletion: xwt
a :=

xwt
a +

P
b:(b,a)∈P xb

a

1+|b:(b,a)∈P | .

After the iterations, the probability of regulation pb→a is computed using the final

estimate of the reference points xwt
a and the variance of the Gaussian noise σ2.

Notice that we have chosen to use a “conservative” p-value of 0.05 in the following

sense: when the number of genes in the network, n, is sufficiently large (e.g. n ≥ 10) and

there are relatively few regulatory edges, there is a large number of gene pairs for estimating

the parameters such that missing some of them would not seriously affect the estimation. It

would thus be good to add to P only gene pairs that are very unlikely to contain regulatory

edges. This is achieved by using a large (i.e., conservative in this context) p-value to define

the potential regulatory edges.

The above iterative procedure can be applied to both homozygous and heterozygous
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deletion data, although the regulation signals are expected to be less clear in the heterozy-

gous case since deleting only one copy of a regulator gene may induce only a mild effect

to its targets. The final p-values computed from homozygous data are thus expected to be

more reliable. Yet the ones learned from heterozygous data can still be useful references in

resolving ambiguous cases, as we will discuss in more detail when describing our approach

to combining the predictions learned from the different types of data.

6.3.2 Learning differential equation models from perturbation time series

data

For time series data after an initial perturbation, we use differential equations to model

the gene expression rates. The general form is as follows:

dxi

dt
= fi(x1, x2, ..., xn), (6.1)

where xi represents the expression level of gene i and fi is a function that explains how the

expression rate of gene i is affected by the expression level of all the genes in the network,

including the level of gene i itself. Various types of function fi have been proposed. We

consider three of them. The first one is a linear model [67]:

dxi

dt
= ai0 − aiixi +

∑
j∈S

aijxj , (6.2)
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where ai0 is the basal expression rate of gene i in the absence of regulators, aii is the decay

rate of the mRNA transcripts of i, and S is the set of potential regulators of i. In theory,

S could be set as [n] = {1, 2, ..., n}, the whole set of genes in the network, as the regulators

of i are unknown. However, for performance reasons, S is usually restricted to some small

sets of genes. Our choice of S will be discussed below. For each potential regulator j, aij

explains how the expression of i is affected by the abundance of j. A positive aij indicates

that j is an activator of i, and a negative aij indicates that j is a suppressor of i.

The linear model assumes a linear relationship between the expression level of the

regulators and the resulting expression rate of the target. It is a rough first approximation

of the expression rate. An advantage of the model is the small number of parameters

(|S| + 2), yet real biological regulatory systems seem to exhibit non-linear characteristics.

The second model we consider assumes the more realistic sigmoidal relationship between

the regulators and the target [188]:

dxi

dt
=

bi1

1 + exp(−ai0 −
∑

j∈S aijxj)
− bi2xi, (6.3)

where bi1 is the maximum expression rate of i and bi2 is its decay rate. This model involves

|S|+ 3 parameters.

The third model we consider has a multiplicative form, with each factor capturing the

relationship between the target and one of its regulators [129]:
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dxi

dt
= ai0

∏
j1∈S1

bij1

x
cij1
j1

+ bij1

∏
j2∈S2

x
cij2
j2

x
cij2
j2

+ bij2

− ai1xi, (6.4)

where S1 and S2 represent the sets of suppressors and activators, respectively, ai1 is the

decay rate, bij1 and bij2 are rate constants, and cij1 and cij2 are sigmoidicity constants. This

model involves 2|S1|+ 2|S2|+ 2 parameters.

In our actual implementation, the exponent terms in the third model sometimes caused

numerical instability when the base was close to zero. We therefore based our predictions

on the first two models.

Our goal is to try different possible regulator sets S (or S1 and S2) and identify the

ones that predict the observed expression levels well in the least-square sense:

gi(θ) =
∑

t

(xit − x̂it)2, (6.5)

where θ denotes the set of parameters (a, b and c), xit is the expression level of gene i at

time point t, and x̂it is the corresponding predicted level of a model. The summation is

taken over all time points of all perturbation experiments.

The objective function is not convex with respect to the parameters. We use Newton’s

method [27] to find local minima of the objective function gi(θ) with 100 random initial

values of θ, and adopt the one that provides the best fit with the smallest gi(θ). The

expression vector x̂, gradient 5x̂ and Hessian 52x̂ are estimated by using the closed-form

formulas provided by the second order Runge-Kutta method [44].
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We try two types of regulator sets. The first type involves single regulators, in which

we try each gene j as the potential regulator of gene i in turn, and compare the least

square errors of their best-fit models. The second type involves high-confidence potential

regulators, plus one extra regulator to be tested. As we will see in the next section, the

high-confidence potential regulators are obtained from the predictions of the noise models

learned from the deletion data, as well as those predicted by the single-regulator differential

equation models. We call such models the “guided models” since the construction of the

regulator sets is guided by previous predictions. The full detail of the resulting algorithm

will be given in the next subsection.

We also tried double regulator sets with all pairs of potential regulators. Yet the

resulting models did not appear to provide much additional information on top of the single

regulator set models, while requiring much longer computational time. We therefore decided

to consider only the single regulator sets and guided single regulator sets.

For a regulator set S and a target gene i, the value of the objective function of the best

model indicates how likely i is regulated by the members of S. The values are thus used to

rank the likelihood of existence of the regulatory edges.

6.3.3 Combining the predictions of the models

Our main idea for combining the predictions of the different models learned from dele-

tion and perturbation data is to rank the predictions according to our confidence that they

are correct. Specifically, we make predictions in batches, with the first batch containing

the most confident predictions, and each subsequent batch containing the most confident

predictions that have not been covered by the previous batches. Within each batch, the
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predictions are ordered by the confidence of the models, which corresponds to the probabil-

ity of regulation pb→a for noise models, and negated objective score −gi(θ) for differential

equation models. We define the batches as follows:

• Batch 1: all predictions with a probability of regulation larger than 0.99 according to

the noise model learned from homozygous deletion data

• Batch 2: all predictions with an objective score two standard deviations below the av-

erage according to all types of differential equation models learned from perturbation

data

• Batch 3: all predictions with an objective score two standard deviations below the

average according to all types of guided differential equation models learned from per-

turbation data, where the regulator sets contain regulators predicted in the previous

batches, plus one extra potential regulator

• Batch 4: as in batch 2, but requiring the predictions to be made by only one type of

the differential equation models as opposed to all of them

• Batch 5: as in batch 3, but requiring the predictions to be made by only one type of

the differential equation models as opposed to all of them

• Batch 6: all predictions with a probability of regulation larger than 0.95 according to

both the noise models learned from homozygous and heterozygous deletion data, and

have the same edge sign predicted by both models

• Batch 7: all remaining gene pairs, with their ranks within the batch determined by

their probability of regulation according to the noise model learned from homozygous

deletion data



CHAPTER 6. ADDING NEW PERSPECTIVES TO EXISTING PROBLEMS:
DISCOVERING NEW INFORMATION IN NEW DATA 107

In general, we put the greatest confidence in the noise model learned from homozygous

deletion data as the signals from this kind of data are clearest among the three types of

data. We are also more confident with predictions that are consistently made, either by the

different types of differential equation models (batches 2 and 3 vs. batches 4 and 5) or by

the noise models learned from homozygous and heterozygous deletion data (batch 6).

6.4 Performance study

6.4.1 Datasets and performance metrics

We used the algorithm described above to take part in the third Dialogue for Reverse

Engineering Assessments and Methods Challenge (DREAM3) [51] on regulatory network

reconstruction. The challenge involves fifteen benchmark datasets, five of which have 10

genes, five have 50 and five have 100. The networks are constructed based on parameters

extracted from modules in real biological networks [124]. At each size, two of the networks

are based on parameters from the regulatory network of E. coli, and three are based on

yeast.

The predictions are compared against the actual edges in the networks by the DREAM

organizer using four different metrics for evaluating the accuracy:

• AUPR: The area under the precision-recall curve

• AUROC: The area under the receiver-operator characteristics curve

• pAUPR: The p-value of AUPR based on the distribution of AUPR values in 100,000

random network link permutations
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• pAUROC: The p-value of AUROC based on the distribution of AUROC values in

100,000 random network link permutations

These metrics are further aggregated into an overall p-value for each size using the

geometric mean of the five p-values from the five networks, and finally an overall score

equal −0.5 log10(p1p2), where p1 and p2 are the geometric means of pAUPR and pAUROC

respectively.

6.4.2 Results

The challenge of size 10 has attracted 29 teams to participate, the one of size 50 has

27 teams and the one of size 100 has 22 teams. The large number of participants makes the

challenge currently the largest benchmark for gene network reverse engineering [51].

Our algorithm ended in first place on all three network sizes. The complete set of

performance scores for all teams can be found at the DREAM3 web site [51]. Below we

summarize our prediction results, and discuss some interesting observations.

Table 6.1 and Table 6.2 show the AUROC and pAUROC values of our predictions

reported by the DREAM organizer, respectively. From the p-values, we see that our pre-

dictions are consistently significantly better than random. In general, we observe that out

method performed better on the E. coli networks, but is relatively unaffected by the network

size, as evaluated by AUROC.

We notice that in some cases our first predictions are already very close to the actual

network. Figure 6.1(a) shows the actual network of the Yeast1-size10 network, where an

arrowhead represents an activation and a blunt-end represents a suppression. Figure 6.1(b)
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Table 6.1. AUROC of our predictions.
Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

Size 10 0.928 0.912 0.949 0.747 0.714
Size 50 0.930 0.924 0.917 0.792 0.805
Size 100 0.948 0.960 0.915 0.856 0.783

Table 6.2. pAUROC of our predictions.
Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3 Overall AUROC

Size 10 9.771e-07 2.629e-07 9.941e-07 2.931e-04 1.046e-03 9.523e-06
Size 50 2.396e-27 4.328e-31 1.477e-25 1.808e-21 1.386e-29 5.210e-27
Size 100 1.226e-52 5.876e-42 4.087e-70 5.755e-99 1.722e-92 3.112e-71

shows our top 10 predictions. There is only one false positive (G01 activates G09) and

one false negative (G04 suppresses G09). Interestingly, these two edges are tightly related.

Since in the actual network G01 suppresses G04 and G04 suppresses G09, G01 can be

viewed as indirectly activating G09. Our method thus correctly identified this relationship,

yet it failed to distinguish between the direct and indirect regulation. We will discuss the

issue of indirect regulation more in the next section.

The overall scores are 5.124, 39.828, and 10e10, respectively, for the size 10, 50 and

100 networks. As a comparison, the scores for the first runners-up are 3.821, 31.341 and

45.443, respectively. We hypothesize that the performance difference is at least partially

attributed to our emphasis on the use of deletion data, as it appears that some other

high-ranked teams put most of their concentration on building differential equation models

from perturbation data (personal communications during the DREAM conference). To

demonstrate the effectiveness of the noise models learned from deletion data, we analyze the

number of predictions made in each batch, and the number of which are actually correct.

The results for the size 10, 50 and 100 networks are shown in Table 6.3, Table 6.4 and

Table 6.5, respectively.
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Figure 6.1. The Yeast1-size10 network. (a) The actual network. (b) Our top 10 predictions.
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Table 6.3. Prediction accuracy per batch on the size 10 networks.
Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

Batch Predicted Correct Predicted Correct Predicted Correct Predicted Correct Predicted Correct
1 11 7 16 12 11 9 13 9 12 8
2 6 1 4 0 5 0 5 1 5 4
3 0 0 1 1 3 0 1 0 1 0
4 5 1 8 0 7 0 4 2 4 0
5 4 0 8 1 6 0 10 3 5 1
6 1 1 0 0 0 0 0 0 0 0
7 63 1 53 1 58 1 57 10 63 9
Total 90 11 90 15 90 10 90 25 90 22

Table 6.4. Prediction accuracy per batch on the size 50 networks.
Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

Batch Predicted Correct Predicted Correct Predicted Correct Predicted Correct Predicted Correct
1 96 52 133 69 145 57 176 83 201 100
2 76 2 85 1 80 8 87 12 102 16
3 77 0 78 1 69 1 56 1 64 2
4 196 0 153 1 185 1 156 5 113 3
5 178 1 169 1 167 2 177 6 149 2
6 5 0 16 0 9 0 11 0 6 0
7 1822 7 1816 9 1795 8 1787 53 1815 50
Total 2450 62 2450 82 2450 77 2450 160 2450 173

Table 6.5. Prediction accuracy per batch on the size 100 networks.
Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3

Batch Predicted Correct Predicted Correct Predicted Correct Predicted Correct Predicted Correct
1 410 101 377 108 483 118 656 257 710 302
2 387 11 319 1 317 20 282 22 311 31
3 162 0 198 0 129 0 145 3 135 3
4 650 0 685 1 575 2 604 12 638 13
5 683 1 656 2 746 3 739 10 667 24
6 53 0 72 0 82 2 67 0 59 2
7 7555 12 7593 7 7568 21 7407 85 7380 176
Total 9900 125 9900 119 9900 166 9900 389 9900 551
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Table 6.6. Prediction of the first two batches on the size 10 networks when their orders are
swapped.

Ecoli1 Ecoli2 Yeast1 Yeast2 Yeast3
Batch Predicted Correct Predicted Correct Predicted Correct Predicted Correct Predicted Correct
1 6 1 5 1 5 0 5 1 5 4
2 11 7 15 12 11 9 13 9 12 8

As hypothesized, the noise models learned from homozygous deletion data made very

accurate predictions. In many cases, most actual edges were already predicted correctly

in batch 1. Also, if an actual edge is not predicted in batch 1, it is also likely missed by

subsequent batches. For instance, for the 173 actual edges in the Yeast3-size50 network,

100 are detected in batch 1, and among the remaining 73, only 21 are detected in batches

2 to 6.

While the above results suggest the importance of the noise models learned from ho-

mozygous data, it is still not clear whether these models are indeed more effective than the

other models. It could still be the case that other models could also make the same predic-

tions made in batch 1, just that as these predictions had already been covered in batch 1

that subsequent batches were not allowed to make the same predictions again. To verify if

this was the case, we swapped the order of the first two batches for the size 10 networks,

so that the first batch is composed of predictions made by the differential equation models

and the second batch is composed of predictions made by the noise model learned from

homozygous deletion data and not covered by the first batch. The results are shown in

Table 6.6.

Comparing Table 6.6 and the first two batches of Table 6.3, it is seen that the number

of predictions made by the models almost remained unchanged when the order of the two

batches are swapped. In fact, by checking the predicted edges, it is observed that most pre-
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dictions previously made by the noise model were not predicted by the differential equation

models, even they were given the chance to freely make the predictions. Only one extra

correct prediction could be made by the differential equation models for the Ecoli2 network.

This analysis reveals two interesting observations. First, as the noise model learned

from deletion data gave higher accuracy than the differential equation models, our decision

to use the former to make the first batch predictions is justified. Second, while the differen-

tial equation models had a lower accuracy, they made some unique correct predictions that

were missed by the noise models. The results thus suggest that the two types of models,

based on two different types of data, are complementary to each other and are able to make

some orthogonal contributions to the overall predictions.

6.5 Discussion and future directions

Our prediction results demonstrate the advantage of combining multiple types of data.

While the perturbation data allow the learning of differential equation models that could

capture complex interactions in the regulatory network, deletion data also facilitate the

detection of some simple interactions using only very basic noise models. As technological

advancements are made rapidly, new data types are expected to come out from time to time.

For method developers who try to improve existing prediction methods, besides deriving

more advanced algorithms using the same data, it is also rewarding to investigate what kinds

of information emerging data could provide, and how such information can be extracted to

supplement existing methods.

As mentioned earlier, in this study we did not attempt to address the issue of indirect

regulation. Indeed we observed that indirect regulation is one of the factors that confounded
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our method and caused it to make some wrong predictions. We expect that in a complete

network with thousands of nodes, long regulation chains exist and the problem of indirect

regulation would be more serious. It is therefore interesting to see if filtering indirect

regulation (for example by some existing techniques [155, 189]) could further improve the

performance of the method.

In this study, we adopt an unsupervised learning setting, in compliance with the setup

of the DREAM3 challenge. For organisms with some known regulation edges as domain

knowledge, they can be used as training examples to train a supervised learner, or be used

to transform the existing method into a semi-supervised one [34]. For example, known

examples can be used to setup p-value cutoffs in defining the potential regulation set P

when learning the noise models. They can also help examine the validity of a particular

differential equation model formulation, by checking if the squared errors of their best

models are indeed smaller than average.

One issue that we have not touched on is the computational cost. Using a high-

end cluster, the predictions for networks of size 10, 50 and 100 took about 2 minutes, 13

hours, and 78 hours, respectively. While there is room for optimizing our code, fitting the

differential equation models intrinsically requires a lot of computational power. Given that

most correct predictions are made by the noise models, which only took a tiny portion of

the computational time, when working on complete networks it is possible to tradeoff some

accuracy for much shorter running time.
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Chapter 7

Semantic Web

7.1 Introduction

The web has become instrumental to many facets of research in the life sciences domain.

Nowadays, researchers can easily have Internet access to a large quantity and variety of

biological data using their web browsers running on local desktop computers. As the number

of these web resources continues to increase, it is important to address the problem of

interoperability. Currently, it is a challenging problem for the following reasons.

1. It is difficult to automatically identify web sites that contain relevant and interoperable

data, as there is a lack of widely accepted standards for describing these web sites

as well as their contents. Although approaches like the HTML meta tag (http:

//www.htmlhelp.com/reference/html40/head/meta.html) can be used to annotate

a web page through the use of keywords, they are problematic in terms of sensitivity

and specificity. In addition, these approaches are neither supported nor used widely
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by existing web search engines. Most web search engines rely on using their own

algorithms to index individual web sites based on their contents.

2. Different resources provide their data in heterogeneous formats. For example, while

some data are represented in HTML format that is interpretable by the web browser,

other data formats including the text format (e.g., tab-delimited files) and binary for-

mat (e.g., images) are used. Such heterogeneity in data formats makes interoperability

difficult if not impossible.

3. Data interoperability involves both syntactic and semantic translation. Both types of

translation are hindered by the lack of standard data models, formats, and vocabu-

lary/ontology.

The semantic web research community addresses these problems by seeking methods to

facilitate machine-based identification and semantic interoperability of web resources. Cru-

cial to the semantic web approach is the design and development of ontologies (semantic

part) that are represented in computer-readable formats (syntactic part). The eXtensible

Markup Language (XML) has become a standard syntax for expressing data that are ex-

changed between applications. In the past several years, a large collection of XML-based

formats has emerged for representing different types of biological data. Examples include

mzXML [145] for standardizing the representation of mass spectrometry (MS) data gener-

ated by different MS instruments, BioML [62] for representing biopolymer data, MAGE-

ML [175] for representing microarray gene expression data, SBML [91] for representation

and exchange of biochemical network models, and ProML [87] for specifying protein se-

quences, structures and families. In addition, since XML is widely used there are a large

number and variety of open source software tools for processing it.
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While these XML formats facilitate data exchange between applications, they do not

adequately address semantics and lack expressivity for knowledge representation and in-

ference [46]. In addition, there is a proliferation of semantically-overlapping XML for-

mats in the life sciences domain, making syntactic and semantic data translation more

complex and difficult. For example, AGAVE (http://www.agavexml.org) and BSML

(http://www.bsml.org) are different XML formats for describing sequence annotation.

SBML, PSI-MI [89], BIND XML [4], and BioPax (http://www.biopax.org/) are exam-

ples of pathway/network data formats. Efforts have been underway to unify some of these

XML formats. For example, MAML and GEML, which were two separate microarray gene

expression data formats, were consolidated into MAGE-ML.

The Resource Description Framework (RDF) is a standardized XML format designed

to describe web resources. The RDF structure is generic in the sense that it is based on

the directed acyclic graph (DAG) model. RDF is a model for defining statements about

resources and relationships among them. Each statement is a triplet consisting of a subject,

a property, and a property value (or object). For example, <“Protein” “Name” “P53”>

is a triple statement expressing that the subject “Protein“ has “P53” as the value of its

“Name” property. RDF also provides a means of defining classes of resources and properties.

These classes are used to build statements that assert facts about resources. Each resource

possesses one or more properties. While the grammar for XML documents is defined using

DTD or XSchema, RDF uses its own syntax (RDF Schema or RDFS) for writing a schema

for a resource. RDFS is expressive and it includes subclass/superclass relationships as well

as constraints on the statements that can be made in a document conforming to the schema.

Unlike the order of elements in XML, the order of RDF properties does not matter, thereby

giving more flexibility to web programmers in developing their applications. While RDF

http://www.agavexml.org
http://www.bsml.org
http://www.biopax.org/
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can be serialized to a standard XML format, other representations such as Notation3 also

exist.

The generic structure of RDF makes data interoperability and evolution easier to handle

as different types of data can be represented using the common graph model. RDF exten-

sions such as the Web Ontology Language (OWL) support more sophisticated knowledge

representation and inference. Such languages allow data semantics to be defined declar-

atively (not procedurally) and can be used as a common model for expressing different

types of biological data that are currently defined using different XML syntaxes. There are

already some biological data that are expressed in RDF format. Examples include Gene

Ontology [12], NCI thesaurus [77], and UniProt [9].

As RDF is gaining more attention in the bioinformatics community and more RDF-

related tools and technologies are becoming available, it is important to find new use cases

of RDF in the life sciences domain (http://www.w3.org/2004/07/swls-ws.html). To this

end, our paper demonstrates how to use RDF metadata/data standards (e.g., RDF Site

Summary or RSS) and RDF-based technologies (e.g., native RDF database) to facilitate

integration of diverse types of genome data provided by multiple web resources in het-

erogeneous formats. This builds upon our previous work on using XML to interoperate

heterogeneous genome data [38].

7.2 RDF data warehouse

Figure 7.1 gives a system overview of our semantic web approach to data integration.

It entails the following steps.

http://www.w3.org/2004/07/swls-ws.html
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Resource 1:
flat file

Resource 2:
RDB

Resource n:
XML
<xml>

</xml>

…

RDF1 RDF2 RDF3

RDFDB

Figure 7.1. System overview.

1. Describing and downloading the contents (as tab-delimited or RDF files) from indi-

vidual genome web sites.

2. Converting the downloaded data into our RDF format if these data are in tab-

delimited format. If the data files are in RDF format (even though they are different

from our RDF format), no conversion is required.

3. Loading the RDF-formatted data files into an RDF-native database for data storage,

management, and retrieval. Once the data are stored in a repository, (web-enabled)

applications can be written to allow users to access, query, and analyze the data.

For data that are already stored in relational databases, we explore a relational-

database-to-RDF mapping method, D2RQ (http://www.wiwiss.fu-berlin.de/suhl/bizer/

d2rq), which allows existing (or legacy) relational databases to publish data in RDF format

http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rq
http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rq
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via a high-level mapping specification language.

7.2.1 RDF data stores

While relational database management systems (RDBMS) are the predominant plat-

form for storing, managing, and querying biological data, they do not directly fit the RDF

structure that is based on the DAG model. Mapping methods or new database engines are

needed to handle RDF datasets efficiently. Given the growing use of RDF, specialized data

storage methods (called “triple stores”) have been developed to efficiently store, manage,

and query RDF-formatted data. Representative approaches include: Sesame (http://www.

openrdf.org), Kowari (http://www.kowari.org), Joseki (http://www.joseki.org), and

Triplestore (http://triplestore.aktors.org).

Some data store approaches (e.g., Sesame) use or provide the option to use a relational

database (e.g., Oracle, MySQL, and Postgres) as the underlying persistent store. Others

(e.g., Kowari) allow a repository to be created directly on top of the RDF files without the

need of using a relational database. Many of these RDF database systems come with their

own implementation of RDF query languages (e.g., SeRQL is implemented by Sesame and

iTQL by Kowari).

A scalability report on existing RDF data stores has been published (http://simile.

mit.edu/reports/stores/). In the report, Sesame and Kowari are rated high in terms of

their performance, ease of use, and deployment. Based on this report, we have made the

decision to use Sesame to implement the data warehouse. In addition, Sesame is the only

system that allows main memory, relational database, and file approaches to be used to

construct a repository. This lets us compare these underlying storage approaches.

http://www.openrdf.org
http://www.openrdf.org
http://www.kowari.org
http://www.joseki.org
http://triplestore.aktors.org
http://simile.mit.edu/reports/stores/
http://simile.mit.edu/reports/stores/
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7.2.2 Metadata and data

In our system, each resource has two RDF files created and associated with it, metadata

and data. Figure 7.2 shows the first step of entering information needed to generate the

metadata. Based on the information entered, our system will generate metadata in RDF

format. The RDF format that we use is based on the RDF Site Summary (RSS; http:

//web.resource.org/rss/1.0/), which is a standard format between web sites. In RSS

terms, each resource is known as a channel. The basic idea of RSS is that each news

web site will publish (or syndicate) its headline and description of its contents as an RSS

feed; applications such as aggregators can spider these RSS-enabled sites and assemble their

feeds. We use a similar idea to create and store the genome-oriented RSS feeds centrally.

Our data warehouse system can be considered as an aggregator that integrates the data

that are described in the RSS feeds.

The RSS format we use incorporates different sets (or modules) of vocabularies includ-

ing the Dublin Core Metadata (DCM) vocabulary (http://dublincore.org/documents/

dcmi-terms/). We use the following DCM terms/properties.

1. Source URL gives the web address or UR which the original data resource (or channel)

can be accessed. In our case a resource or channel is a particular data file.

2. Format indicates the format of the original data file: tab-delimited and RDF.

3. Title is a descriptive name given to a resource.

4. Type of resource is a list of types that can be used to categorize the nature of the

content of the resource.

5. Language indicates the language in which the resource contents are published.

http://web.resource.org/rss/1.0/
http://web.resource.org/rss/1.0/
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
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Figure 7.2. Metadata generation step.
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6. Description gives an account of the resource content.

7. Identifier is used to identify a resource uniquely. Our system generates this identifier

automatically and assigns it to the identifier property.

8. Creator indicates the entity (e.g., a person, organization, or service) that is responsible

for making the original resource available.

9. Publisher indicates the entity (e.g. a person, organization, or service) that makes the

resource that is derived from the original resource available.

10. Created indicates the date on which the original resource is created.

11. Contributor identifies the individual(s) who makes contribution to the content of the

resource.

12. Bibliographic citation gives a bibliographic reference to the resource.

While title, description, identifier (generated by the system) and source URL are

mandatory, the other properties are optional. By using these standard properties, we hope

to broaden the utility and sharing of metadata. Figure 7.3 gives an example of the metadata

represented using these properties in RSS format.

If the source data file is in RDF format, the user just needs to provide the URL of

the corresponding schema file. If the source data file is in tabular format, the user needs

to indicate whether the data file contains column headers and if so, at which line they

occur. Also, the user needs to indicate the line number of the first data row. In addition to

data conversion, the user is offered the option to load the converted dataset into the RDF

repository for storage and later query retrieval; queries can be done not only for the just
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<?xml version=”1.0” ?> 

<rdf:RDF xmlns:dc=”http://purl.org/dc/elements/1.1/” xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#” 

xmlns:rss=”http://purl.org/rss/1.0/”> 

 <rss:channel rdf:about=”http://twiki.med.yale.edu/kei_web/yeasthub/mips_lethal_genes2.txt”> 

  <rss:link>http://twiki.med.yale.edu/kei_web/yeasthub/mips_lethal_genes2.txt</rss:link> 

  <dc:identifier>58639</dc:identifier> 

  <dc:format>tabDelimited</dc:format> 

  <rss:title>MIPS genes</rss:title> 

  <dc:type>Yeast genome data</dc:type> 

  <dc:language>English</dc:language> 

  <rss:description>MIPS essential genes</rss:description> 

  <rss:items> 

   <rdf:Seq> 

    <rdf:li rdf:resource=”http://mcdb750.med.yale.edu/yeasthub/data/datanull.rdf” /> 

   </rdf:Seq> 

  </rss:items> 

 </rss:channel> 

 <rss:item rdf:about=”http://mcdb750.med.yale.edu/yeasthub/data/datanull.rdf”> 

  <rss:link>http://mcdb750.med.yale.edu/yeasthub/data/datanull.rdf</rss:link> 

  <rss:title>MIPS genes</rss:title> 

 </rss:item> 

</rdf:RDF> 

Figure 7.3. Metadata encoded in RSS 1.0 format.
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stored dataset, but also integrated queries over all resources stored in the repository can be

done.

During the second step of data registration - data generation (as shown in Figure 7.4),

the user needs to provide information on how the RDF data format should be generated

based on the tabular structure (as shown on top of Figure 7.4). This is divided into two

parts.

1. The first part requires the user to indicate the type of genome objects and the organism

involved. In addition, the user needs to enter the default namespace for the properties

to which the file columns (headers) are mapped (see below). Finally, the user indicates

which column (if any) is the ID column by entering the corresponding URL, which

includes the string pattern “[ID]” that will be replaced by the actual ID value.

2. In the second part, the property name is entered for each file column selected by the

user. If the source file contains column headers, the header labels will be used as the

default property names (which can later be edited by the user). It is possible that

the properties may have been defined in schemas identified by different namespaces.

Therefore, the interface provides the user with the option to enter a namespace for

each property. In addition, the interface lets the user indicate whether a single column

entry contains multiple values (e.g., gene synonyms separated by “—”). If so, the user

has to indicate the delimiter (e.g., comma or space) that is used to separate the values.

In this case, the corresponding RDF output will have multiple property-value pairs.

This may simplify data querying later. Finally, the interface allows the user to replace

a substring pattern with another substring pattern when converting column values to

property values. For example, a GO ID in one resource may contain a colon (e.g.,
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Row ORF Gene Name Gene Synonyms 

1 YOR122C PFY1 profilin 

2 YOR143C THI80 thiamin pyrophosphokinase 

3 YOR157C PUP1 20S proteasome subunit (beta2) 

... 
 

Figure 7.4. Tabular-to-RDF data conversion.
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GO:12345), while in another resource it has no colon (e.g., GO12345). Such a substring

replacement function helps reduce data variability between resources, thereby easing

data integration.

Currently, our RDF conversion applies only to data that are represented in tab-delimited

format. In addition to converting tab-delimited files into RDF format, our system generates

the corresponding RDF schema. Figure 7.5 depicts the RDF schema generally. In the fig-

ure, there is a class named genome object that is associated with a collection of individual

genome objects (a collection is a special type of RDF container). Also, genome object has

the properties, object type and organism which describe the type of the genome objects

involved (e.g., genes, markers, or proteins) and the organism of interest (e.g., yeast, human,

or mouse). Each genome object in the collection can be described by a set of properties that

can be user-defined or derived from existing standard vocabularies. Different collections of

genome objects (obtained from different sources) may involve different sets of properties.

Genome 
object

Organism

Object type

Collection of 
genome objects

Figure 7.5. Class diagram of the YeastHub RDF data model.

Figure 7.6 illustrates how a collection of yeast genes is expressed in our RDF/XML

format. In this example, the description of each yeast gene includes the standard open

reading frame (ORF) name, common gene name, and synonyms. Each gene is identified by

a URL that takes the ORF name as a parameter and returns the detailed description of the
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gene from MIPS.

<?xml version=”1.0” ?> 

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#” 

xmlns:yh=”http://mcdb750.med.yale.edu/yeasthub/schema/yeasthub_schema.rdf” 

xmlns:ns0=”http://mcdb750.med.yale.edu/yeasthub/schema/schema58639.rdf”> 

 <rdf:Description rdf:about=”http://twiki.med.yale.edu/kei_web/yeasthub/mips_lethal_genes2.txt”> 

  <yh:objet_type>gene</yh:object_type> 

  <yh:organism>yeast</yh:organism> 

  <yh:genome_objects rdf:parseType=”Collection”> 

   <rdf:Description 

rdf:about=”http://mips.gsf.de/genre/proj/yeast/searchEntryAction.do?text=YAL001C&amp;db=CYGD”> 

    <ns0:row_count>1</ns0:row_count> 

    <ns0:orf>YAL001C</ns0:orf> 

    <ns0:gene_name>TFC3</ns0:gene_name> 

    <ns0:gene_synonyms>TFIIIC (transcription initiation factor) subunit, 138 kD</ns0:gene_synonyms> 

   </rdf:Description> 

   <rdf:Description 

rdf:about=”http://mips.gsf.de/genre/proj/yeast/searchEntryAction.do?text=YAL003W&amp;db=CYGD”> 

    <ns0:row_count>2</ns0:row_count> 

    <ns0:orf>YAL003W</ns0:orf> 

    <ns0:gene_name>EFB1</ns0:gene_name> 

    <ns0:gene_synonyms>translation elongation factor eEF1beta</ns0:gene_synonyms> 

   </rdf:Description> 

   ... 

</rdf:RDF> 

Figure 7.6. An example collection of yeast essential genes represented in RDF/XML format.

The link connecting the generated RDF metadata file, data file, and the schema file

is via a common system-generated identifier that is stored in the property identifier in the

metadata file. We create a RDF repository for each file type.

7.3 Biological use case: YeastHub

To demonstrate how to use semantic web techniques to integrate diverse types of

genome data in heterogeneous formats, we have developed a prototype application called

“YeastHub”. In this application, a data warehouse has been constructed using Sesame to

store and query a variety of yeast genome data obtained from multiple sources. For perfor-
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mance reasons, we create the RDF repository using main memory. The application allows

the user to register a dataset and convert it into RDF format if it is in tabular format. Once

the datasets are loaded into the repository, they can be queried in the following ways.

1. Ad hoc queries. This allows the user to compose RDF-based query statements and

issue them directly to the data repository. Currently, it allows the user to use the

following query languages: RQL, SeRQL, and RDQL. This requires the user to be

familiar with at least one of these query syntaxes as well as the structure of the RDF

datasets to be queried. SQL users should find it easy to learn RDF query languages.

2. Form-based queries. While ad hoc RDF queries are flexible and powerful, users who

do not know RDF query languages would prefer to use an alternative method to pose

queries. Even users who are familiar with RDF query languages might find these

languages arcane to use. To this end, the application allows users to query the repos-

itory through web query forms (although they are not as flexible as the ad hoc query

approach). To create these query forms, YeastHub provides a query template genera-

tor. Figure 7.7 shows the web pages that allow the user to perform the steps involved

in generating and saving the query form. First, as shown in Figure 7.7(a), the user

selects the datasets and the properties of interest. After the selection, the user pro-

ceeds to specify how to generate the query form template, as shown in Figure 7.7(b).

This page requires the user to indicate which properties are to be used for the query

output (select clause), search Boolean criteria (where clause), and join criteria. In

addition, the user is given the option to create a text field, pull-down menu, or select

list (in which multiple items can be selected) for each search property. Once the entry

is complete, the user can go ahead to generate the query form by saving it with a

name (all this information is stored as metadata in a MySQL database). The user
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Table 7.1. Types of databases and data distribution formats.
Tabular XML RDF Rel. DB

Global Databases (GB/TB) BIND UniProt
Boutique Databases (MB/GB) SGD, YGDP, MIPS GO TRIPLE
Local Databases (KB/MB) Protein Chips, Protein-Protein Interactions

can then use the generated query form, as shown in Figure 7.7(c), to perform Boolean

queries on the selected datasets. Notice that the user who generates the query is not

necessarily the same person who uses the form to query the repository. Some users

may just use the query form(s) generated by someone else to perform data querying.

These users may not have the need to create query forms themselves.

Presently, both types of queries return results in HTML format for display to the

human user. Other formats (e.g., RDF format) can be provided.

7.3.1 Example queries

Our example queries involve integrating datasets obtained from different web-accessible

databases. Table 7.1 lists these databases. In addition to showing the data distribution

formats, it categories the databases into the following types.

1. Global databases represent very large repositories typically consisting of gigabytes or

terabytes of data. These databases are widely accessed by researchers from different

countries via the Internet. The example here is the yeast portion of UniProt in RDF

format.

2. Boutique databases are large databases with typical sizes ranging from several megabytes

to hundreds of megabytes (or even several gigabytes). Examples include SGD, YGDP,
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 (a) 

 (b) 

 (c) 

Figure 7.7. (a) Selection of data sources and properties for creating a query template. (b)
Query template generation. (c) Generated query form template.
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MIPS, BIND, GO, and TRIPLES. While SGD and MIPS datasets are typically avail-

able in tabular format, GO and BIND are available in XML format. TRIPLES is a

relational database.

3. Local databases are relatively small databases that are typically developed and used

by individual laboratories. These databases may range from several kilobytes to

several (or tens of) megabytes in size. Examples include a protein-protein interac-

tion dataset extracted from BIND and a protein kinase chip dataset. While global

and boutique databases are mostly Internet-accessible, some local databases may be

network-inaccessible and may involve proprietary data formats.

Example Query 1: Figure 7.8 shows a query form that allows the user to simultaneously

query the following yeast resources: a) essential gene list obtained from MIPS, b) essential

gene list obtained from YGDP, c) protein-protein interaction data [208], d) gene and GO

ID association obtained from SGD, e) GO annotation and, f) gene expression data obtained

from TRIPLES [110]. Datasets (a)-(d) are distributed in tab-delimited format. They were

converted into our RDF format. The GO dataset is in an RDF-like XML format (we made

some slight modification to it to make it RDF-compliant). TRIPLES is an Oracle database.

We used D2RQ to dynamically map a subset of the gene expression data stored in TRIPLES

to RDF format.

The example query demonstrates how an integrated query can be used to correlate be-

tween gene essentiality and connectivity derived from the interaction data. The hypothesis

is that the higher its connectivity, the more likely that the gene is essential. This hypothesis

has been investigated in other work [80, 197]. In the query form shown in Figure 7.8, the

user has entered the following Boolean condition: connectivity = 80, expression level = 1,
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Figure 7.8. Example integrated query form.
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growth condition = vegetative, and clone id = V182B10. Such Boolean query joins across

six resources based on common gene names and GO IDs. Figure 7.9 shows the correspond-

ing SeRQL query syntax and output. The query output indicates that the essential gene

(YBL092W) has a connectivity equal to 80. This gene is found in both the MIPS and

YGDP essential gene lists. This gives a higher confidence of gene essentiality as the two re-

sources might have used different methods and sources to identify their essential genes. The

query output displays GO annotation (molecular function, biological process, and cellular

component) and TRIPLES gene expression.

Example Query 2: This query demonstrates how to integrate the UniProt dataset with

the yeast protein kinase chip dataset that captures the number of substrates that each kinase

phosphorylates with an expression level > 1. Figure 7.10 shows the RQL query syntax and

the output that gives the number of substrates phosphorylated by kinase “YBL105C” (level

> 1) as well as the functional annotation of the kinase. This protein is listed as essential

in both MIPS and YGDP. In addition to connectivity, we might hypothesize that the more

the number of substrates a kinase phosphorylates at a high level, the more likely that the

kinase is essential.

7.3.2 Performance

Sesame allows a repository to be created using a database (e.g., MySQL), native disk,

or main memory. We evaluate the performance of these approaches using example query

1 described previously. We run the same query twice against main memory, mySQL, and

native disk repositories. Each repository stores the identical datasets with a total of ∼ 800K

triple statements.
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Figure 7.9. Syntax and output of example query 1.
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Figure 7.10. Syntax and output of example query 2.

Table 7.2. Query performance.
Query run Memory MySQL File
1 312ms 308ms 9929ms
2 306ms 44ms 11045ms

Table 7.2 shows the amount the time (in milliseconds) it takes for query execution

for each repository type. Both the main memory and MySQL approaches take about the

same amount of time on the first query run (∼ 300ms). On the second query run, the

MySQL approach is 7 times faster than the main memory one due to a cache effect (the

speed difference, however, is only a fraction of a second). The file-based approach takes the

longest query execution time.

Table 7.3 shows the amount of time (in seconds) it takes to load an RDF-formatted

UniProt data file, which contains yeast data only, into the three repositories. The file size

is about 63 MB (∼ 1.4 million triple statements). As shown in Table 7.3, the main memory

approach has the best data loading performance, while the MySQL approach has the worst

performance due to the overhead involved in creating data indexes. In conclusion, the main

memory approach gives the best overall performance.
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Table 7.3. UniProt data loading performance.
Load run Memory MySQL File
1 38ms 651ms 262ms
2 40ms 646ms 275ms

7.3.3 Implementation

YeastHub is implemented using Sesame 1.1. We use Tomcat as the web server. The

web interface is written using Java servlets. The tabular-to-RDF conversion is written using

Java. To access and query the repository programmatically, we use Sesame’s Sail API that

is Java-based. We use MySQL as the database server (version 3.23.58) to store information

about the correspondences between the resource properties and the query form fields. Such

information facilitates automatic generation of query forms and query statements. We

also use the database server to create an RDF repository for performance benchmark as

described previously. YeastHub is currently running on a Dell PC server that has dual

processors of 2 GHz, 2 GB main memory, and a total of 120 GB hard disk space. The

computer operating system is Red Hat Enterprise Linux AS release 3 (Taroon Update 4).

7.4 Discussion

Although the tab-delimited format is popularly used in distributing life sciences data,

there are other data distribution formats such as the record format (or the attribute-value

pair format), XML format, other proprietary formats. It would be logical to incorporate

these formats into our RDF data conversion scheme. In the process of our RDF data

conversion, we generate the corresponding RDF schemas. While our approach to generating

new schemas allows existing properties that are defined in other schemas to be reused,
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there is a need to perform schema mapping at a later stage, as new standard RDF schemas

will emerge. How to translate one RDF schema into another RDF schema would be an

interesting semantic web research topic.

While URL’s are commonly used as a means to identify resources on the web, they

have the following problems.

1. The web server referenced by the URL may be broken or become unavailable. Also,

when a new server replaces the old one, the URL may need to be changed.

2. The syntax of the URL may change over time as the underlying data retrieval program

evolves. For example, parameter names may be changed and additional parameters

may be required.

3. The data returned by a URL may change over time as the underlying database con-

tents change. This creates a problem for researchers when they want to exactly

reproduce any observations and experiments based on a data object.

To address these problems, the Life Science Identifier project (http://www-124.ibm.

com/developerworks/oss/lsid/) has proposed a standard scheme to reference data re-

sources. Every LSID consists of up to five parts: the Network Identifier (NID); the root

DNS name of the issuing authority; the namespace chosen by the issuing authority; the ob-

ject id unique in that namespace; and finally an optional revision id for storing versioning

information. For example, “urn:lsid:ncbi.nlm.nih.gov:pubmed:12571434” is an LSID that

references a PubMed article. Each part is separated by a colon to make LSIDs easy to

parse. The specific details of how to resolve the LSID to a given data object is left to

an LSID issuing authority. In our case, we can potentially implement an LSID resolution

http://www-124.ibm.com/developerworks/oss/lsid/
http://www-124.ibm.com/developerworks/oss/lsid/
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server (or LSID issuing authority) for referencing data objects stored in our semantic web

data warehouse.

To increase the performance of data querying and loading, we use the main memory

approach to build the RDF repository. For large amounts of data, we may use the relational

database or native disk repository for data archival purposes and load the datasets of interest

from the archival repository into the main memory repository for speed performance. Also,

if we have a computer cluster, a parallel main memory architecture may be used to allow

multiple main memory repositories to be queried concurrently.

While RDF-based query languages are SQL-like, there are SQL features that have not

been implemented in Sesame yet. For example, not all RDF query languages (e.g., RQL)

support outer-join like queries. In other words, if any of the properties included in a join

query have no values, all the corresponding triple statements will be omitted from the query

results. To get around this problem, our RDF data format includes property tags that have

no data values.

Also, it would be useful to implement the aggregate functions (e.g., sum and average

using GROUP BY). Sesame currently does not support delete and update queries, although

these operations can be performed using some programmatic graph interfaces. Another

limitation is that Sesame does not have a way to identify the source of triples (statements)

once they are loaded into the repository. This makes removal of triples from a repository

difficult if the triples come from different RDF files and have overlapping namespaces.

SPARQL is a new RQL standard addressing these issues (http://www.w3.org/TR/2004/

WD-rdf-sparql-query-20041012/).

To enhance the knowledge representation and inference capability of the semantic

http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/
http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/


CHAPTER 7. SEMANTIC WEB 141

web, OWL (http://www.w3.org/TR/owl-xmlsyntax/), which is an extension of RDF, has

emerged as an XML-based web ontology language. Support of reasoning using OWL is

being incorporated into some RDF stores (e.g., Sesame and Tucana). This allows such

RDF stores to transit from being data stores to becoming knowledge stores. There are

questions (e.g., planning, explanation, and prediction) that cannot be answered by tradi-

tional database queries. However, they can be addressed by the kind of representation and

reasoning provided by an ontological language such as OWL. This has been demonstrated

in the context of reasoning about signaling network data [14]. Our work also represents a

step in this direction.

http://www.w3.org/TR/owl-xmlsyntax/


Chapter 8

Web 2.0

8.1 Introduction

Web 2.0 refers to a second generation of Internet-based services - such as social net-

working sites, wikis, communication tools, and folksonomies - that emphasize online col-

laboration and sharing among users (http://www.paulgraham.com/web20.html). If the

first generation Web has revolutionized the way people access information on the Internet,

Web 2.0 has revolutionized the way people communicate across the Internet. Web 2.0 has

transformed the Web into an environment that provides richer user experiences by allowing

for the combination of disparate information in a variety of data formats, the facilitation

of interaction between multiple parties, and the collaboration and sharing of information.

Web 2.0 consists of a variety of applications implemented using diverse technologies. In

general, the variety of Web 2.0 applications can be classified as follows:
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• Rich Internet applications. These applications behave very much like desktop ap-

plications, and are easy to install and easy to use. In particular, they provide a

dynamic interface with interactive features like point-and-click/drag-and-drop. These

interfaces are achieved with technologies such as Ajax (Asynchronous JavaScript and

XML) (http://en.wikipedia.org/wiki/AJAX), and mini plug-in programs known

variously as widgets, gadgets and snippets, which create a programming environ-

ment within the browser and allow the user to easily combine information and create

a variety of graphical presentations. As a result of this progress, the gap between

Web programming and desktop programming has been diminishing (http://blogs.

adobe.com/shebanation/2007/02/desktop_application_programmin.html).

• Collaboration tools. These include asynchronous collaboration tools such as wikis and

blogs, to which users do not need to be simultaneously connected at any given time

to collaborate. This category also includes synchronous, real-time (or near real-time)

collaboration enablers, such as leading-edge instant messaging tools.

• User-contributed content databases. These are large-scale environments - such as

YouTube, a video posting Web site, and Flickr, a photo-sharing site - in which users

share content in multimedia format.

• Integrative technologies enabling the Web as a platform. There are abundant ser-

vices and data sources scattered over the Internet. While they may be accessed

independently, it has been exceedingly challenging to integrate Web-based services

to create novel functionality. Web 2.0 mashup offers a solution to this problem.

Mashup tools like Yahoo! Pipes (http://pipes.yahoo.com/pipes/) offer a graphi-

cal workflow editor that allows the user to pipe Web resources together easily. Other

tools like Dapper (http://www.dapper.net) provide an easy way for users to ex-

http://en.wikipedia.org/wiki/AJAX
http://blogs.adobe.com/shebanation/2007/02/desktop_application_programmin.html
http://blogs.adobe.com/shebanation/2007/02/desktop_application_programmin.html
http://pipes.yahoo.com/pipes/
http://www.dapper.net
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tract (or scrape) Web contents displayed in heterogeneous formats and output the

extracted contents in a standard format such as tab-delimited values and XML. Data

visualization tools like Google Maps (http://maps.google.com) and Google Earth

(http://earth.google.com) offer a GIS (Geographic Information System) interface

for displaying and combining geographically related data. Despite their different func-

tionalities, these tools may interoperate. For example, the output of Dapper may be

fed into Yahoo! Pipes, and Yahoo! Pipes in turn can be linked to Google Map to

process and display geographical data.

The popularity of the Web [19] and the success of the Human Genome Project (HGP) [32]

have led to an abundance and diversity of biomedical data available via the Web. Figure 8.1

indicates the rate of growth in the number of Web-accessible biological databases that were

published in the annual Database Issue of Nucleic Acids Research (NAR) between 1999 and

2005. These databases (which only represent a small portion of all biomedical databases

in existence today) play an indispensable role in modern Health Care and Life Sciences

(HCLS) research. They facilitate data mining and knowledge discovery [60]. The benefits

for integrating these databases include the following:

• HCLS data are more meaningful in context, while no single database supplies a com-

plete context for a given HCLS research study.

• New hypotheses are derived by generalizing across a multitude of examples from

different databases.

• Integration of related data enables validation and ensures consistency.

http://maps.google.com
http://earth.google.com
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Figure 8.1. Number of databases published in the NAR Database Issues between 1999 and
2005.

Via a Web browser, an HCLS researcher may easily access diverse information includ-

ing DNA sequences, biochemical pathways, protein interactions, functional domains and

annotations, gene expression data, disease information, and public health data. Integrat-

ing such data from diverse sources, however, remains challenging. Researchers wishing to

analyze their own experimental data in combination with publicly available data face the

cumbersome tasks of data preprocessing and cleaning [61], which includes scraping Web

pages, converting file formats, reconciling incompatible schemas, and mapping between in-

consistent naming systems. Even experienced programmers find such data integration tasks

daunting and tedious.

A variety of approaches, including data warehousing [114, 166], database federation [84,

166], and Web services [179, 193], have been developed to facilitate data integration in the

context of HCLS. One problem with these approaches is that they require their developers

to have significant database/programming expertise. Moreover, these systems may not be

able to anticipate or offer the flexibility needed by the end users (who may themselves not

be well versed programmers). Furthermore, it is difficult if not impossible for these systems
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to keep up with the growth of Web data sources. There are very few such systems that

allow the user to add new external data sources easily, especially ones that do not conform

to standard data formats.

To address these problems, Web 2.0 mashups have emerged. A mashup is a Web

application that combines multiple third-party services over the Web. Numerous mashup

examples are available from www.programmableWeb.com. Most of the current mashups are

for non-scientific use. The potential of data mashup in the HCLS domains has only recently

been demonstrated by using Google Earth to geographically integrate and visualize different

types of data, including epidemiological and public health data, to help track the global

spread of avian influenza [30]. In this study we provide more use cases to demonstrate how

Web 2.0 mashups can be of potential use to HCLS researchers.

8.2 Mashup scenarios

We provide three scenarios that illustrate the use of several Web 2.0 mashup tools

and sites to implement data integration in the HCLS domains. The first scenario, within

a life sciences context, shows how to use Dapper and Yahoo! Pipes to integrate diverse

data such as microarray measurements and gene annotation data. The second and third

scenarios, within public health contexts, demonstrate how to geographically correlate cancer

data with environmental data using Yahoo! Pipes, Google Maps, and GeoCommons (http:

//www.geocommons.com/), and to use these tools to predict the risk of West Nile Virus

infection in different locations at different time, respectively.

www.programmableWeb.com
http://www.geocommons.com/
http://www.geocommons.com/
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8.2.1 Life sciences scenario: annotating microarray data

Figure 8.2 shows the workflow of a typical research study featuring the use of a spotted

microarray, one kind of microarray technology. As shown in the figure, two biological

samples (normal vs. disease), which consist of quantitatively distinct distributions of mRNA

sequences, are labeled with fluorescent dyes. Sequences transcribed from the disease sample

mRNA are labeled with the red fluorescent dye and sequences transcribed from the normal

sample mRNA are labeled with the green fluorescent dye. Next, the two labeled samples

are mixed in equal total amount, and that mixture is allowed to “hybridize” (bind) to the

affixed reference sequences that have been deposited on the surface of a chemically treated

microscopic glass slide. Each spot on the slide contains many strands of the DNA sequence

corresponding to one specific gene. A large number of spots, and therefore many gene

sequences, may be featured on a given slide.

Figure 8.2. A typical research workflow that involves the use of microarrays.
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After hybridization is complete, the slide is scanned by a laser scanner that measures

the amount of each dye at the scale of 5-10 µm pixels. Associated image processing software

assembles the pixels into an image consisting of spots whose average pixel intensity values

convey levels of gene expression. The color of a spot indicates how much the corresponding

gene expresses in the disease sample relative to the normal sample. For example, a red or

green spot means, respectively, that the gene is primarily expressed in the diseased or normal

sample. If a spot is yellow, it means that the gene is equally expressed in both samples. If

a spot is black, it means that the gene is not expressed or only meagerly expressed in both

samples.

The imaging software processes the image data to produce a spreadsheet file of quan-

titative measurements of the image. This file, which contains rows corresponding to genes

and columns corresponding to different types of measurements such as red intensities, green

intensities and ratios, may be subjected to data analyses for statistical interpretation of the

results. Such interpretation gains dramatically more meaning if the numerical output is

integrated with known biological knowledge (e.g., gene annotation); yet such knowledge is

frequently provided by diverse continuously-updated databases that are difficult to couple

to the image outputs.

In our scenario, we integrated data from two Web sites, one hosted at Yale University,

and the other at the BROAD Institute [53]. The Yale site provides microarray data gen-

erated from microarray experiments studying the gene expression profiling of Neurospora

crassa, a red bread mold. The data are presented in the form of a tab-delimited file, with

the columns describing different properties of the spots of a microarray slide, including their

locations, gene identifiers, and mRNA sequences. To find current information about each

of the genes listed in this file, one may go to the BROAD Institute site to search for the
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gene annotation in its N. crassa database. An example search and the corresponding search

results are illustrated in Figure 8.3, where the gene identifier NCU06658.1 was used as the

search term. The search result is a page containing assorted annotations of the gene, such

as its name, chromosome number, and exact location in the genome.

Figure 8.3. Microarray data and gene annotation provided by two sites.

Currently the most common way to perform this kind of data mashup is to write scripts

(in languages such as Perl) to:

1. Parse the tab-delimited file and extract the gene identifiers.

2. For each identifier, construct a URL that corresponds to the search result page of the
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gene, and retrieve the content of the page.

3. Parse the result page to extract the data fields of interest.

4. Merge the extracted data fields with the original tab-delimited file to produce the

integrated dataset.

This traditional approach has a number of shortcomings:

• Parsing HTML pages, especially those with potentially minor formatting discrepan-

cies, is difficult and error-prone.

• The scripts may not be easily updated when there are changes to the data sources.

• It is difficult to reuse and share the scripts among different researchers. For instance,

it is very common that when a graduate student or a postdoctoral fellow leaves a

laboratory, the scripts written by him/her are not sufficiently documented for others

to understand. In many cases other members of the laboratory resort to rewriting the

scripts from scratch when the old ones fail to work due to changes at the data source

side.

As we will discuss later in this chapter, an ultimate solution to these problems involves

standardizing data formats and adding semantic annotations, so that machines could process

the data in a largely automated way. Yet before such semantically rich data are widely

available, it is desirable to have some semi-automatic tools that facilitate data integration

while minimizing the above issues. We have found that some Web 2.0 tools, such as Dapper

and Yahoo! Pipes, serve this purpose well. Here we describe how such tools were used to

perform the above data mashup task easily.
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The parsing of HTML pages was handled by the Web tool Dapper. Use of the tool

consisted of two phases: learning and applying. In the learning phase, Dapper took the

search result pages of some genes as input (Figure 8.4, step 1), and asked the human trainer

to mark on the screen the parts of the content that corresponded to the data fields of

interest (step 2, with the Gene Name field selected as an example). The gene identifier

was set as a query parameter that would be changed dynamically for different genes (step

1, green box). Using some machine learning algorithms, the back-end system of Dapper

then learned the locations of the data fields in the HTML pages from the examples. The

resulting product, called a “dapp”, was the data extraction proxy of the BROAD Institute

site. In the applying phase, when the dapp was presented a new gene identifier, it extracted

the corresponding data values of the gene from the site and output them in standard XML

format (Figure 8.4, step 3).

The dapp was then used as a data source to be integrated with the Yale tab-delimited

file using Yahoo! Pipes, which is a tool that treats data as “water” flowing in “pipes”. It

allows users to use different widgets to process their data, connecting the widgets using

metaphorical pipes.

As shown in Figure 8.5, the Yahoo! Pipes tool has three panels: library, canvas, and

debugger. The library panel lists categories of widgets that allow functions such as data

fetching, filtering, and manipulation. The canvas panel allows the selected widgets to be

placed, moved, and connected. The debugger panel is below the canvas panel, and it displays

the output or error messages when the pipe is executed. The specific pipe used for our data

mashup task is shown in the canvas panel. It starts with a “Fetch CSV” widget to fetch

the tab-delimited data table from the Yale site. The output of the widget is piped to a

“Truncate” widget for limiting the total number of rows in the result, which we set as 10 for
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Figure 8.4. A Dapper interface for querying and retrieving gene annotation.
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demonstration. Then we used a “Loop” widget to iterate through each row to construct a

URL to the dapp using the gene identifier, and another “Loop” widget to actually retrieve

the content of the dapp output. Finally, all unwanted fields were filtered and the dataset

was output as a comma-separated-value (CSV) file.

Figure 8.5. (a) A Yahoo! Pipe for mashup of microarray data and gene annotation and (b)
integrated output.

The whole mashup process did not involve any coding. The user interfaces of the two

tools were simple and intuitive enough for non-programmers to use. The difficult task of

HTML parsing was handled by dedicated learning algorithms of Dapper, which, compared

to most custom scripts, requires much less work by the user.
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8.2.2 Public health scenario 1: correlating cancer and environmental fac-

tors

Environmental health epidemiologists study the association between human diseases

(e.g., cancer) and environmental factors. Such studies often require the integration of

disparate data sources such as population census, air quality and environmental pollution

release, and health care utilization data. These different data streams are typically produced

by different agencies. Automated integration of data from these agencies is limited due to

a variety of political and technological challenges. Web 2.0 mashups offer the potential for

automating the integration of disparate health care data to enhance environmental health

research. As an example, we demonstrate how to use Yahoo! Pipes and a Web 2.0 site

called “GeoCommons” to geographically correlate cancer data with water pollution data in

the United States.

First, we identified a cancer profile dataset at the State Cancer Profiles Web site (http:

//statecancerprofiles.cancer.gov/map/map.noimage.php) developed by the National

Cancer Institute (http://gis.cancer.gov). This tabular dataset contains annual death

rates for all types of cancers in different US states (the year of this data collection is 2004).

We created a pipe as shown in Figure 8.6(a) to fetch this cancer data table and applied

a user-defined threshold against the annual death rates. The filtered output was fed to a

“location extractor” widget that allows the states that have annual cancer death rates above

the specified threshold to be displayed via Google Maps, as shown in Figure 8.6(b). The

map was then exported to a KML file (a standard XML format for Google Maps/Earth).

We uploaded the KML file to the GeoCommons Web site (http://www.geocommons.

com). This site allows users to annotate and publish their uploaded maps as well as mashup

http://statecancerprofiles.cancer.gov/map/map.noimage.php
http://statecancerprofiles.cancer.gov/map/map.noimage.php
http://gis.cancer.gov
http://www.geocommons.com
http://www.geocommons.com
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Figure 8.6. (a) A Yahoo! Pipe for filtering US state cancer profile data and (b) display the
results using Google Maps.
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the digital maps uploaded by other users. In this example, we found a “heat” map that

details the number of polluted rivers/streams in the US. In a heat map, a brighter color

corresponds to a higher number of polluted rivers/streams. Figure 8.7 shows a GeoCom-

mons interface that allows the state cancer profile map to be superimposed with the water

pollution map. We can see that most of the states with high cancer death rates are in the

fire zone.

Figure 8.7. A mashup of the state cancer profile map and water pollution map.

8.2.3 Public health scenario 2: predicting West Nile Virus cases

We attempted to reimplement the work of Zou et al. [212] for predicting high risk WNV

areas using a Web 2.0 approach and degree-day temperature calculations based on the single

sine method [5]. Briefly, WNV is a mosquito-borne flavavirus that was originally discovered

in the United States after an outbreak in New York City in 1999 [107, 139, 154]. The
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infection can cause illness and death in humans and animals, including crows and horses.

Transmission of the virus increases during the summer months since mosquito activity peaks

in warmer weather [107]. Many different types of data streams are used for surveillance of

West Nile Virus including human case reports, mosquito testing, dead bird sightings, dead

bird or other wildlife testing, land use data, and temperature data. In this case report,

we use Yahoo! Pipes, Dapper, GeoCommons [154], and Google Earth to create a grid-like

application for predicting West Nile Virus (WNV) risk in humans.

We used publicly available data from three websites and integrated that data using

two different web services to create the application. Human and animal WNV data were

taken from the CDC ArboNet website (http://diseasemaps.usgs.gov). The ArboNet

website provides the number of WNV cases in five types of organisms at the county level,

as well as statewide accumulated totals. We focused on bird and human cases aggregated

at the statewide level and built a dapp to locate the total number of WNV cases on the

USGS site. Then, using a list of state abbreviations as well as latitudes and longitudes from

GeoCommons, we built a Yahoo! Pipe to loop over the states, extract the accumulated

totals, and combine them with the geographical locations to produce an output file in

Keyhole Markup Language (KML). Temperature data were taken from the National Climate

Data Center (NCDC, http://www.ncdc.noaa.gov/oa/ncdc.html). The NCDC provides

monthly climatic data from each weather station; the stations are broken down into four lists

on the NCDC web site. We built a Yahoo! Pipe to aggregate the station IDs and locations

into a single list. Then, we extracted a sub-list of stations by state and downloaded the

climate data from each station for a particular year (Figure 8.8). Calculation of transmission

risk was refined based on degree-day calculations. The degree-day is a measurement of

heating or cooling in a given area and is calculated as the difference between the mean daily

http://diseasemaps.usgs.gov
http://www.ncdc.noaa.gov/oa/ncdc.html
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temperature and a pre-defined baseline temperature [57, 149]. For vector-borne diseases like

WNV, it is used to determine the temperature threshold for which viral transmission can

occur. Degree-day calculations were performed by a web service published by the UC Davis

Statewide Integrated Pest Management Program (IPM, http://www.ipm.ucdavis.edu/).

A customized accumulator was built to process the IPM output file and to perform a sliding-

window accumulation to account for the limited infection period of a mosquito. Then, the

maximum of the accumulated degree-days was computed by Yahoo! Pipes and compared

to the threshold required for median viral transmission in order to predict WNV risk at

the station for that year. These predictions were then combined with the geographical

information to produce a KML file for all the stations in a particular state. We chose two

states, Delaware and New Jersey, to use in our case report; any state with potential for

WNV transmission could have been included.

For visualization, each state has a separate KML file that can then be overlaid into

Google Earth. This allows public health researchers to visualize the predictions from the

temperature data alongside the actual number of human and animal cases. We repeated

this procedure for years 2006 and 2007.

During development, we had to write computer programs to address performance issues

with the Web 2.0 applications. First, we built a server-side cache to store the content from

the different data sources in order to avoid overloading the servers. This process is similar

to the caching systems of web browsers, which store web content on the local disk and serve

users with these cached copies instead of repeatedly fetching from the Web. With multiple

users potentially running our pipeline and accessing the same web pages, it is more effective

to have a second-level caching at the server side. Yahoo! Pipes does have its own internal

caching system, but since we had no control of its properties, including expiration time

http://www.ipm.ucdavis.edu/
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Figure 8.8. Schematic diagram illustrating how the developers combined different web-based
data and analytical services to produce the application.
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and maximum size, we also implemented a cache at our local server. In addition, we wrote

three small programs to connect different components of the pipeline. The first program

extracted the properties of each weather station (ID, name, latitude and longitude) from

the text files provided by the NCDC site. These files use fixed column lengths to separate

different data fields instead of the more common use of delimiters. Since this file format is

not currently supported by Yahoo! Pipes, we had to write our own parsers. The second

program was used to submit temperature data to the IPM site for calculating degree-days.

The IPM site provides two methods for data input: a text form for entering data on screen

and the ability to submit a data file through the HTTP Post method. We were unable to

use the first method as there were not enough input boxes for entering a whole month of

data. Meanwhile, the data retrieval modules of Yahoo! Pipes only support the HTTP Get

method, not Post. We therefore wrote our own connector for posting the data file prepared

by Yahoo! Pipes to the IPM site. The third program processed the degree-days output of

the IPM site and sent it back to Yahoo! Pipes. It used a sliding window to calculate the

accumulated degree-days within each window.

The application was developed in one and a half months. In addition to application

development, this time included research to find available Web 2.0 resources as well as

project design. The KML maps are displayed in Google Earth for 2006 and 2007 (Figures 8.9

and 8.10); they show the total number of human and bird cases and a label for each weather

station. Next to each weather station is a ‘+’ or ‘-’, indicating whether the degree-day was

above or below the assigned threshold. For 2006 and 2007, both states have every weather

station above the threshold (all have a ‘+’), which suggests that the weather in each state

supports viral transmission. However, in New Jersey, the number of human cases decreases

from 2006 to 2007 while the number of bird cases remains relatively the same. In Delaware,
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the number of bird cases decreases slightly.

Figure 8.9. WNV and temperature data for Delaware and New Jersey in 2006.

8.3 Strengths and weaknesses

In this section, we discuss the general strengths and weaknesses of Web 2.0 mashup

technologies based on our current experience in using them to integrate HCLS data. We
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Figure 8.10. WNV and temperature data for Delaware and New Jersey in 2007.
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have identified the following strengths:

• Applicability. The tools that we used in the mashup examples are useful for diverse

areas of biomedical research. For example, Yahoo! Pipes supports a great variety of

input and output data types that biomedical researchers need to deal with, from the

most popular tab-delimited format to structured XML and semantically rich RDF.

Common mashup tasks such as data integration by means of ID mapping can be

performed without coding.

• Ease of use. As demonstrated by the mashup examples, tools like Dapper and Yahoo!

Pipes provides an easy-to-use Web interface for extracting and integrating data from

diverse sources. Extraction and integration with these intuitive tools is easier than

writing code in a particular programming language (e.g., Perl) to parse and integrate

data.

The tools in general have intuitive designs that require little learning time for be-

ginners. New users are also greatly assisted by the active user community in solving

their technical problems through reading or joining in related discussions at designated

online message boards.

• Reusability and extensibility. Web 2.0 mashup tools like Yahoo! Pipes and Dapper

are designed for sharing and reuse. For example, the Yahoo! Pipes site allows its

users to describe and publish their pipes. Through its “Show off your Pipe” message

board, users can comment and rank each other’s pipes. In addition, the shared pipes

can be easily extended or modified by others to add new features. For instance, it is

straightforward to take components from several publicly shared pipes to form a new,

customized pipe.
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• Interoperability. As shown in our examples, different Web 2.0 tools can be easily

combined to enhance the mashup capability. For example, Yahoo! Pipes can be com-

plemented by Dapper by allowing fetching of data in formats that are not supported

by Yahoo! Pipes. In addition, Dapper provides an Application Programming Inter-

face (API) that allows Web services for searching the dapps and software development

toolkits (e.g., in Perl and Java) for accessing dapps programmatically.

• Active roles of users. Web 2.0 applications emphasize the active participation of

users in reporting bugs, suggesting new functions, or even implementing new features

through specific software development kits (SDK). These activities facilitate the im-

provement of applications much more rapidly than in traditional software engineering

paradigms.

In spite of these strengths, we have experienced and would note several issues that arise

in creating data mashups using the tools.

• Missing features and instability. Tools like Yahoo! Pipes and Dapper are relatively

new, and are still under active development. Since many of these tools were initially

designed for casual lightweight mashup tasks such as aggregating news feeds from a

small number of Web sites, their designs did not incorporate a breadth of computa-

tional theory. For example, while Yahoo! Pipes provides operations commonly found

in database query languages, such as selection and renaming, some other essential

operations such as column selection (i.e., “projection” in database terms) and table-

joining are currently either not supported or supported only in arcane ways. Many

such features are needed in order for these tools to be widely adopted for daily research

activities.
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Additionally, these new tools still contain bugs. In particular, due to the heavy use

of client-side scripting (e.g., JavaScript), these tools are especially prone to errors

that arise from the many brands and versions of browsers that are in use today but

not completely compatible. Moreover, as with any Web servers, a Web 2.0 site may

become unreachable without prior warnings.

• Performance and scalability. Given the distributed nature of the Web and the limited

speed of the network connections, mashing up large datasets from different sources can

be very slow. We encountered this problem when attempting to integrate the whole

microarray data table (consisting of tens of thousands of rows) with the corresponding

annotation data. There was a timeout when we executed the pipe for the entire table.

The largest number of rows that we were able to integrate successfully using our pipes

was around 1500, and the task took about 1.5 min to run. In comparison, with all

the datasets stored locally, integrating tens of thousands of rows should not take more

than a few seconds using a customized script.

• Security. Most Web 2.0 sites do not have a strong security policy for their users. The

users have to bear the security risks if they upload their data to these Web 2.0 sites.

Although the user may choose not to publish their data to the public, he/she loses

control of the data once the data are uploaded to a Web 2.0 server. The security is

at the mercy of the person(s) in charge of the server security. Therefore, it is not

recommended to use public Web 2.0 sites to share sensitive/confidential data.

• Flexibility. Although the Web 2.0 tools are found to be very useful in our two

data mashup scenarios, by nature they are not as flexible as customized scripts.

There are always some special cases that the standard widgets cannot handle prop-

erly. One solution, which is already adopted by Yahoo! Pipes, is to allow users to
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supply customized Web services as widgets. This is a promising approach in gen-

eral, although standard Simple Object Protocol (SOAP) based Web services (http:

//xml.coverpages.org/soap.html) are still not yet supported.

• Quality of final output. Professional users are unlikely to switch to Web 2.0 tools until

the aesthetic quality of the final graphical or tabular output matches the quality that

may be achieved with local software.

For the West Nile Virus use case, we hypothesized that the use of grid-like applications

and Web 2.0 technologies would facilitate the integration of public health data from diverse

sources. However, in our experience this process was far from straightforward. Yahoo! Pipes

was not able to handle fetches of large amounts of data due to timeout, internal caching,

and synchronization errors. Some websites seemed to have been designed to confound

mashup approaches. For example, the NCDC site limited our daily download of web pages

to 100 pages, but it is unclear if there is an official daily access limit. When 100 pages

were exceeded, the site returned an error page. Likewise, for the USGS site, when too

many requests were issued using Dapper within a short period of time, the web server

returned blank fields where WNV case count were supposed to appear. Further output

pages in this situation were indistinguishable from the situation where no WNV cases were

reported. Other problems included a lack of support for basic data management functions

(aggregation, table joins, etc.) and limited support for conversion of data between various

output forms.

We conclude that while this approach is feasible, the development effort was not signif-

icantly reduced from more conventional software engineering approaches. This was in part

due to the lack of maturity of present mashup tools and in part due to design aspects of

http://xml.coverpages.org/soap.html
http://xml.coverpages.org/soap.html
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two of the web sites that inhibited their use as impromptu web services. The design does

illustrate the usefulness of grid-like computing approaches and Web 2.0 in public health and

the value of web-based integration of data and analytical services.

8.4 HCLS 3.0

According to Spivacks (http://novaspivack.typepad.com/nova_spivacks_weblog/

2006/11/web_30_versus_w.html), Web 3.0 refers to “a supposed third generation of Internet-

based services - such as those using Semantic Web, microformats, natural language search,

data-mining, machine learning, recommendation agents, and artificial intelligence technolo-

gies - that emphasize machine-facilitated understanding of information in order to provide

a more productive and intuitive user experience.” Semantic Web (SW) technologies play a

core role in this definition.

The World Wide Web Consortium (W3C) has launched the Semantic Web for Health

Care and Life Sciences Interest Group (HCLSIG; http://www.w3.org/2001/sw/hcls/),

which has been chartered to develop and support the use of SW technologies to im-

prove collaboration, research and development, and innovation adoption in the HCLS

domains [158]. One of the ongoing efforts involves converting a variety of HCLS data

sources into the standard Semantic Web data formats endorsed by W3C: Resource Descrip-

tion Framework (RDF) (http://www.w3.org/RDF/) and Web Ontology Language (OWL)

(http://www.w3.org/TR/owl-ref/) formats. While OWL is semantically more expressive

than RDF (http://www.w3.org/TR/owl-ref/), OWL and RDF bear the same syntax.

Datasets expressed in either format can be queried by the standard RDF query language

- SPARQL (http://www.w3.org/TR/rdf-sparql-query/). For OWL datasets (ontolo-

http://novaspivack.typepad.com/nova_spivacks_weblog/2006/11/web_30_versus_w.html
http://novaspivack.typepad.com/nova_spivacks_weblog/2006/11/web_30_versus_w.html
http://www.w3.org/2001/sw/hcls/
http://www.w3.org/RDF/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-sparql-query/
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gies), tools such as Pallet (http://www.mindswap.org/2003/pellet/), RacerPro (http:

//www.racer-systems.com), and Fact++ (http://owl.man.ac.uk/factplusplus/) can

be used to perform OWL-based reasoning. At WWW 2007, a demonstration organized by

the HCLSIG showed how to use SPARQL to query across a number of OWL ontologies in

the Alzheimer’s disease research context. In addition, Semantic Web applications such as

YeastHub [39], SWAN [66], and BioDash [136] have already emerged in the HCLS domains.

While Web 2.0 offers human-friendly tools for mashing up data, the Semantic Web [20]

better enables computers to help human users find and integrate information over the

Internet, and to perform such activities in a more sophisticated way. As pointed out by

Ankolekar et al. [8], Web 2.0 and Semantic Web are not two conflicting visions. They are,

instead, complementary to each other. There is a potential benefit to mashing up Web

2.0 and Semantic Web in the context of HCLS. To implement the vision of Semantic Web,

more datasets need to be converted into RDF/OWL formats. This conversion process may

be facilitated by Web 2.0 tools that can be used to extract and aggregate non-SW content

from numerous Web sites, producing data converted into RDF/OWL. Furthermore, Web 2.0

tools may be used to assist users to annotate a small amount of data. Such small annotated

data sets may then be used as examples to train automatic annotation algorithms.

Currently, many Web 2.0 tools can process RSS feeds (which use a simple RDF struc-

ture). It would be desirable for these tools to be able to understand semantically richer

formats like RDF Schema (RDFS) and OWL, thus supporting richer and possibly more in-

telligent integration. For example, SPARQL may be supported by future Web 2.0 tools for

fetching, filtering, and aggregating RDF/OWL data sources. In addition, “RDF-attributes”

or RDFa (http://www.w3.org/TR/xhtml-rdfa-primer/) has been proposed by W3C as

an alternative to microformat for embedding ontological elements into existing HTML (more

http://www.mindswap.org/2003/pellet/
http://www.racer-systems.com
http://www.racer-systems.com
http://owl.man.ac.uk/factplusplus/
http://www.w3.org/TR/xhtml-rdfa-primer/
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precisely XHTML) documents, mashing up human readability and machine readability. It

would be logical for future Web 2.0 tools (e.g., Dapper) to recognize RDFa, even though

RDFa parsing tools like GRDDL (Gleaning Resource Descriptions from Dialects of Lan-

guages) (http://www.w3.org/2004/01/rdxh/spec) are available.

Figure 8.11 depicts an example demonstrating implementation of semantic mashup be-

tween existing Web pages using RDFa. On the left of Figure 8.11, a Web page of NeuronDB

(http://senselab.med.yale.edu/neurondb/) shows the neuronal properties including re-

ceptors (e.g., GabaA and GabaB) and currents (e.g., I Potassium and I Calcium) located in

different compartments (e.g., Dad, Dem and Dep) of the “cerebellar purkinje cell”. On

the right of Figure 8.11, there are 2 linked Web pages of the Cell Centered Database

(CCDB) (http://ccdb.ucsd.edu). The top Web page shows the different neuronal im-

ages for “purkinje neuron”, while the bottom page shows the detailed information about

the “purkinje neuron”, including the region in the brain where the neuron is located. In

this case, it is located in the “cerebellum”. Using RDFa, we can associate ontological frag-

ments (in OWL format) with HTML elements. The OWL components (represented by

dotted rectangles) corresponding to the circled HTML elements are shown in Figure 8.11.

The semantic relationships are explicitly expressed using the OWL-DL syntax. For exam-

ple, in CCDB, the class “PurkinjeNeuron” has a property named “region” whose value is

“Cerebellum”. In addition, semantic mashup is achieved using the “equivalentClass” con-

struct supported by OWL-DL. In this case, the NeuronDB class “CerebellarPukinjeCell”

is equivalent to the CCDB class “PurkinjeNeuron” whose region property has the value

“Cerebellum”.

To take the concept of RDFa further, we may entertain the possibility of extending it

to work for any XML format rather than limiting its domain to XHTML. One main benefit

http://www.w3.org/2004/01/rdxh/spec
http://senselab.med.yale.edu/neurondb/
http://ccdb.ucsd.edu
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Figure 8.11. Semantic mashup between existing Web pages.

of such an extension is that existing visualization tools like Google Maps use XML as the

input data format. Embedding ontologies in these XML formats would add a querying

capability for ontology, while exploiting the visualization capability currently supported by

existing tools. For example, if some geo-ontologies are integrated into Keyhole Markup

Language (KML) (http://code.google.com/apis/kml/), geographic mashup by Google

Maps/Earth may be performed in a fully semantic manner.

With regard to the cancer data mashup, we have encountered some cancer-related data

that are tallied within geographic regions that exhibit different granularities. Some data

may be collected at the city level, while other data may be collected at the county or state

level. To support semantic mashup based on locations, one may define an ontology in which

a city (e.g., North Haven) is located in a county (e.g., Greater New Haven), which is in turn

http://code.google.com/apis/kml/
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located in a state (e.g., Connecticut). Given such an ontology, location-based inference may

be performed when mashing up data.

The Semantic Web community has been working with data providers to convert their

data into RDF/OWL ontologies. While the ultimate goal is to come up with heavy-weight

(semantically rich) ontologies for supporting sophisticated machine reasoning, it may be

worthwhile to also provide coarser ontologies that can be easily incorporated into future

Web 2.0 tools. Currently these tools use tags and folksonomies to annotate and categorize

content. A mashup of folksonomy and ontology merits exploration. For example, popular

tags may evolve into standard terms. In addition, taxonomic or hierarchical relationships

may be identified among existing tags. This bottom-up approach may allow social tagging

to evolve into the development of standard ontologies. This evolution is reflected by the

transformation of social wiki into semantic wiki. Instead of tagging wiki pages based on

user-defined terms, semantic wiki tools such as ontowiki (http://ontowiki.net/Projects/

OntoWiki) allow users to semantically (ontologically) annotate Web pages. The semantic

mashup scenario depicted in Figure 8.11 can potentially be achieved using semantic wiki

as well. In this case, OWL-formatted metadata will be generated for facilitating semantic

data mashup.

HCLS represents flagship domains in which SW applications may be developed and

shown to be successful (http://www.thestandard.com/internetnews/001301.php). One

possible direction for future work may be to develop SW applications that would provide

the infrastructure to support semantic mashup of HCLS data in a user-friendly and social-

friendly fashion. We therefore envisage a transformation from Web 2.0 mashup to Web 3.0

semantic mashup, producing a better synergy between human and computer.

http://ontowiki.net/Projects/OntoWiki
http://ontowiki.net/Projects/OntoWiki
http://www.thestandard.com/internetnews/001301.php
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8.5 HCLS 2.0 + HCLS 3.0 = e-HCLS

e-Science describes science that is increasingly done through distributed global col-

laborations enabled by the Internet, using very large data collections, large-scale comput-

ing resources, and high performance visualization (http://e-science.ox.ac.uk/public/

general/definitions.xml). It involves two components: semantic components and so-

cial components. e-HCLS is e-Science within the HCLS context. While the Semantic

Web has the potential to play an important role in the semantic representation of e-

Science, Web 2.0 has the potential to transform from the so-called “me-Science” (http:

//www.gridtoday.com/grid/963514.html), that is driven by an individual researcher or

laboratory, into what we call “we-Science”, which is driven by community-based collabora-

tion. The mashup scenarios described in our paper shed some light on the potential impact

of social networking on HCLS.

Our public health data mashup scenario has demonstrated the benefit of sharing data

(maps) in the community. Once the data are shared in a standard format (e.g., KML),

visualization and integration may be readily achieved. While different groups have inde-

pendently created different maps (e.g., cancer profiles and environmental pollution) to meet

their own needs, new insights or knowledge can be derived when these maps are mashed

up. This mashup is made possible by providing a global information commons like Geo-

Commons.

The microarray mashup scenario has illuminated the importance of data integration

in data mining/analysis. Web 2.0 can potentially be used to create a social network that

facilitates collaboration between microarray data providers and microarray data miners. In

this case, via a microarray data commons (Web 2.0 site), data providers can publish their

http://e-science.ox.ac.uk/public/general/definitions.xml
http://e-science.ox.ac.uk/public/general/definitions.xml
http://www.gridtoday.com/grid/963514.html
http://www.gridtoday.com/grid/963514.html
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datasets, while data miners can publish their data analysis algorithms/programs. This

way, not only can the data providers search for the appropriate tools for analyzing their

datasets, but the data miners may also search for appropriate datasets for testing their

analysis methods. They may furthermore make comments about their experience of using

certain datasets/tools. Lastly, they can use the site to publish analysis results and to allow

others to make comments about them. Currently, public microarray Web sites such as Gene

Expression Omnibus (GEO) [54] and ArrayExpress [28] do not support this type of social

networking.

A number of social networking sites/projects have emerged, which are tailored to the

needs of different HCLS communities. For example, Alzforum (http://www.alzforum.org)

is a site that facilitates communication and collaboration within the Alzheimer’s Disease

(AD) research community. It also allows its members to comment on AD research ar-

ticles and publish such comments. Connotea (http://www.connotea.org) is a free on-

line reference management for all researchers, clinicians and scientists. myExperiment

(http://myexperiment.org) is a beta tool that allows scientists to contribute to a pool of

scientific workflows, build communities and form relationships. In contrast to traditional

peer-reviewed publication, Nature Precedings (http://precedings.nature.com) is a site

for researchers to share documents, including presentations, posters, white papers, technical

papers, supplementary findings, and manuscripts. It provides a rapid way to disseminate

emerging results and new theories, solicit opinions, and record the provenance of ideas.

It would be interesting to see: (i) how these sites would enable discovery, creativity and

innovation, and (ii) whether a larger social network can be formed if these social network

sites are interoperable.

The Web 2.0/3.0 data mashup scenarios we have described are based on the assump-

http://www.alzforum.org
http://www.connotea.org
http://myexperiment.org
http://precedings.nature.com
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tion that the data are publicly accessible without the concern about security. However,

this concern becomes real when mashing up sensitive healthcare data such as medical ad-

ministrative data including hospital discharge data, claims data, medical records, and so

on. The ability to integrate medical administrative data from different sources is crucial to

outcome research [122]. The access to these medical administrative databases is restricted

to approved researchers. In addition, it is often a requirement that manipulation, analysis,

and transmission of such data need to be done in a secure manner. Developers have begun

to explore how to provide a secure mechanism for mashing up sensitive data. For example,

IBM has recently announced !!!?MASH!!L, which is a new technology for supporting secure

data mashup (http://www.physorg.com/news124641823.html).

http://www.physorg.com/news124641823.html
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Chapter 9

tYNA: the Yale Network Analyzer

9.1 Introduction

As we have been emphasizing throughout this thesis, in the era of systems biology, the

focus on understanding complex organisms is shifting from studying individual genes and

proteins towards the relationships between them [168], and these relationships are usually

expressed in terms of various kinds of biological networks. Recent developments of large-

scale experiments such as mass spectrometry and array-based techniques [69, 108, 115]

have generated rough descriptions of the complete networks in the cells. Many studies have

reported interesting biological findings from these networks, including the relationships

between various statistical properties of a gene and its function and essentiality, and the

elucidation of controls at the molecular level based on network motifs [86, 115, 132, 169, 210].

These studies require heavy computations on multiple networks. We have developed

a Web system, tYNA (the Yale Network Analyzer, http://tyna.geresteinlab.org), to

176
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provide researchers with a set of tools to carry out such computations with great ease.

The system provides five main types of functionality: (1) Network management: storing,

retrieving and categorizing networks. A comprehensive set of widely used network datasets

is preloaded, put into standard form, and categorized with a set of tags. (2) Network

visualization: displaying networks in an interactive graphical interface (Figure 9.1). (3)

Network comparison and manipulation: various kinds of filtering and multiple network

operations. (4) Network analysis: computing various statistics for the whole network and

subsets, and finding motifs and defective cliques. (5) Network Mining: predicting one

network based on the information in another.

Our system shares some elements with some other network analysis and visualization

systems, such as Cytoscape [167], JUNG1, N-Browse2, and Osprey3, but also offers some

additional features such as defective clique finding. Besides, being a Web-based system,

tYNA also has some unique advantages:

• Users can share networks through a centralized database.

• Computationally intensive tasks such as motif finding and statistics calculations can

be performed on powerful servers.

• The system can be linked from/to other online resources.

• Users can incorporate some functions of tYNA into their own programs using the

SOAP-based web service interface.

Table 9.1 summarizes some major differences between the systems. We do not attempt
1http://jung.sourceforge.net/
2http://nematoda.bio.nyu.edu:8080/NBrowse/N-Browse.jsp?last=false
3http://biodata.mshri.on.ca/osprey/

http://jung.sourceforge.net/
http://nematoda.bio.nyu.edu:8080/NBrowse/N-Browse.jsp?last=false
http://biodata.mshri.on.ca/osprey/
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Figure 9.1. The intersection of two yeast-two-hybrid datasets [ 97, 185] with all nodes having
no edges in the intersection filtered by a statistics filter. The nodes are colored according to
their degrees. Also shown in the figure are the various statistics of the resulting network.
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Table 9.1. A comparison of several network analysis and visualization systems. Note that we
have included only some network analysis and visualization systems in this comparison.

Cytoscape (2.3.1) JUNG N-Browse Osprey tYNA
Basic NetworkAnalyzer Metabolica (1.0) (10 Aug 2006) (1.2) (10 Aug 2006)

plugin (1.0) plugin (1.0)
Main purpose Visualization Network analysis Motif finding Graph library Visualization Visualization Network analysis
System Standalone Plugin Plugin Standalone Web Standalone Web
· Link from external resources Indirect: Java Web Start N/A N/A No Direct No Direct
· Web service interface No No No No No No Yes: SOAP
Statistics calculation No Yes No Yes No No Yes
· Degree No Yes No Yes No No Yes
· Clustering coefficient No Yes No Yes No No Yes
· Shortest path length (eccentricity) No Yes No Yes No No Yes
· Betweenness No No No No No No Yes
Motif finding No No Yes No No No Yes
· Chain No No No No No No Yes
· Cycle No No Yes No No No Yes
· Feed-forward loop No No Yes No No No Yes
· Complete two-layer No No No No No No Yes
· Defective clique No No No No No No Yes
Multiple network operations Yes No No No Yes Yes Yes
User network management Session N/A N/A Individual files Database Individual files Database
· Network classification By session N/A N/A No No No By tagging attributes

to make the list exhaustive. Furthermore, since each system has its unique goals, it is not

completely fair to compare them in this way. This table simply serves as a quick reference

for readers who are interested in knowing some of the differences between the systems.

9.2 Using tYNA

tYNA provides a simple view with some basic features, and an advanced view for more

complex analyses.

9.2.1 Uploading networks and categories

The first step of analysis is to upload networks. tYNA accepts various file formats,

including the SIF format of Cytoscape. One may also enter additional attributes to organize

the networks into groups, such as network type (e.g. protein-protein interaction), organism

(e.g. yeast) and experimental method (e.g. yeast-two-hybrid) (Figure 9.2). Furthermore,
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tYNA allows users to analyze subsets of the networks (e.g., active parts in a dynamic

network [86, 123]) by using category files.

Figure 9.2. Networks uploaded and categorized in the tYNA database.

9.2.2 Loading networks into workspaces

After uploading a network, one may view its statistics and visualize it graphically by

loading it into a workspace. A workspace is a working area for a single network (Fig-

ure 9.1). Various statistics are computed, such as the clustering coefficient, eccentricity and

betweenness [210]. Networks are visualized in Scalable Vector Graphics (SVG) using the
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aiSee package4, which facilitates an interactive interface: one may change the appearance

of the network in real time (Figure 9.3 and Figure 9.4).

Figure 9.3. Visualizing a network in a workspace.

9.2.3 Single-network operations (advanced view)

Filtering allows one to retain a portion of the network, based on a statistics cutoff

(e.g. the 5% of nodes with the highest out-degrees) or node names. It will easily allow

one to identify the hubs and bottlenecks in a graph. Motif finding identifies various regular

patterns in the network, including chains, cycles, feed-forward loops and complete two-
4http://www.aisee.com

http://www.aisee.com
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Figure 9.4. Controls for image export and SVG viewer tips.
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layers. They generalize the motifs discussed in previous studies [115, 132, 169]. Currently

all occurrences of a specified motif pattern are returned. We will study the feasibility of

returning only statistically over-represented motifs in future work. tYNA also identifies

defective cliques [209] that suggest potential missing edges in a network (Figure 9.5 and

Figure 9.6).

Figure 9.5. Single network operations (left) and network transfer options (right).

9.2.4 Multiple-network operations (advanced view)

Multiple-network operations allow one to select multiple networks, perform some opera-

tions on each of them, and merge them into a single network. For example, the intersection
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Figure 9.6. All cycles that involve three or more proteins identified from a regulatory network.
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of multiple high-throughput protein-protein interaction networks offers a high-confidence

set of potential interactions. The relationships between different kinds of networks, such as

gene regulation and co-expression, can also be studied (Figure 9.7).

Figure 9.7. Multiple network operations.

9.2.5 Mining and edge overlap (advanced view)

The edge overlap feature allows the comparison of the edges in two networks. It can test,

using some prediction functions, how well one network predicts another. Some prediction

functions are predefined, such as identity, sibling and couple (Table 9.2).
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Table 9.2. Definitions for edge prediction functions.
Function Definition
Couple If the first network contains the edges A→C and B→C, predict

that A-B is an edge in the second network.
Sibling If the first network contains the edges A→B and A→C, predict

that B-C is an edge in the second network.
Identity If the first network contains the edges A-B, predict that A-B is

an edge in the second network.

9.2.6 Saving and downloading analyzed networks

Finally, one may save a working network into the database, or send it to another

workspace (as a temporary backup). Likewise, one may download a working network in

various network and graphics formats, including SIF, bitmap, postscript and PDF (Fig-

ure 9.4 and Figure 9.5).

9.3 Implementation

All source codes were written in Java using standard J2EE architecture. A detailed

JavaDoc API is available for users who want to use the classes in their own codes. The

tYNA database can also be accessed through standard SOAP-based web services, and we

have developed a plugin (available on the tYNA website) to interface tYNA with the network

visualization system Cytoscape (Figure 9.8).

9.4 Discussion

As biological network analysis is a vigorous research area, new statistics, motifs, and

mining algorithms are expected to emerge continuously. tYNA was thus designed in a
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Figure 9.8. Plugin for Cytoscape.
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modular fashion so that new features can be readily added. Being a Web system, the new

features are immediately made accessible to users.

We plan on connecting tYNA with dataset management systems such as YeastHub [39],

and Bind [4], DIP [198], MINT [211], Reactome [99] and annotation databases to provide

a unified platform for performing complex analyses. We think that the combination of the

analysis features provided by tYNA and the advanced visualization facilities of Cytoscape

can prove particularly powerful. We also plan on interfacing tYNA with analysis and

visualization tools such as bioPIXIE [134] and Pajek [15], which would allow researchers to

combine the distinct features of each tool.



Chapter 10

The Coevolution Server

10.1 Introduction

Coevolution (covariation/correlated mutation) is the change of a biological object trig-

gered by the change of a related object. For example, the coding genes of some interacting

proteins are preserved or eliminated together in new species [146], or have similar phy-

logenetic trees [76]. At the amino acid level, some residues under physical or functional

constraints exhibit correlated mutations [74, 173, 180]. In the context of this thesis, co-

evolution can be viewed as a kind of relationship between biological objects, which define

networks at the gene or residue levels.

Coevolving residues in a protein are detected in a two-step process: 1) the multiple

sequence alignment (MSA) of the protein and its homologs is constructed or obtained; 2)

a coevolution score is calculated for each pair of sites in the MSA. There are two main

difficulties in this process. First, a large number of scoring functions have been proposed in

189
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the literature (see Halperin [85] for a recent survey). It can be difficult to choose from them,

as they exhibit subtle yet significant differences, and it is likely that different applications

would require different functions. Second, coevolution analyses could be confounded by

uneven sequence representations, insufficient evolutionary divergence, and the presence of

gaps in the MSA. A successful coevolution study has to take all these details into account.

To address this need, we have developed an integrated system (http://coevolution.

gersteinlab.org) that provides a simple interface for preprocessing data, computing co-

evolution scores, and analyzing the results. It offers a great variety of scoring variations

(over 100) for studying different types of proteins and testing different hypotheses. The

workflow of the system is shown in Figure 10.1. More details on the scoring functions,

preprocessing options, and result analysis are provided below.

10.2 Scoring Functions

10.2.1 Correlation-based functions

For a pair of sites i and j in an MSA, the correlation score [75, 85] is computed as

follows:

Cor(i, j) =
2

N(N − 1)

∑
k<l wkl(sikl − s̄i)(sjkl − s̄j)

σiσj
(10.1)

where sikl is the score for substituting the i-th residue of sequence k by that of sequence

l, s̄i and σi are the mean and standard deviation of substitution scores at site i, N is the

http://coevolution.gersteinlab.org
http://coevolution.gersteinlab.org
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Figure 10.1. The workflow of the system.
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number of sequences in the MSA, and wkl is the weight for the sequence pair k, l. If the

two sites are coevolving in that radical substitutions at the first site are accompanied by

radical substitutions at the second site, the correlation will be high. Our system provides

the classical McLachlan matrix [128] that scores substitutions based on the physiochemical

properties of the residues, as well as matrices based on residue volume, pI, and hydropa-

thy index, for studying the properties individually. Two variations are provided for each

of them: the “absolute value version” considers only the magnitude, while the “raw ver-

sion” also considers the direction of change, for detecting compensatory mutations. The

correlation can be computed from raw values (Pearson correlation) or from value ranks

(Spearman correlation [143]). Several schemes are provided for the weights wkl, preventing

false coevolution signals due to uneven sequence representation or site conservation.

10.2.2 Perturbation-based functions

The idea of perturbation-based functions is to perform a “perturbation” at a first

site, and observe its effect on a second site. The Statistical Coupling Analysis (SCA)

method [121] defines a statistical energy term for a site, and computes the energy change

at a second site when the first site is perturbed by retaining only the sequences with a

certain residue.1 The Explicit Likelihood of Subset Variation (ELSC) method [47] is based

on the same idea, but has the energy computations replaced by probabilities according to

hypergeometric distributions. The mutual information (MI) method [74] can be viewed

as a generalized perturbation method that considers the subsetting of all twenty kinds of

residues, and combines them by a weighted average according to their frequencies. To deal

with finite sample size effects and phylogenetic influence, the normalization options in [126]
1Our implementation provides an asymmetric SCA score matrix, as well as extra summarizing statistics.

Details can be found at the appendix of this chapter.
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are also provided.

10.2.3 Independence tests

The chi-square test (c.f. the OMES method [112]) and the quartets method [65] both

identify site pairs that are unlikely to be independent. The former computes the p-value

under the null hypothesis of independent sites. The latter counts the number of quartets

in the two-dimensional histogram of residue frequencies that deviate considerably from the

expectation.

10.3 Preprocessing options

To improve the sensitivity and specificity of the functions, options are pro-vided for

preprocessing sequences, sites and site pairs.

10.3.1 Sequence filtering and weighting

Sequences that contain too many gapped positions or are too similar to others in the

MSA (which might cause sites to appear coevolving) can be removed by specifying the

gap and similarity thresholds respectively. A minimum number of sequences can also be

specified to avoid small sample size effects.

A sequence weighting scheme based on the topology of the phylogenetic tree [71] and

one based on Markov random walk are provided. Both schemes down-weigh sequences that

are very similar to others in the MSA.
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10.3.2 Site filtering

After sequence filtering, sites that contain too many gaps or are too conserved can

be discarded. The former is likely non-informative, while the latter may artificially inflate

some coevolution scores.

10.3.3 Site pair filtering

Sites that are close in the primary sequence may produce trivial coevolution signals

that hide other more unexpected coevolution events. Such site pairs can be filtered by

specifying the minimum sequence separation. It has also been observed that insertions/

deletions of multiple residues may create artificial coevolution signals [142]. An option is

provided for filtering site pairs that participate in the same gaps in too many sequences.

10.3.4 Other options

Grouping similar residues into a smaller alphabet may increase the sensitiv-ity [147].

Our system provides two residue groupings proposed in the literature [56, 81]. It has

also been observed that gaps might give important coevolution signals [142]. An option is

provided for treating gaps as noise or as the twenty first residue when computing coevolution

scores.
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10.4 Scores analysis

In some proteins coevolving residues tend to be close to each other in the 3D struc-

ture [47, 74]. This suggests that the instability created by the mutation of a residue may

be (partially) compensated for by a corresponding mutation of a close residue. Coevolution

signals may thus convey some information about the protein structure. For instance it is

interesting to study how well the coevolution scores predict the residue contact map [85].

Our system provides functions for plotting and analyzing the coevolution scores against

inter-residue distances, and standard machine-learning techniques (e.g. ROC curve) for

evaluating the effectiveness of the various coevolution functions in predicting interacting

residues. A shuffling scheme for evaluating the significance of the scores is also provided in

the program package for running locally.

10.5 Example

We provide a worked example of our system in operation on the web site, which il-

lustrates coevolution in the transmembrane protein bacteriorhodopsin due to physically

constrained residues not adjacent in the primary sequence. The example can be easily

loaded by clicking the corresponding link on the main page. Running the example will

compute the coevolution scores between site pairs separated by at least 3 residues. The

scatterplot for coevolution scores against inter-residue distances generated using a known

PDB structure (Figure 10.1) shows that residue pairs receiving high scores do tend to be

closer in the crystal structure.

Due to the intensive computation involved in the score calculations, cur-rently only one
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scoring function is allowed to be used each time. Anyone interested in performing large-scale

comparisons can download the Java programs from the web site and run locally on most

platforms (Windows, Macintosh, Linux, UNIX, etc.). Detailed installation instructions are

provided on the web site.

10.6 Discussion

Although the scatterplot in Figure 10.1, and other studies in the literature, have sug-

gested some relationships between coevolution and physical constraints, to what extent

coevolution scores could help us understand physical structures remains unclear. We hope

the current application can serve as a neutral tool for further exploration in this area.

The current system focuses on functions that do not assume any mutation models.

Other functions, such as the likelihood method by Pollock et al. [147] and the Bayesian

mutational mapping method [49] may be added in a later version.

Coevolution signals have been used in recent studies to predict sequence regions in-

volved in protein-protein interactions with different levels of success [144, 85]. We plan

on extending the system to include inter-protein residue coevolution in the next phase of

development.
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10.7 Appendix: our implementation of the SCA method

10.7.1 Introduction

The Statistical Coupling Analysis (SCA) method is one of the earliest and most popular

methods for measuring the coevolution of pairs of sites. It was first described in Lockless and

Ranganathan [121]. We based our implementation of the SCA method on the description

in this article, as well as the description in Suel et al. [180], and its web supplement at

http://www.hhmi.swmed.edu/Labs/rr/SCA.html. In the following we will call them “the

reference sources”. We have also referenced the Matlab software of the original authors

(SCA version 1.5) for some implementation details.

Since not all the algorithmic details are given in the reference sources, and we need to fit

our implementation into the overall software framework, we have made a number of design

choices. We have made our best effort in having the choices reasonable and close to the

original definitions in the reference sources. Yet we have to stress that our implementation

is not completely the same as the one of the original authors, and users of our system should

be aware of the details of our implementation, which we describe below.

We have also referenced Dekker et al [47] since the authors also implemented the SCA

method and made some design choices. However, our choices are not exactly the same as

theirs.

We have discussed our design with some of the SCA inventors (Rama Ranganathan

and William Russ). We follow their suggestion to produce a non-square, non-symmetric

SCA matrix as was done in the original SCA papers (based on the details described below,

which are close to, but not completely the same as their SCA software), with each row

http://www.hhmi.swmed.edu/Labs/rr/SCA.html
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being a site and each column a perturbation. Then, to produce one single coevolution score

for each pair of sites, we use a statistic to summarize the validated scores of the different

perturbations. To distinguish this final statistic from the original perturbation scores, we

call the former “Modified SCA” to emphasize its difference from the latter.

10.7.2 Design choices

• The constant kT ∗: the exact value of the temperature parameter T ∗ is not described

in the three reference sources. Since kT ∗ is a constant in all calculations, and it is

described as “an arbitrary energy unit” in both Lockless and Ranganathan [121] and

Suel et al. [180], we fix its value to one. We remind users who want to compare the SCA

scores of different MSAs to perform proper normalizations according to the number of

sequences in the MSAs. (Note: in the following we assume some data preprocessing

may have been performed. So for example when we talk about an MSA, we actually

refer to the preprocessed MSA that may have some sequences and/or sites filtered.)

• Normalization by P x
MSA: it is mentioned in the reference sources, and implemented

in the original code used to produce the results of the reference sources. However, as

mentioned in Dekker et al. [47], and confirmed by the SCA inventors (personal com-

munication), it is not implemented in the software package. Since this normalization

is not important according to the SCA inventors (personal communication), it is not

included in our implementation.

• Acceptance criteria: the three reference sources emphasize that the multiple sequence

alignments (MSAs) used in the analysis should be large enough and diverse enough

to be a statistical representative of the evolutionary constraints on the protein family.
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These concerns are partially handled by the various data preprocessing methods of our

system. But in order to have our implementation of the SCA method as close to the

original definitions as possible, we also implement the acceptance criteria described

in the three reference sources.

The most detailed description of the acceptance criteria is in the web supplement of

Suel et al. [180]. It lists three acceptance criteria:

– “The MSA should be so diverse that several sites display amino-acid distributions

near to the mean in all natural proteins.”

– “The MSA should be so large that random elimination of sequences from the

alignment does not change the amino-acid frequencies at sites much.”

– “Perturbations at sites in the MSA should produce sub-alignments that are also

large and diverse, such that they remain a representative subset of the parent

MSA and do not substantially alter the state of statistical equilibrium.”

We were unable to precisely locate the corresponding implementation details in the

Matlab code in a form that we could re-implement. Therefore we designed our accep-

tance procedure according to the above criteria as follows:

1. We first calculate the statistical energy vectors
−−−−→
∆Gstat

j
2 for all sites j at which

at least 85% of the sequences are not a gap. The five sites with the smallest

magnitudes (2-norms) of
−−−−→
∆Gstat

j (i.e., the five most unconserved sites) are chosen

to have the magnitudes averaged. If less than five sites pass the 85% requirement,

2As in SCA 1.5, both
−−−−→
∆Gstat

j and
−−−−−−→
∆∆Gstat

ij are divided by 100 after the calculations described in the
reference sources.
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the MSA is rejected as having too many gaps. If the average magnitude is more

than a threshold α (default to 1.0), the MSA is rejected as being too conserved.

2. Using the five sites in step 1, we perform random sequence elimination. It is

divided into iterations. At the i-th iteration, the number of sequences to be

eliminated is 0.03× i× n, where n is the total number of sequences in the MSA.

100 random eliminations are performed per iteration, and the average of the

averaged
−−−−→
∆Gstat

j of the five sites are recorded. If the averaged
−−−−→
∆Gstat

j reaches α

before β% (default to 50) of the sequences in the MSA are eliminated, the MSA

is rejected as being too small.

3. Using the five sites in step 1, we perform another random sequence elimination to

determine the size threshold for a perturbation. The same number of sequences

is eliminated in each iteration, but instead of recording
−−−−→
∆Gstat

j , we treat each

random elimination as a perturbation, and record the average coupling energies
−−−−−−→
∆∆Gstat

ij over the 100 random eliminations of the iteration. When the average
−−−−−−→
∆∆Gstat

ij reaches γ (default to 0.07), the number of sequences not eliminated

in the iteration is set as the size threshold. When calculating the perturba-

tion scores, any perturbation that results in less remaining sequences than the

threshold is rejected.

• Perturbation and symmetry: in the original SCA implementation, a perturbation is

performed by retaining one of the 20 amino acids at a site. Therefore for a pair of sites,

there are in total 2 × 20 = 40 possible perturbations. All perturbations passing the

acceptance criteria are recorded. The final SCA matrix is a rectangular matrix with

each site as a row and each perturbation (a site number-residue pair) as a column.

Our system outputs this original SCA matrix whenever the SCA method is chosen.
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In order to fit in the overall framework with one single coevolution score for each site

pair, we also use a statistic to summarize the (at most 40) non-rejected perturbation

scores into one final coevolution score, which we call the “modified SCA score”.

Let SCA(i, j, a) be the original SCA score between sites i and j by retaining only

residue a at site j, our modified SCA score is calculated as

1
2n

[
∑

a:nj,a≥t

nj,aSCA(i, j, a) +
∑

a:ni,a≥t

ni,aSCA(j, i, a)]

,

where n is the number of sequences in the MSA, ni,a is the number of sequences having

residue a at site i, and t is the size threshold determined by the acceptance criterion.

Basically, the score is a weighted sum of the SCA scores of the various perturbations,

but taking into account only the non-rejected ones.
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Conclusion

In this thesis, we have demonstrated that the accuracy of biological network reconstruc-

tion can be greatly improved by exploiting some data properties and problem structures.

In the study of training set expansion, we observed that the sparse and unevenly

distributed training data limited the effectiveness of the local modeling approach, especially

when the feature space was of a high dimension. By propagating highly confident predictions

to other local models, and generating auxiliary training examples from the most similar

and most dissimilar object pairs in the kernel matrix, we observed consistent performance

improvement over local modeling across different datasets with different features and in

different evaluation settings.

Motivated by the natural concept hierarchy of protein, domain and residue interactions,

we extended the idea of training set expansion to vertically expand training sets at different

levels in the study of multi-level learning. We considered different architectures, methods

for coupling the different levels, and ways to carry out learning at each level. Our empirical

202
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study demonstrated the advantage of bidirectional flow of predictions between levels using

training set expansion as opposed to independent levels and unidirectional flow of training

data.

Training set expansion is only one possible way to couple the different levels. We also

studied how the prediction problems at the protein and domain levels could be coupled by

using combined optimization. Noticing that the prediction accuracy of previous learning

methods are quite sensitive to errors in the input protein interaction network, we developed

a new algorithm that uses protein-level features as a cross check of the training data. The

prediction accuracy was observed to be improved, more prominently when predicting protein

interactions.

The combined optimization approach demonstrates the advantage of combining data

from both the protein and domain levels. We also studied how heterogeneous datasets could

be combined to improve the prediction of gene regulatory networks. The two types of data

we considered, namely expression profiles of deletion strains and time series data after an

initial perturbation, are complementary in making predictions. Deletion profiles provide

information for predicting direct and simple regulation, while perturbation data allow the

detection of more complex regulation. The key of combining the two types of data is to rank

the predictions according to their confidence values. This approach was shown fruitful in

the DREAM challenge, in which our prediction method outperformed the predictors from

other teams.

The idea of exploiting special data properties and problem structures is not only useful

to network reconstruction, but also other kinds of machine learning problems in bioinfor-

matics, for a number of reasons:
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• There is a lot of domain knowledge that can be used to guide the learning process,

yet standard learning algorithms are not designed to utilize such knowledge.

• Rapid technological advancements have triggered the generation of more and more

data, both in terms of volume and variety. Some algorithms that were impractical

due to lack of data are now becoming feasible.

• Many computational problems in biology have been extensively studied and it has be-

come very difficult to achieve further improvements merely by algorithmic enhance-

ments such as better optimization procedures. New data and un-utilized domain

knowledge are rich sources of novel ideas.

Following this idea, we have identified a number of directions for future research on

biological network reconstruction and analysis:

Spatial and temporal aspects of interactions: In this thesis we have focused on

the problem of finding out the edges of the interaction networks, without considering where

and when they exist. The exact location and time that the interactions occur actually have

a lot of implications to the underlying biology. For instance, the concept of activity motifs

has recently been proposed [35] as a means to understand the order of activity in different

parts of a biological pathway. The additional spatial and temporal information allow for

the study of dynamics within cells, which cannot be obtained from static networks.

New sequencing data: The recent technological breakthrough in high-throughput

sequencing has drastically reduced the time and cost of decoding long sequences. Some

microarray-based experiments are starting to be replaced or at least complemented by

their sequencing counterparts. For example, chromatin immunoprecipitation with microar-

ray (ChIP-chip) is being compared to its sequencing alternative with sequencing (ChIP-
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seq) [125], while tiling array is compared to RNA sequencing (RNA-seq) [192]. In general

the data obtained from sequencing data are less noisy as compared to microarray measure-

ments. An important conceptual difference between these two types of technology is that

microarray involves a pre-defined set of target sequences to be measured, while sequenc-

ing does not require any prior knowledge about the targets. A lot of previously unknown

sequences are expected to be obtained. From a network perspective this means that new

nodes with missing features are added to the networks. Algorithms should therefore be

more ready to handle missing data, and to take in raw sequences as features. For instance,

kernels have been proposed for sequence data in recent years [109, 116, 118, 117, 153, 159].

Newer ones are expected to be developed as more sequences become available and the need

for more specialized sequence kernels arises.

Network of networks: Currently different kinds of networks are reconstructed sep-

arately, yet due to their close relationships combining the reconstruction problems could

potentially offer new insights. For example, in our work on reconstructing gene regulatory

networks, we implicitly assume that regulators are independent of each other. Yet in reality

regulators can be complexes formed by multiple proteins. Therefore if two proteins are

both observed to have some probability of regulating a gene, knowing that they physically

interact or form a complex according to the protein interaction network would increase

our confidence that they are both regulators. Conversely, if two proteins are observed to

regulate very similar sets of genes, they might actually form a complex and work together

in regulating the genes.
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