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Abstract

Background: In the competing endogenous RNA (ceRNA) hypothesis, different
transcripts communicate through a competition for their common targeting
microRNAs (miRNAs). Individual examples have clearly shown the functional
importance of ceRNA in gene regulation and cancer biology. It remains unclear to
what extent gene expression levels are regulated by ceRNA in general. One major
hurdle to studying this problem is the intertwined connections in miRNA-target
networks, which makes it difficult to isolate the effects of individual miRNAs.

Results: Here we propose computational methods for decomposing a complex
miRNA-target network into largely autonomous modules called microRNA-target
biclusters (MTBs). Each MTB contains a relatively small number of densely
connected miRNAs and mRNAs with few connections to other miRNAs and
mRNAs. Each MTB can thus be individually analyzed with minimal crosstalk
with other MTBs. Our approach differs from previous methods for finding
modules in miRNA-target networks by not making any pre-assumptions about
expression patterns, thereby providing objective information for testing the
ceRNA hypothesis. We show that the expression levels of miRNAs and mRNAs in
an MTB are significantly more anti-correlated than random miRNA-mRNA pairs
and other validated and predicted miRNA-target pairs, demonstrating the
biological relevance of MTBs. We further show that there is widespread
correlation of expression between mRNAs in same MTBs under a wide variety of
parameter settings, and the correlation remains even when co-regulatory effects
are controlled for, which suggests potential widespread expression buffering
between these mRNAs, which is consistent with the ceRNA hypothesis. Lastly,
we also propose a potential use of MTBs in functional annotation of miRNAs.

Conclusions: MTBs can be used to help identify autonomous miRNA-target
modules for testing the generality of the ceRNA hypothesis experimentally. The
identified modules can also be used to test other properties of miRNA-target
networks in general.

Keywords: Competing endogeneous RNA; MicroRNA-target bicluster;
MicroRNA network

Background
MicroRNAs (miRNAs) are short endogenous RNAs that bind specific sites of mes-
senger RNA (mRNA) targets called miRNA response elements (MREs) with partial
or full sequence complementarity. The protein levels of the targets are regulated by
the miRNAs through the promotion of RNA degradation or translational repres-
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sion [16, 9, 72, 10]. Based on the distribution of MREs on different mRNAs, one
miRNA could target multiple mRNAs, and multiple miRNAs could target the same
mRNA, leading to a complex network of miRNA-mRNA interactions [26, 39].

While conventionally miRNAs are considered to regulate their mRNA targets, in
theory mRNAs could also back-regulate their targeting miRNAs by affecting their
availability in binding other mRNAs [28, 64]. If the expression level of an mRNA
is increased, more copies of its targeting miRNAs will bind to it and become less
available for binding other targets. These other targets will be de-repressed and
their expression levels will increase. Similarly, if the expression level of an mRNA
is decreased, more copies of its targeting miRNAs will become available. They will
bind more to other targets and will decrease their expression levels. As a result,
different targets of a miRNA can buffer each other [7, 25] and display a positive
correlation of their expression levels [64]. In general, different transcripts (mRNAs
and other non-coding RNAs) with MREs of the same miRNA may compete for the
finite copies of the miRNA in a cell. This back-regulation mechanism and its in
vivo functional roles have been coined the competing endogenous RNA (ceRNA)
hypothesis [64].

One interesting example that supports the ceRNA hypothesis was found between
the tumor suppressor gene PTEN and its pseudogene PTENP1 [61]. The MREs of
some miRNAs that target PTEN, including miR-19b and miR-20a, are preserved
in the truncated 3’ end of the PTENP1 transcript, which allow it to act as a
miRNA target decoy for PTEN. Indeed, the expression of both PTEN and PTENP1
was repressed by miR-19b and miR-20a in DU145 prostate cancer cells, and their
expression levels exhibited a positive correlation across a large number of normal
human tissues and prostate tumor samples. Functionally, PTENP1 was found to
have tumor suppressive activity and was selectively lost in human cancer, which
suggest a potential role of this pseudogene in the normal functioning of PTEN in
tumor suppression. Additional evidence of the functional roles of ceRNA in human
cancer was reported in the same study and a series of other studies [61, 17, 43, 66,
68]. Regulatory interactions between mRNAs that share common MREs had also
been discovered in plants, a phenomenon known as “target mimicry” [28, 63].

At a more global scale, the idea that miRNA targets buffer each other has been
used by a number of methods to study miRNA-target interactions. Some methods
identify the subset of computationally predicted miRNA targets with a positive
correlation of expression as the more reliable targets [42, 71, 31]. Some methods
identify “sponge” modulators of miRNA-target interactions, which are RNAs whose
expression is associated with changes in the mutual information between miRNAs
and their targets [66]. All these methods assume a certain degree of generality of
the ceRNA hypothesis, and require some high-throughput expression data as input.

In contrast, a transcriptome-wide systematic test of the ceRNA hypothesis has
been lacking. It has not been certain whether the buffering between miRNA targets
is sufficiently strong to be reflected by their expression levels in general. Concep-
tually, this can be tested by a two-step procedure, namely (1) gathering a list of
miRNA-target pairs obtained by a method not considering their expression patterns,
and (2) evaluating whether mRNAs targeted by same miRNAs are significantly more
correlated in expression than other mRNAs (with proper control for effects due to
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co-regulation, as discussed in detail below). While conceptually simple, there are a
number of issues that make this kind of analysis practically difficult:

1 Noisy miRNA-target networks: Current computational methods for miRNA
target prediction have limited accuracy and consistency [2], while the number
of experimentally validated miRNA-target pairs is small [73]. False positives
and false negatives in the miRNA target predictions would make it difficult
to identify mRNAs with common targeting miRNAs.

2 Unshared targeting miRNAs: mRNAs targeted by a common miRNA may
individually be targeted by other unshared miRNAs, which could affect their
expression levels separately and lower their correlation.

3 Unshared mRNA targets: miRNAs that target a common set of mRNAs may
individually have additional unshared targets, which could dilute the buffering
effect of their common set of mRNA targets.

4 Partial effects at transcriptional level: The functional effects of miRNAs on
their targets are only partially reflected by mRNA levels, while data about
protein abundance are not as widely available.

5 Other gene regulatory mechanisms: Gene expression is regulated by a com-
plex system that involves many other components. Even if two mRNAs are
competing for their common targeting miRNAs, their expression levels may
not appear correlated if they are individually affected by some other regu-
latory mechanisms. In addition, a miRNA may affect the expression level of
a gene indirectly through its targets that directly or indirectly regulate the
gene, leading to expression patterns more difficult to analyze.

In this study, we propose computational methods for studying noisy miRNA-
target networks that can overcome the first three issues and tolerate the last two.
The main idea is to identify small modules in the networks, which we call microRNA-
target biclusters (MTBs), without using any expression data as input. It is a novel
concept inspired by the related work on biclustering in the literature of gene ex-
pression data analysis [18]. Each MTB consists of a set of miRNAs and a set of
mRNAs, where (1) the miRNAs target most of the mRNAs in the MTB but few
other mRNAs and (2) the mRNAs are targeted by most of the miRNAs in the MTB
but few other miRNAs. Each MTB represents a network module that potentially
maintains a largely autonomous regulation sub-system. By tuning the level of in-
teractions linking members of an MTB to non-members, and the level of missing
intra-MTB interactions allowed, the impacts of false positives and false negatives
in the interaction networks on the MTBs (issue 1) and the degree of independence
of each MTB (issues 2 and 3) can be controlled.

To show the biological relevance of MTBs, we analyzed the expression patterns
of the miRNAs and mRNAs in our MTBs using RNA-seq data from matched cell
lines produced by the ENCODE consortium [23, 69]. We show that the MTBs
identified by our methods contain miRNAs more anti-correlated in expression with
the mRNAs in the same MTBs than both their other targets and random mRNA
sets. As proposed in a series of previous studies, this strong anti-correlation observed
indicates that the mRNAs in our MTBs are likely true targets of the miRNAs in the
same MTBs [38, 32, 48, 50, 60, 57, 62, 54]. By using formal validation procedures
and considering many different experimental settings, we show that our results are
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statistically significant and robust. These results suggest that despite the incomplete
reflection of the effects of miRNAs at the transcription level (issue 4) and the
presence of other transcriptional regulatory mechanisms (issue 5), it is still possible
to systematically analyze the effects of miRNAs on their targets using RNA-seq
data.

Correspondingly, we observed stronger expression correlations among mRNAs in
the same MTBs even if subtle effects due to co-regulation are controlled for. We also
found that mRNAs and miRNAs in the same MTBs have related biological func-
tions. Overall, our results suggest widespread expression buffering between mRNAs
commonly targeted by the same miRNAs, which is in line with the ceRNA hypoth-
esis.

In the literature of computational analysis of miRNAs, the two main focuses
have long been on identifying miRNA-encoding regions from genomes [22, 6, 29,
33] and on predicting the targets of individual miRNAs [56, 70]. In line with the
latest trend of studying the inter-related miRNA-target interactions from a network
perspective [41, 48, 51, 12, 52, 77, 49], our work introduces a new way to study these
miRNA-target networks by decomposing complex networks into simple modules
that can be more easily analyzed.

Results and discussion
Defining MTBs and identifying them from miRNA-target networks

We collected computationally predicted human miRNA targets from 5 prediction
methods. We combined these predictions to form a high-confidence set and a high-
coverage set of miRNA-target predicted interactions, which consist of pairs pre-
dicted by at least one prediction method with high and moderate confidence, respec-
tively. We also collected experimentally validated miRNA targets in human from a
recent release of TarBase [73]. To study the effects of having validated interactions
in these networks on our analyses, for both the high-confidence and high-coverage
networks, we further considered either having only the computational predictions,
or both the computational predictions and experimentally validated pairs combined,
resulting in 4 integrated miRNA-target networks in total (Table 1).

Each of these networks can be represented either by a binary matrix or a bipartite
graph (Figure 1). In the matrix representation, each row corresponds to an mRNA
and each column corresponds to a miRNA. An element has value 1 if the miRNA
represented by the column targets the mRNA represented by the row in the net-
work, and 0 otherwise. In the graphical representation, each node in the first part
represents an mRNA and each node in the second part represents a miRNA. There
is an edge connecting a miRNA node and an mRNA node if the miRNA targets the
mRNA.

An idealized definition of an MTB is a set of miRNAs and mRNAs in which each
of these miRNAs targets all these mRNAs but not any other mRNAs, and each of
these mRNAs are targeted by all these miRNAs not any other miRNAs (Figure 1,
type R). In the matrix representation, it corresponds to a submatrix (i.e., a subset
of rows and columns not necessarily adjacent to each other) containing only 1’s,
with all other elements on these rows and columns having value 0. In the graphical
representation, it is a biclique (fully-connected bipartite subgraph) with no extra
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edges incident on these nodes. If the miRNA-target network was free of false positive
and false negative errors, MTBs of this type would be perfect cases for testing the
ceRNA hypothesis since they represent totally autonomous modules isolated from
the other parts of the network.

In practice, however, such ideal modules rarely exist in miRNA-target networks.
Even if they do exist, they may not be observed in our integrated networks due
to possible false positives and false negatives in the networks. We thus defined a
number of other MTB types with less stringent requirements, by allowing some
missing 1’s in the submatrix and/or extra 1’s in other elements on the defining
rows and columns. We first defined three other types that retain the restrictive (R)
requirement that the submatrix should contain all 1’s (i.e., the miRNAs in an MTB
should target all mRNAs in the MTB), but either only the defining columns are
not allowed to have extra 1’s (i.e., only the miRNAs (mi) are restricted from having
extra interactions), or only the defining rows are not allowed to have extra 1’s (i.e.,
only the mRNAs (m) are restricted from have extra interactions), or the general
case (gen) that both are allowed. The corresponding MTB types are denoted as
Rmi, Rm and Rgen, respectively. Analogously, we also defined four loose (L) types
that allow 0’s in the submatrix (i.e., the miRNAs in an MTB are not required
to target all mRNAs in the MTB), resulting in the L, Lmi, Lm and Lgen types
(Figure 1). Having different types of MTB enabled us to control the impacts of
false positives and false negatives in the input network, and the amount of crosstalk
between MTBs.

The different MTB types have drastically different numbers of possible occur-
rences in a network (Figure 1). For some types, there is at most a linear number of
MTBs with respect to the number of mRNAs and miRNAs in the network (types R
and L). For some other types, the maximum number of MTBs is exponential, but
the number of maximal MTBs, i.e., MTBs not being submatrices of other MTBs, is
linear (types Rmi, Rm, Lmi and Lm). Type Rgen could give an exponential number
of maximal MTBs in theory, but in practice a tractable number is usually observed.
Finally, type Lgen has an exponential number of MTBs, both in theory and in prac-
tice. Consequently, we developed a variety of algorithms to identify MTBs of the
different types, from simple graph searching algorithms that can efficiently identify
all MTBs of a certain type, to algorithms that only return a subset of MTBs with
the highest scores based on the intra-MTB density of interactions.

Expression of miRNAs and mRNAs in the same MTBs are significantly more

anti-correlated than general miRNA-target pairs

As a way to check whether the MTBs we identified represent modules with biological
relevance, we examined the expression levels of the miRNAs and mRNAs in human
cell lines obtained from RNA-seq experiments performed by the ENCODE Project
Consortium [69, 23]. The details of the analysis pipeline are given in Materials and
Methods (see also Figure 2 and Figure S1a). Briefly, for each miRNA-mRNA pair
in an MTB, we calculated the Pearson correlation of their expression across the
cell lines. For each MTB, we then counted the fraction of pairs having correlation
values more negative than a certain threshold t, multiple values of which (from
-0.1 to -0.7) were tested. A large fraction of pairs having expression correlations
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more negative than the threshold would indicate that the regulatory effects of the
miRNAs on the mRNAs were sufficiently strong to be observed in the expression
data. To make sure that the negative correlations were not obtained by random
chance, we compared these fractions with the corresponding fractions in random
sets of expressed miRNAs and mRNAs of the same sizes as the identified MTBs.
A p-value was then computed to determine if the fractions from the MTBs were
significantly higher than those from the random background.

In addition, we wanted to check if the negative correlations were simply a general
phenomenon among miRNAs and their targets regardless of their MTB member-
ships. We therefore repeated the above procedure using a second background set of
miRNA-mRNA pairs that composed of miRNAs and their targets not participated
in the same MTBs.

From the results for the expressed union set with TarBase interactions (Fig-
ure 3), we see that for moderate values of the correlation threshold (-0.1 to -0.4),
for most MTB types, significantly more miRNA-mRNA pairs in the MTBs were
anti-correlated in expression than random miRNA-mRNA pairs (panels a and b).
For example, considering miRNA-mRNA pairs with expression correlation < -0.1,
all MTB types except type R had a significantly higher fraction of such pairs than
random miRNA-mRNA pairs at the p=0.01 level.

Importantly, the miRNA-mRNA pairs in the MTBs were also significantly more
anti-correlated in expression than miRNA-target pairs not in the same MTBs (Fig-
ure 3c,d), which suggests that the regulatory effects of miRNAs are either stronger
or more clearly observed on their targets within the same MTBs than their other
targets.

Significant p-values were obtained for both the MTBs from the high-confidence set
(panels a and c) and the high-coverage set (panels b and d). We have also repeated
our procedure for the networks without the validated miRNA-target interactions
from TarBase (Figure S2), and when related miRNAs with the same miRNA number
but different modifiers (such as 5p and 3p) were grouped (Figures S3 and S4). In
all cases, the same general conclusion was drawn, that significantly more within-
MTB miRNA-mRNA pairs were strongly anti-correlated in expression than random
pairs and miRNA-target pairs not in the same MTBs. These consistent results show
that MTB is a robust method for identifying miRNA-mRNA modules with strong
expression relationships despite the fact that gene expression data were not used in
defining the MTBs.

Figure 4 shows the distributions of fractions of miRNA-mRNA pairs satisfying
the correlation threshold in an example setting. It can be seen that for some MTBs,
almost all miRNA-mRNA pairs (with a fraction close to 1) had expression correla-
tions more negative than threshold t = −0.2. More generally, about two-third of the
MTBs had more than 20% of their miRNA-mRNA pairs satisfying this correlation
threshold. In contrast, for both random groups of miRNAs and mRNAs, and other
miRNA-target pairs, almost none of them had expression correlation more negative
than −0.2.

Comparing the different MTB types, the general types that allow both the miR-
NAs to have extra-MTB targets and the mRNAs to be targeted by extra-MTB
miRNAs (Rgen and Lgen) produced more MTBs as expected (Figures 5, S5-S7).
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Interestingly, the MTBs of these two types also contained miRNAs and mRNAs with
more significant anti-correlations, and over a broader range of correlation thresh-
old values (Figure 3). In contrast, due to the rigid requirements of type R, no
MTBs of this type could be discovered from the high-coverage set and few were
identified from the high-confidence set. Even when MTBs of this type could be
found, their miRNA-mRNA anti-correlations of expression were not statistically
significant. These results confirm the importance of explicitly considering non-fully-
connected miRNA-mRNA modules and possible errors in the input miRNA-mRNA
interaction networks.

Non-expression features can be used to identify MTBs with strong miRNA-mRNA
expression anti-correlation
While the MTBs in general contained a significantly higher fraction of miRNAs
and mRNAs with strong expression anti-correlation, we were interested in know-
ing whether some simple features of the MTBs could help identify the subset of
MTBs with particularly strong expression anti-correlation without referencing the
expression data. This would be particularly useful in identifying the most inter-
esting MTBs when expression data are not available. To explore this possibility,
for each MTB we identified, we computed 7 non-expression features, including the
number of mRNAs and miRNAs in it, the density of 1’s in the MTB, in the same
rows, columns or either but outside the MTB, and the MTB type. We then used
these features to construct a Random Forest model [14] for predicting the fraction
of miRNA-mRNA pairs within the MTB with expression correlation more negative
than t = −0.1. Based on the results of 10-fold cross-validation, the average area un-
der the receiver-operator characteristics (AUC) of ten equal-width fraction classes
was 0.97, which is significantly higher than what would be expected for random
predictions (AUC=0.5), indicating that the features were useful in identifying the
MTBs with higher fractions of strong miRNA-mRNA expression anti-correlation.

We then looked for the features most important for identifying MTBs with strong
expression anti-correlations between their member miRNAs and mRNAs. An ex-
haustive search of feature combinations identified two features that were consistently
the most important in a 10-fold cross-validation procedure, namely the number of
mRNAs in an MTB and the fraction of miRNAs outside an MTB that target the
mRNAs in the MTB. Basically, MTBs with very strong anti-correlations between
their miRNAs and mRNAs have a relatively small number of mRNAs and these
mRNAs are targeted by few other miRNAs outside the MTBs, which are consis-
tent with the intuition that MTBs with these properties are more autonomous,
although the exact relationships of these two features with the fractions passing the
correlation threshold are not linear in general.

Comparison with a previous method
To further check if MTBs represent novel miRNA-mRNA modules, we compared
them with the miRNA regulatory modules (MRMs) identified by the Yoon and De
Micheli method [75] from the same networks. It is one of the few methods in the lit-
erature that identify miRNA-mRNA modules from a miRNA-target network with-
out requiring expression data as input. We applied the same procedure described
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above to check the fraction of miRNA-mRNA pairs within each MRM identified by
this method with expression correlation more negative than a threshold. We then
collected all these fractions, and compared them with the corresponding fractions
from the MTBs. Since type Lgen was found to be most biologically relevant in terms
of miRNA-mRNA expression anti-correlation, in this and subsequent analyses we
focus on this type of MTBs.

We found that for all threshold values between t = −0.1 and t = −0.7, there
was constantly a higher fraction of miRNA-mRNA pairs within the MTBs passing
the anti-correlation threshold than the MRMs identified by Yoon and De Micheli
method as reflected by p-values < 0.5 (Figure 6). In many settings, the difference
in these fraction values was statistically significant. For example, for all threshold
values between t = −0.1 and t = −0.5, there was always a significantly higher
fraction of miRNA-mRNA pairs in the MTBs passing the anti-correlation threshold
than those in the MRMs at the p = 0.01 level based on the high-confidence network
with TarBase interactions. These results further confirm that the MTBs successfully
identified groups of miRNAs and mRNAs with strong expression relationships from
the miRNA-target networks alone.

Potential widespread expression buffering between mRNAs in the same MTBs

After checking the biological relevance of MTBs, we then used them to study
whether mRNAs commonly targeted by some miRNAs buffer each other in terms
of their expression levels. We studied this question using three different methods.

First, we reasoned that if different mRNAs buffer each other, they should ex-
hibit a positive correlation of expression levels across different cell types. To test
if it was the case, we applied a procedure similar to the one we used for testing
miRNA-mRNA anti-correlations described above. Specifically, we asked whether a
significantly higher fraction of mRNA pairs in the same MTBs had expression cor-
relation more positive than a threshold t, as compared to random mRNA pairs and
mRNA pairs targeted by the same miRNA but not in the same MTBs.

The results (Figure 7) show that indeed significantly more mRNA pairs within
type Lgen MTBs were strongly correlated in expression than both types of back-
ground mRNA pairs at various values of t from 0.1 to 0.4, no matter we consid-
ered the high-confidence or high-coverage set of miRNA target predictions, and
whether experimentally validated pairs from TarBase were included or not. The
p-values in the comparison with mRNA pairs targeted by same miRNAs but not
in same MTBs as background were particularly significant (Figure 7b), indicating
that MTBs helped discover mRNAs with strong expression correlations that could
be hard to observe if all targets of a miRNA were considered together as a group.

We noticed that the positive correlations observed between mRNAs in the same
MTBs are necessary but not sufficient for showing that they buffer each other. Since
most mRNAs in the same MTB are expected to be targeted by the same miRNAs,
a plausible alternative explanation is that the positive correlations were simply due
to independent regulation by the same miRNAs without a feedback mechanism
for the mRNAs to affect the expression level of each other. We argue that this
co-regulation mechanism cannot fully explain the significant positive correlations
observed, because mRNAs targeted by same miRNAs but not in same MTBs were
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not as correlated in expression as those in the same MTBs. Also, one possible situa-
tion in which mRNAs cannot back-regulate their targeting miRNAs, and thus they
cannot buffer other mRNA targets, is when the miRNAs have saturated expression
levels across different cell types. This was also unlikely the case since we observed
significant anti-correlations between miRNAs and their mRNA targets in the same
MTBs.

Nonetheless, the above arguments cannot rule out the possibility that the main
function of MTBs was to identify the more reliable miRNA-target pairs from the
noisy interaction network, and thus co-regulation effects between mRNAs in the
same MTBs were still stronger than other mRNAs targeted by the same miRNAs
according to the network.

To more directly distinguish between co-regulation and buffering, we applied a
second analysis method. The main idea is that if some mRNAs buffer each other,
the expression level of one mRNA would provide some information for explaining the
expression level of another mRNA, even when the expression level of the targeting
miRNAs have already been considered. In other words, we wanted to test if one
mRNA could help explain the expression level of another mRNA that could not be
fully explained by the miRNA targets alone. This idea can be quantified by using
partial correlation. Suppose R, T1 and T2 represent a miRNA regulator, target
mRNA 1 and target mRNA 2, respectively. We define f(R, T1) as the correlation
between R and T1, and f(R, T1|T2) as the expected correlation between R and T1

given the level of T2. The difference between them, d(R, T1, T2) = f(R, T1|T2) −
f(R, T1) would be negative if T2 provides additional information for explaining the
expression anti-correlation between R and T1, and it would be close to 0 if T2

provides no additional information, such as when T1 and T2 were independently
regulated by R. A similar method based on conditional mutual information was
previously used to identify sponge modulators in miRNA-target networks [66].

Given R and T1 from an MTB, we compared the partial correlation values us-
ing other mRNAs from the same MTB as T2 with the values obtained by using
other targets of R outside the MTB as T2. The results (Figure 8) show that as
expected, significantly more mRNAs from the same MTBs gave a strong negative
value of d(R, T1, T2) than other mRNA targets of the miRNAs, and the results were
consistently obtained from all four miRNA-target networks. These results suggest
that the mRNAs in an MTB do help explain the expression levels of each other in
addition to what the regulating miRNAs can explain.

Finally, we reasoned that if two mRNAs buffer each other, they should have an
expression correlation stronger than other mRNA pairs co-regulated by the same
miRNA, even if we consider only those within the same MTBs. In other words, for
any two mRNAs T1 and T2 from the same MTB, if d(R, T1, T2) is strongly negative,
f(T1, T2) should be strongly positive. To test if this was the case, we picked the
top x MTBs with most negative d(R, T1, T2) values and bottom x MTBs with most
positive d(R, T1, T2) values. We then repeated the correlation analysis above (the
first method) using either only the top MTBs or only the bottoms ones. For the 112
parameter settings we tested involving different input networks and different values
of x and t, the top MTBs had equal or more significant p-values in 103 of the cases
(92% of the 112 settings). This result confirmed our intuition that the top MTBs
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with potentially stronger expression buffering among its member mRNAs had their
expression levels more correlated.

Taken together, the results of the three methods show that the mRNAs in the
same MTBs are significantly correlated in expression, and this cannot be explained
purely by the fact that they are regulated by the same miRNAs. We propose that
one likely alternative explanation is that these mRNAs buffer each other in terms
of their expression levels.

mRNAs in same MTBs have related biological functions

In addition to expression correlations, another way to check the biological relevance
of MTBs is to test whether the genes (mRNAs) in the same MTB are enriched in
particular functional categories. We collected the Gene Ontology (GO) [8] annota-
tion of the genes in each MTB, and computed the enrichment score of each GO term
using both hypergeometric tests and EASE scores [37]. We then collected the most
significant enrichment score of each MTB to form a distribution, and compared
it with the corresponding distribution of a background set of mRNAs, where the
background was either random sets of mRNAs with the same sizes as the MTBs,
or mRNAs targeted by same miRNAs but not included in the same MTBs.

From the results (Figure 9 and Figure S8), it is seen that the genes in the MTBs
were indeed more functionally related than both types of background mRNA sets.
The results were largely unaffected by the exact way to compute enrichment scores
(hypergeometric test p-values or EASE scores), although the results based on MTBs
obtained from the high-coverage set of miRNA-target interactions were more sig-
nificant.

Functional enrichment of mRNAs in same MTBs is not only due to co-expression
Since the mRNAs in an MTB were correlated in expression in general, we fur-
ther tested whether co-expression alone was sufficient to explain the functional
enrichment. To test it, we sampled random sets of mRNAs with similar sizes and
expression correlation profiles as the MTBs, and computed the hypergeometric test
p-values of the GO terms of the mRNAs in each set. We then compared the dis-
tribution of the most significant enrichment score from each of these sets with the
scores from the MTBs.

The functional enrichment scores of the MTBs were found to be significantly
stronger than the scores from the random sets of genes with similar levels of co-
expression (Figure 10), especially when MTBs were identified from the two high-
coverage miRNA-target networks. These results show that MTBs were able to iden-
tify groups of functionally related genes better than using co-expression information
alone.

MTB as a way to annotate miRNA functions

Finally, we explored the potential application of MTBs in identifying functionally
related miRNAs. Currently, functional annotation of miRNAs is far less complete
than protein-coding genes. Since each MTB represents a largely autonomous mod-
ule, we hypothesized that the miRNAs in an MTB were functionally related to one
another and to the mRNAs in the same MTB. To check if this was the case, for
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each MTB, we identified GO terms that were significantly enriched (p<0.05) based
on the GO term annotations of the mRNAs. We then checked if these enriched GO
terms were also related to the functions of the miRNAs in the same MTB. Table 3
shows several interesting examples we identified.

In the first example (MTB 1), the mRNA encoding AAK1, MAPK1 and PDK3
were annotated with the GO term “protein serine-threonine kinase activity”. We
found that several miRNAs in MTB 1 are able to target the activities of the MAPK
family of serine-threonine protein kinases. miR-320a has been shown to directly
target MAPK1 activity to control the expression of pro-inflammatory cytokines
in patients with myasthenia gravis [19]. Other miRNAs in the same MTB, miR-
17 [20, 74] and miR-20b [20] can both target the MAPK signaling cascades to
regulate cell cycle phase transition [20] and keratinocyte differentiation [74]. In
addition, miR-93 also directly modulates the activity of the protein serine-threonine
kinase, LATS2 to control tumor angiogenesis and metastasis in human breast cancer
cells [27].

In MTB 2, genes encoding CBX5, HMGA2 and RNF20 are annotated by the GO
term “heterochromatin”. The expression of HMGA2, a non-histone protein with im-
portant roles in chromosomal architecture and oncogenic transformation, is directly
targeted by the let-7 miRNA [46, 55]. Interestingly, HMGA2 also functions as a
ceRNA of Tgfbr3 through the let-7 miRNA family that commonly targets them, re-
sulting in the promotion of lung cancer progression [45]. Furthermore, genome-wide
chromatin-binding analysis suggested that let-7 and miR-185 are heterochromatin-
bound miRNAs that can associate with AGO2 in the nucleus of senescent cells
to mediate transcriptional gene silencing of proliferation-promoting genes [11]. To-
gether, results from previously published studies supported our MTB classification
of miR-185 and let-7 as miRNAs important in heterochromatin-binding and/or
chromatin-remodeling.

We next examined the functions of the miRNAs in MTB 3, the mRNAs of which
are annotated by the GO term “Notch signaling pathway”. We found that miR-34a
inhibits cell proliferation in part by directly targeting the expression of CDK6 [67],
an important cell cycle regulator whose expression is dependent on the Notch sig-
naling pathway in T cell development [40]. Likewise, the level of miR-497 has been
shown to inversely correlate with CDK6 expression to regulate cell cycle progres-
sion [30]. Furthermore, both miR-34a and miR-449a have been shown to target the
expression of Notch1 [15, 76], a member of the Notch family of receptors in human
cancer cell lines. Two of the miRNAs in MTB 3 can also target ligands of the Notch
receptors: miR-34a is known to directly target Delta-like 1 [21] whereas miR-15a
targets the non-canonical notch ligand, Delta-like 1 homolog [4].

Finally, in MTB 4, the mRNA-associated GO term “proteasome-mediated
ubiquitin-dependent protein catabolic process” is also functionally related to the
three miRNAs in the MTB. miR-25 has been shown to directly target the E3
ubiquitin ligase, WWP2 [53] to control the reprogramming of somatic cells to in-
duced pluripotent stem cells. miR-363 directly inhibits a ubiquitin-specific protease,
USP28 to promote proteasome-mediated degradation of Myc in human hepatocellu-
lar carcinoma [36]. miR-93, which lies in the miR-106b-25 cluster, has been shown
to target the expression of β-TRCP2, a component of the SCF ubiquitin ligase



Yip et al. Page 12 of S14

complex important in the ubiquitination and subsequent proteasomal degradation
of target proteins [65].

Collectively, these examples demonstrate that enrichment analysis based on the
annotation of GO terms to the mRNAs in an MTB could be used as a way to
annotate the functions of miRNAs in the same MTB.

Discussion

In this study, we have shown that mRNAs in the same MTBs have significant ex-
pression correlations that cannot be explained purely by the fact that they are
regulated by the same miRNAs. We have used multiple methods to show the high
possibility that these mRNAs buffer each other in terms of expression, which sug-
gests that ceRNAs could play an important role in the regulation of many mRNAs.
In order to fully test the generality of the ceRNA hypothesis, it is necessary to
perform perturbation experiments to see how the alteration of the expression level
of one mRNA could affect other mRNAs regulated by the same miRNAs. With-
out such experimental data, in this study we do not aim at completely proving or
disproving the generality of the ceRNA hypotheses. Instead, we think the MTBs
represent small miRNA-target modules that could be very useful in identifying can-
didate miRNAs and mRNAs of future experimental studies in testing hypotheses
related to ceRNA.

The fact that more significant p-values were observed for the MTB types with
higher error tolerance (such as Rgen and Lgen) suggests that analysis results could
indeed be misled by the errors present in the networks, and that trading off the
purity of modules with some error tolerance is a reasonable strategy to handle the
current noisy miRNA-target networks. On the other hand, although the Rgen and
Lgen types of MTBs had the most statistically significant results, there could also
be interesting cases identified by the other types. For instance, type R MTBs the-
oretically represent fully autonomous modules with complete target sharing among
its member miRNAs, which are ideal cases for studying the ceRNA hypothesis.
When miRNA-target networks become more complete and accurate in the future,
more statistically significant results may be obtained from this and the other types
of MTB with more stringent definitions.

One aspect of MTBs that we have not yet explored in this study is their cell-type
specificity. Since MTBs are defined purely based on the miRNA-target connections,
the different miRNAs and mRNAs in an MTB may not be all expressed in the
same cell types. It would be interesting to study whether different miRNAs in an
MTB usually co-express in the same cell types and co-regulate the common mRNA
targets, or express in different cell types and act as alternative regulators.

In this work, we have focused on the use of expression data from ENCODE,
which include matched mRNA and miRNA expression data from the same cell
lines. We have also tested mRNA-mRNA positive correlations within our identified
MTBs using a larger data set originally obtained from more than 73,000 microarray
experiments [58]. Statistically significant results were again observed, but within a
narrower range of correlation threshold t. We will test the concept of MTBs using
larger data sets in the future.

While we have defined eight different types of MTB, actually they can all be de-
scribed by a general framework. A detailed discussion is given in the Supplementary
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Materials. Briefly, a general MTB can be defined as a submatrix with an associated
score, which is a combination of (1) the missing 1’s in the MTB, (2) extra 1’s in
other rows of the defining columns, and (3) extra 1’s in other columns of the defin-
ing rows. Each of the eight MTB types corresponds to a particular way to combine
these three components. While this general model appears to be more of theoretical
interests, it actually has a real application in helping define MTBs from weighted
networks in which each miRNA-mRNA pair is given a weight that indicates how
likely they interact. Using such a weighted network would provide more information
for analysis and avoid defining arbitrary thresholds to form a binary network.

Conclusion
In this study, we have introduced microRNA-target biclusters (MTBs) as a method
to systematically identify largely autonomous modules purely from the connections
in a noisy miRNA-target network. To cater for modules involving miRNAs that do
not target all mRNAs in the module, and the presence of false positives and false
negatives in the network, we have defined eight different types of MTB with different
levels of autonomy and error tolerance. We have shown that for some MTB types,
especially those with higher error tolerance, the identified modules are biologically
relevant by having significant anti-correlations between their member miRNAs and
mRNAs as compared to both random miRNA-mRNA pairs and miRNA-target pairs
not in the same MTBs. We have checked the robustness of our method using different
input networks (high confidence or high coverage, with or without experimentally
validated interactions), different values of the correlation threshold t in computing
p-values, and whether to pre-group related miRNAs. The results were consistent
across a wide spectrum of parameter settings.

The identified MTBs have enabled us to study how the expression patterns of their
member mRNAs are related, with relatively small influence from other miRNAs and
mRNAs outside the MTBs. Using three different analysis methods, namely direct
expression correlation among the mRNAs, gain of miRNA-mRNA anti-correlation
information by conditioning on another mRNA, and separate correlation analyses of
MTBs with the strongest and weakest information gain, we have shown that there is
strong correlation between the expression levels of mRNAs in the same MTBs that
can well be explained by expression buffering as stated in the ceRNA hypothesis.
These results show that although the regulatory effects of miRNAs are only partially
reflected by the expression levels of their target mRNAs, and mRNA expression is
affected by other regulatory mechanisms, it is still possible to use transcript levels
to study the effects of miRNAs by decomposing a complex and noisy network of
miRNA-target interactions into small modules that can be analyzed individually.

In the long term, the methods proposed in this study should be extended to model
the hierarchical relationships between different MTBs and incorporate other regu-
latory mechanisms, to provide a more complete picture of the complex interactions
between various types of biological objects in gene regulatory networks.

Materials and methods
Construction of miRNA-target networks

We collected experimentally validated human miRNA-target pairs from TarBase
(v6.0) [73], which contained one of the most comprehensive sets of validated miRNA-
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mRNA interactions. We considered only the experimental types that likely report
direct miRNA-mRNA interactions, namely PCR, ReportGeneAssay and Sequenc-
ing.

In addition, we gathered computationally predicted human miRNA-mRNA in-
teractions using 5 methods based on different prediction approaches, namely mi-
Randa (Aug 2010) [39], miRGen (v2.0) [3], PicTar (Hg18) [5], PITA (v6) [44]
and TargetScan (6.0) [47]. The dataset for miRanda used was the human
predictions with “Good mirSVR score, Conserved miRNA”, downloaded from
http://cbio.mskcc.org/microrna data/human predictions S C aug2010.txt.

gz. The miRGen data file was downloaded from http://diana.cslab.ece.

ntua.gr/data/public/TF GENEID miRNA sorted.txt. The dataset for PicTar
was the PicTar2 predicted target genes with conservation at the mammals’
level based on RefSeq gene models and human hg18 reference assembly, down-
loaded from http://dorina.mdc-berlin.de/rbp browser/downloads/pictar

hg18 mammals.bulk download.csv. For PITA, the Human Top predictions of
miRNA targets were downloaded from http://genie.weizmann.ac.il/pubs/

mir07/catalogs/PITA targets hg18 0 0 TOP.tab.gz. For TargetScan, the data
used were the predicted conserved targets, downloaded form http://www.targetscan.

org/vert 61/vert 61 data download/Predicted Targets Info.txt.zip.
The gene names in all data files were converted to official gene symbols using the

lookup table in HGNC [34]. Records with unrecognized gene names were ignored.
A high-confidence interaction network was constructed by taking the union of the

1,000 highest-scoring predictions from each method (where the number for miR-
Gen was slightly larger due to ties in prediction scores). A second network was
constructed by adding to this network the experimentally validated interactions
in TarBase. Similarly, two high-coverage interaction networks were constructed by
taking the union of the 5,000 highest-scoring predictions from each method, one
with TarBase interactions and one without.

Expression data

To study the expression levels of miRNAs and mRNAs across different cell types, we
collected RNA-seq data in whole cells of human cell lines from ENCODE [69, 23],
namely A549, AGO4450, BJ, GM12878, H1-hESC, HeLa-S3, K562, MCF7, NHEK
and SK-N-SH, which contained the largest number of non-zero expression values
for our mRNAs and miRNAs among all the human cell lines with RNA-seq data
available from ENCODE at the time of collection. We used long PolyA+ RNA data
to compute expression levels of mRNAs, and short total RNA data for miRNAs.
Expression levels were computed by the number of reads mapped to each gene per
kilobase per million reads (RPKM). We combined values from multiple replicates
of the same experiment by taking their average.

As our goal was to study expression relationships between miRNAs and mRNAs,
we focused on the set of mRNAs and miRNAs with non-zero expression values in at
least 8 of the 10 cell lines. Considering only these miRNAs and mRNAs, we obtained
the four integrated networks used in our analyses, namely the high-confidence/high-
coverage expressed union network with/without TarBase interactions (Table 1).
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Definitions of MTBs and identification algorithms

As described in the Results section, we defined eight MTB types that differ in
whether missing 1’s are allowed in the defining submatrix, and whether extra 1’s
are allowed in the defining rows and columns outside the MTB (Figure 1). Here
we provide detailed definitions of the eight types, and describe the corresponding
algorithms for identifying the MTBs of each type from a miRNA-target network. In
our analyses, by default we considered only MTBs containing at least two mRNAs
and at least two miRNAs. For the analysis of positive expression correlations be-
tween mRNA pairs, in order to avoid having only one correlation value per MTB,
we further considered only MTBs with at least 3 mRNAs.

Type R
Type R is the most restrictive type that requires each participating miRNA to target
all participating mRNAs but no other mRNAs, and each participating mRNA to
be targeted by all participating miRNAs but no other miRNAs. In the matrix
representation, an MTB of this type is a submatrix with all 1’s, and all other
elements on the same rows and columns are 0’s. Since each row and each column can
participate in at most one MTB, the total number of MTBs is at most min(|R|, |C|),
where R and C are the sets of all rows (i.e., mRNAs) and all columns (i.e., miRNAs),
respectively, and the notation |X| denotes the size of any set X.

We developed an algorithm to identify all MTBs of this type from a miRNA-target
network in linear time. The basic idea is to use the columns with 1’s in a row as its
signature, and group all rows with the same signature together with the help of a
hash table. Similarly, we defined the signature of a column as the rows at which it
has 1’s, and grouped all columns with the same signature together. For each group
of rows, if the columns in its signature do not have 1’s at other rows, it forms an
MTB with these columns. Otherwise, by the definition of type R MTB, the whole
group of rows cannot be members of any MTB. In this algorithm, whether there
are other 1’s in these columns can be efficiently checked by the following method.
Suppose r is the group of rows, c is the set of columns defining its signature, and
j is one of these columns. All columns in c do not have other 1’s if and only if j

belongs to a group with signature r for all j ∈ c.
The pseudocode of the whole algorithm is given in Algorithm 1.

Type Rmi
Type Rmi is the same as type R except that the mRNAs of an MTB are allowed
to be targeted by additional miRNAs. In the matrix representation, extra 1’s are
allowed in other columns of the defining rows. There can be an exponential number
of type Rmi MTBs, because if (r, c) is an MTB, then (r, c′) is also an MTB for any
set of columns c′ ⊂ c. On the other hand, if we define a maximal MTB as one that
is not a submatrix of another MTB, then each column can participate in at most
one maximal MTB. Therefore the total number of maximal MTBs is at most |C|.

We modified the algorithm for type R to identify all maximal MTBs of type Rmi.
For each column, we defined its signature as the rows at which it has 1’s. We then
grouped all columns with the same signature with the help of a hash table. Each
resulting group of columns and the rows in their signatures form a maximal type
Rmi MTB, with no additional checking required.

The pseudocode of the algorithm is given in Algorithm 2.
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Type Rm
Type Rm is the transpose of type Rmi. It allows each miRNA of an MTB to
target other mRNAs outside the MTB, but does not allow the mRNAs to have
other targeting miRNAs. Using the same argument for type Rmi, there can be an
exponential number of type Rm MTBs, but at most |R| maximal MTBs.

The algorithm we used for identifying all maximal type Rm MTBs is analogous
to the one for type Rmi, except that we grouped rows based on their signatures
instead.

The pseudocode of the algorithm is given in Algorithm 3.

Type Rgen
Type Rgen maintains the requirement that all miRNAs participating in an MTB
must target all participating mRNAs, but the miRNAs are allowed to have other
targets and the mRNAs are allowed to be targeted by other miRNAs. This type
of MTBs is best described by the graphical representation, where each MTB is
a biclique, i.e., a complete subgraph with all the miRNA nodes connecting to all
the mRNA nodes. Again, there can be an exponential number of MTBs, as each
subgraph of a type Rgen MTB is also a type Rgen MTB. There can also be an
exponential number of maximal type Rgen MTB. For example, if there are 2|C|− 1
rows and the signature of each row is the same as its index, i.e., the first row has
signature 000...001, the second row has signature 000...010, the third row has signa-
ture 000...011, and so on, then each of the 2|C|−1 non-empty column combinations
participates in a different maximal MTB. Because of the exponential number of pos-
sible maximal MTBs, and the fact that finding maximal bicliques is NP hard [59], in
theory it is infeasible to identify all maximal type Rgen MTBs in a miRNA-mRNA
network.

In practice, however, both the number of maximal type Rgen MTBs and the size of
each are small in the networks we studied. We therefore used an iterative algorithm
to find all maximal type Rgen MTBs, based on the Apriori algorithm proposed for
association rule mining [1, 13]. The basic idea is that if (r, c) is a type Rgen MTB,
then for any c′ ⊂ c, (r, c′) must also be a type Rgen MTB. One can then iteratively
discover MTBs with two columns, three columns, and so on, by testing k-column
sets in the k-th iteration, constructed by merging two (k − 1)-column sets in the
previous iteration.

The pseudocode of the algorithm is given in Algorithm 4.

Type L
The definition of type L MTB involves three rules. First, each participating miRNA
is allowed to target only some of the participating mRNAs, but it cannot target any
other mRNAs. Second, each participating mRNA is allowed to be targeted by only
some of the participating miRNAs, but it cannot be targeted by other miRNAs.
Finally, in the graphical representation, the nodes that represent the participating
rows and columns should all be connected, i.e., there should be a path between any
two nodes. In other words, each type L MTB is a connected component. Since each
row and each column can participate in at most one MTB, the total number of type
L MTBs is at most min(|R|, |C|).
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We used a standard breadth-first search algorithm to find all connected compo-
nents, i.e., all type L MTBs, in linear time.

The pseudocode of the algorithm is given in Algorithm 5.

Type Lmi
Type Lmi MTB differs from type L by allowing the participating mRNAs of an
MTB to be targeted by additional miRNAs outside the MTB. Since each type Rmi
MTB is also a type Lmi MTB, there is at maximum an exponential number of type
Lmi MTBs in a miRNA-target network. Since each column can participate in at
most one maximal MTB, there are no more than |C| maximal type Lmi MTBs.

It is easy to see that the set of maximal type Lmi MTBs is exactly the same as
the set of maximal type L MTBs. The algorithm for finding all maximal type L
MTBs can thus be used for finding all maximal type Lmi MTBs. However, we did
not adopt this approach for two reasons. First, by doing so it would be meaningless
to define type L and type Lmi MTBs as two separate types. Second, a maximal
type Lmi MTB is likely to have many member miRNAs and mRNAs not having
interactions, leading to a low density of interactions within the MTB.

We therefore developed an algorithm for finding high-scoring type Lmi MTBs
instead. The score of an MTB is defined as the density of 1’s in the defining sub-
matrix, where the density of 1’s in an MTB is defined as the number of 1’s divided by
the total number of elements in the submatrix. The algorithm starts with the set of
maximal type Rmi MTBs, which all have an interaction density of one by definition.
We then removed MTBs that are too similar to another one. After that, for each
column not in any MTB, we tested if it was reasonable to add it and all rows with a
1 in that column to the MTB. If the resulting density of 1’s in the new MTB did not
drop below a certain threshold (which we set to 0.3), we considered the addition of
the column as reasonable. If there were multiple reasonable additions, we chose the
one with the highest resulting density of 1’s and repeated the process. Otherwise,
the current MTB was returned as one of the high-scoring type Lmi MTBs.

The pseudocode of the algorithm is given in Algorithm 6.

Type Lm
Type Lm MTB is the transpose of type Lmi MTB. All the discussions about type
Lmi MTBs can be applied to type Lm MTBs by swapping the rows and columns.

The pseudocode of the algorithm for finding all high-scoring type Lm MTBs is
given in Algorithm 7.

Type Lgen
Type Lgen has the most relaxed definition among the eight types, and is likely
the most practical one. Each miRNA in a type Lgen MTB is allowed to target
only some of the mRNAs in the MTB, and is allowed to target other mRNAs.
Likewise, each mRNA is allowed to be targeted by only some of the miRNAs in the
MTB, and is allowed to be targeted by other miRNAs. To avoid having completely
unrelated miRNAs and mRNAs in the same MTB, we maintained the connectedness
requirement from type L. Since type Rgen is a special case of type Lgen, there can
also be an exponential number of type Lgen MTBs. On the other hand, the number
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of maximal MTBs is limited by the number of connected components in the network,
which is at most O(min(|R|, |C|)).

Due to the exponential number of type Lgen MTBs, both theoretically and prac-
tically, it is infeasible to return all of them. On the other hand, it is also not
meaningful to return all maximal MTBs, since they are usually very sparse and
contain miRNAs and mRNAs that are only weakly connected. Therefore as in the
cases of type Lmi and type Lm MTB, we adopted a different approach to return
high-scoring MTBs, which are MTBs with a high density of 1’s within the defining
submatrices. We developed an algorithm to find these high-scoring MTBs, based on
some ideas from a previously method proposed for finding communities in partite
networks [24]. First, we used the algorithm for type Rgen MTBs to find all maxi-
mal bicliques, and called each of them a bicluster. We then removed biclusters that
are too similar to another one. After this step, we iteratively added extra rows or
columns to each MTB in ways similar to the algorithms for type Lmi and type Lm
MTBs, except that when a column/row was added to an MTB, it was not required
to also add the rows/columns with 1’s in the adding column/row. For each biclus-
ter, the best addition was kept. The process was repeated until no more mRNAs or
miRNAs could be added without causing the density to drop below a threshold.

The pseudocode of the algorithm is given in Algorithm 8.

Workflow for expression correlation analyses

We used a unified workflow for studying the negative correlations between miR-
NAs and mRNAs in an MTB (Figure 2 and Figure S1a). Each time we consid-
ered one of the four integrated miRNA-target interaction networks of expressed
miRNAs and mRNAs as input (Table 1, High-confidence/high-coverage expressed
union with/without TarBase interactions). MTBs of the different types were iden-
tified from the network using the algorithms described above. For each MTB, we
calculated the Pearson correlation between the expression levels of each pair of par-
ticipating miRNA and mRNA across the human cell lines. We then summarized all
these correlations by computing the fraction of them more negative than a correla-
tion threshold t, multiple values of which (-0.1 to -0.7 with a step size of 0.1) were
tested. After collecting all these fractions from the MTBs of a particular type, we
compared them with the fractions from two backgrounds. The first one involved
1,000 random sets of expressed miRNAs and mRNAs with sizes matching the size
distribution of the actual MTBs. The second one involved the same miRNAs and
their other targets not included in the same MTBs as them. To quantify the com-
parisons, we used Wilcoxon rank-sum test to calculate a one-sided p-value for each
MTB type at each value of t. A significant p-value would mean the fractions from
the MTBs were significantly higher than the set of fractions in comparison. As our
goal was to compare the results in various parameter settings rather than emphasiz-
ing on the significance of one particular set of results, the reported p-values were not
corrected for multiple hypothesis testing. We remark that if one was to use the con-
cept of MTB to identify one set of reliable miRNA-target modules for downstream
analyses, the statistical significance of such modules should be carefully corrected
taking into account the number of hypothesis tests performed.

We also repeated the analysis when different miRNAs with the same miRNA num-
bers but different modifiers (such as has-mir-121a and hsa-mir-121b) were grouped
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together. The expression value of each group was defined as the average expression
of the member miRNAs.

In the same way, we also tested the positive correlations between mRNAs in same
MTBs, in which case we computed the fractions of pairs with expression correlation
higher than a threshold t, where t took values from 0.1 to 0.7. The fractions obtained
from mRNA pairs in same MTBs were first compared to fractions from random pairs
of expressed mRNAs, and then to pairs of mRNAs targeted by the same miRNAs
but were not in the same MTBs.

Predicting MTBs with strong miRNA-mRNA expression anti-correlation

We developed a method for predicting MTBs with strong miRNA-mRNA expres-
sion anti-correlation when expression data are unavailable. For each MTB, we con-
structed seven non-expression features, namely 1) its number of mRNAs, 2) its
number of miRNAs, 3) the density of 1’s in its submatrix, 4) the density of 1’s in
other rows of the defining columns, 5) the density of 1’s in the other columns of
the defining rows, 6) the density of 1’s in the other rows of the defining columns
or the other columns of the defining rows, and 7) the MTB type. Each MTB was
thus represented by a vector of seven numeric values. The goal was to identify
the anti-correlation class of each MTB, where ten equal-width classes were defined
based on the distribution of average anti-correlation values of the MTBs. We then
took 9/10 of the MTBs to train a Random Forest model using the implementa-
tion in Weka [35], and tested its accuracy using the remaining 1/10 of MTBs with
their anti-correlation classes hidden. We repeated the process with 10 random sets
of training-testing data, and reported their average area of the receiver operator
characteristics (AUC).

Comparison with miRNA regulatory modules from Yoon and De Micheli

We compared the miRNA-mRNA expression anti-correlation with the miRNA reg-
ulatory modules (MRMs) from Yoon and De Micheli [75]. We implemented this
method and applied it to find MRMs from each of our input miRNA-target net-
works. For each identified MRM, we computed the fraction of miRNA-mRNA pairs
with expression correlation more negative than a threshold t. We then compared
these fraction values with the fraction values from our type Lgen MTBs using a
one-sided Wilcoxon rank-sum test. A significant p-value would indicate that the
fraction values from the MTBs were significantly higher than the MRMs.

Workflow for testing whether correlated expression of mRNAs were more likely due to

buffering than co-regulation

To test if the correlated expression of two mRNAs in the same MTB is due to
buffering or co-regulation, we applied a method similar to the one in Sumazin et
al. [66]. The idea is to compute d(R, T1, T2) = f(R, T1|T2) − f(R, T1), where R

is a regulating miRNA, T1 and T2 are two mRNA targets of it, f is the Pearson
correlation function, and f(R, T1|T2) is defined as the expected correlation between
R and T1 after dividing the cell lines into two groups based on the expression value
of T2 (above mean and below mean). If d(R, T1, T2) is negative, it would mean that
the expression relationship between R and T1 can be better explained when the
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expression of T2 is known, and thus T1 and T2 are not independently regulated by
R, but they affect each other possibly due to buffering.

To globally test if the (R, T1, T2) combinations in our MTBs have significantly
more negative d(R, T1, T2) values than combinations involving the same R but
T1 and T2 outside our MTBs, we used a procedure similar to checking the anti-
correlations between miRNAs and targets in MTBs, but with the distribution
of anti-correlation values replaced by these d(R, T1, T2) values. The fraction of
(R, T1, T2) combinations with a d(R, T1, T2) value more negative than a thresh-
old t was computed for each MTB, and the resulting distribution of fractions from
all MTBs was compared to the background distribution with the same R’s but T1’s
and T2’s outside the MTBs using a one-sided Wilcoxon rank-sum test.

Based on the above calculations, we also collected x MTBs with the most negative
d(R, T1, T2) values and the x with most positive d(R, T1, T2) values. We called the
former set of MTBs the “top” MTBs and the latter set the “bottom” MTBs as the
former set was expected to exhibit stronger expression buffering among the mRNAs
in each of them. We then used our correlation pipeline to test if the mRNA-mRNA
correlations were significantly stronger than other mRNA pairs targeted by the same
miRNAs but were not in the same MTBs based on different values of the correlation
threshold t. Considering the 4 input miRNA-target networks, 4 values of x (100,
200, 500 and 1000), and 7 values of t (0.1 to 0.7), we compared the p-values from
the top MTBs and from the bottom MTBs under the 4 × 4 × 7 = 112 parameter
settings.

Workflow for functional enrichment analyses

We also setup a workflow for evaluating the functional relationships between the
genes in same MTBs (Figure S1b). For each MTB, we collected the terms associated
with each gene (mRNA) defined in Gene Ontology [8]. For each term, we then
computed a p-value using hypergeometric test, to indicate the enrichment of the
term in this set of genes as compared to the background set of all genes. To ensure
robustness of our results, we also computed EASE scores as defined on the DAVID
Web site [37], which can be considered a more stringent version of the p-values. The
most significant p-value from each MTB was then collected to form a distribution,
and it was compared to the most significant p-values from random sets of mRNAs
of the same sizes of the MTBs. This comparison was quantified by a one-sided
Wilcoxon rank-sum test, where a significant p-value would indicate that the genes
in the MTBs were more enriched in same functional terms than random gene sets.

We also repeated the same analysis for sets of random mRNAs with a similar size
and a similar level of co-expression as the MTBs.

Availability

The source code and compiled programs we used for our analyses are available
at http://yiplab.cse.cuhk.edu.hk/MTB/.
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Hansen, Børge Teisner, and Søren P. Sheikh. Microrna-15a fine-tunes the level of delta-like 1 homolog (dlk1) in

proliferating 3t3-l1 preadipocytes. Experimental Cell Research, 316:1681–1691, 2010.

5. Marianthi Kiriakidou andPeter T. Nelson, Andrei Kouranov, Petko Fitziev, Costas Bouyioukos, Zissimos

Mourelatos, and Artemis Hatzigeorgiou. A combined computational-experimental approach predicts human

microRNA targets. Genes & Development, 18(10):1165–1178, 2004.

6. Shay Artzi, Adam Kiezun, and Noam Shomron. miRNAminer: A tool for homologous microRNA gene search.

BMC Bioinformatics, 9(1):39, 2008.

7. Aaron Arvey, Erik Larsson, Chris Sander, Christina S Leslie, and Debora S Marks. Target mRNA abundance

dilutes microRNA and siRNA activity. Molecular Systems Biology, 6(363), 2010.

8. Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler, J. Michael Cherry,

Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, Midori A. Harris, David P. Hill, Laurie

Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese, Joel E. Richardson, Martin Ringwald,

Gerald M. Rubin, and Gavin Sherlock. Gene ontology: Tool for the unification of biology. Nature Genetics,

25(1):25–29, 2000.

9. David P. Bartel. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2):281–297, 2004.

10. David P. Bartel. MicroRNAs: Target recognition and regulatory functions. Cell, 136:215–233, 2009.

11. Moussa Benhamed, Utz Herbig, Tao Ye, Anne Dejean, and Oliver Bischof. Senescence is an endogenous trigger

for microrna-directed transcriptional gene silencing in human cells. Nature Cell Biology, 14(3):266–275, 2012.

12. Eric Bonnet, Marianthi Tatari, Anagha Joshi, Tom Michoel, Kathleen Marchal, Geert Berx, and Yves Van

de Peer. Module network inference from a cancer gene expression data set identifies MicroRNA regulated

modules. PLOS ONE, 5(e10162), 2010.

13. Christian Borgelt and Rudolf Kruse. Induction of association rules: Apriori implementation. In Proceedings of

The 15th Conference on Computational Statistics, pages 395–400, 2002.

14. Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

15. Marina Capuano, Laura Iaffaldano, Nadia Tinto, Donatella Montanaro, Valentina Capobianco, Valentina Izzo,

Francesca Tucci, Giancarlo Troncone, Luigi Greco, and Lucia Sacchetti. Microrna-449a overexpression, reduced

notch1 signals and scarce goblet cells characterize the small intestine of celiac patients. PLOS ONE,

6(e29094), 2011.

16. Michelle A. Carmell, Zhenyu Xuan, Michael Q. Zhang, and Gregory J. Hannon. The Argonaute family:

Tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes &

Development, 16(21):2733–2742, 2002.

17. Marcella Cesana, Davide Cacchiarelli, Ivano Legnini, Tiziana Santini, Olga Sthandier, Mauro Chinappi, Anna

Tramontano, and Irene Bozzoni. A long noncoding RNA controls muscle differentiation by functioning as a

competing endogenous RNA. Cell, 147:358–369, 2011.

18. Yizong Cheng and George M. Church. Biclustering of expression data. In Proceedings of the 8th International

Conference on Intelligent Systems for Molecular Biology, pages 93–103, 2000.

19. Zhuoan Cheng, Shaobo Qiu, Lin Jiang, Anle Zhang, Wenjing Bao, Ping Liu, and Jianwen Liu. Mir-320a is

downregulated in patients with myasthenia gravis and modulates inflammatory cytokines production by

targeting mitogen-activated protein kinase 1. Journal of Clinical Immunology, 33:567–576, 2013.

20. Nicole Cloonan, Mellissa K Brown, Anita L Steptoe, Shivangi Wani, Wei Ling Chan, Alistair RR Forrest,

Gabriel Kolle, Brian Gabrielli, and Sean M Grimmond. The mir-17-5p microrna is a key regulator of the g1/s

phase cell cycle transition. Genome Biology, 9(R127), 2008.

21. Pasqualino de Antonellis, Chiara Medaglia, Emilio Cusanelli, Immacolata Andolfo, Lucia Liguori, Gennaro De

Vita, Marianeve Carotenuto, Annamaria Bello, Fabio Formiggini, Aldo Galeone, Giuseppe De Rosa, Antonella

Virgilio, Immacolata Scognamiglio, Manuela Sciro, Giuseppe Basso, Johannes H. Schulte, Giuseppe Cinalli,



Yip et al. Page 22 of S14

Achille Iolascon, and Massimo Zollo. Mir-34a targeting of notch ligand delta-like 1 impairs cd15+/cd133+

tumor-propagating cells and supports neural differentiation in medulloblastoma. PLOS ONE, 6(e24584), 2011.

22. Tobias Dezulian, Michael Remmert, Javier F Palatnik, Detlef Weigel, and Daniel H Huson. Identification of

plant microRNA homologs. Bioinformatics, 22(3):359–360, 2006.

23. Sarah Djebali, Carrie A. Davis, Angelika Merkel, Alex Dobin, Timo Lassmann, Ali Mortazavi, Andrea Tanzer,

Julien Lagarde, Wei Lin, Felix Schlesinger, Chenghai Xue, Georgi K. Marinov, Jainab Khatun, Brian A.

Williams, Chris Zaleski, Joel Rozowsky, Maik Roder, Felix Kokocinski, Rehab F. Abdelhamid, Tyler Alioto, Igor

Antoshechkin, Michael T. Baer, Nadav S. Bar, Philippe Batut, Kimberly Bell, Ian Bell, Sudipto Chakrabortty,

Xian Chen, Jacqueline Chrast, Joao Curado, Thomas Derrien, Jorg Drenkow, Erica Dumais, Jacqueline Dumais,

Radha Duttagupta, Emilie Falconnet, Meagan Fastuca, Kata Fejes-Toth, Pedro Ferreira, Sylvain Foissac,

Melissa J. Fullwood, Hui Gao, David Gonzalez, Assaf Gordon, Harsha Gunawardena, Cedric Howald, Sonali Jha,

Rory Johnson, Philipp Kapranov, Brandon King, Colin Kingswood, Oscar J. Luo, Eddie Park, Kimberly

Persaud, Jonathan B. Preall, Paolo Ribeca, Brian Risk, Daniel Robyr, Michael Sammeth, Lorian Schaffer,

Lei-Hoon See, Atif Shahab, Jorgen Skancke, Ana Maria Suzuki, Hazuki Takahashi, Hagen Tilgner, Diane Trout,

Nathalie Walters, Huaien Wang, John Wrobel, Yanbao Yu, Xiaoan Ruan, Yoshihide Hayashizaki, Jennifer

Harrow, Mark Gerstein, Tim Hubbard, Alexandre Reymond, Stylianos E. Antonarakis, Gregory Hannon,

Morgan C. Giddings, Yijun Ruan, Barbara Wold, Piero Carninci, Roderic Guigó, and Thomas R. Gingeras.
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Figures

Figure 1 Summary on the eight types of MTB. The different types are named according to (1)
whether the defining submatrix of an MTB can only contain 1’s (restrictive, R) or is allowed to
contain 0’s (loose, L), and (2) whether the miRNAs (mi) are not allowed to have extra targets,
the mRNAs (m) are not allowed to be targeted by extra miRNAs, or the general case (gen) that
both are allowed. In the formal mathematical definitions, r and c correspond to the sets of row
and column indices defining an MTB, where each row corresponds to an mRNA and each column
corresponds to a miRNA. aij is the value at row i and column j of the adjacency matrix. In the
matrix representation, an example is shown for each type of MTB, where the sub-matrix enclosed
by the rectangle corresponds to the example MTB. For visualization purpose, they are drawn to
occupy consecutive rows and columns, but this is not required in the actual definitions of the
MTB types. Values of irrelevant cells, i.e., those not on the rows and columns defining the MTB,
are omitted. In the graphical representation, the red nodes are the mRNAs and miRNAs defining
the example MTB, red lines are edges between them, and blue lines are edges connecting them to
mRNAs or miRNAs outside the MTB. In the formulas for showing the number of MTBs of each
type, R and C are the full sets of miRNAs and genes in the miRNA-target network, respectively,
and |R| and |C| are their sizes. The function connected(i, j) means the nodes in the graphical
representation corresponding to row i and column j are connected, which can be formally defined
as ∃i1, i2, ..., ik ∈ r, j1, j2, ..., jk ∈ s, s.t.aij1 = ai1j1 = ai1j2 = ai2j2 = ... = aikjk

= aikj = 1.

Figure 2 Schematic figure explaining the workflow for testing the statistical significance of
expression anti-correlation of miRNAs and mRNAs in the same MTBs. (a) An example MTB
(submatrix in cells with red borders), corresponding random miRNA-mRNA pairs (cells with green
borders) and other targets of the miRNAs that define the MTB (cells with blue borders). (b) The
expression levels of the miRNAs and mRNAs from multiple cell lines were collected. The expression
correlation between each miRNA-mRNA pair in the MTB was computed. Similar correlation
values were also computed for the two background sets (not shown). (c) For each MTB and
corresponding background sets, the computed correlation values were recorded. (d) These
correlation values were compared against a threshold t (-0.1 for example), and the fraction of
correlation values more negative than t was computed. The vector of these fractional values from
the MTBs was then compared to the vectors from the two background sets by a statistical test.

Figure 3 Statistical significance of the negative correlations between the expression levels of
miRNAs and mRNAs in the same MTBs. The p-values were computed based on the expressed
union sets with TarBase interactions, for (a) the high-confidence set and (b) the high-coverage set
as compared to a random background sampled from all expressed mRNAs and miRNAs; and (c)
the high-confidence set and (d) the high-coverage set as compared to a background consisting of
miRNA-mRNA pairs with interactions in the input network but are not in same MTBs. In the
figures, 1E-16 represents the smallest p-value that could be outputted by our program. MTB
types with no identified MTBs are omitted.

Tables
Additional Files
Additional file 1 — Supplementary materials

This file contains supplementary methods and supplementary figures.
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Figure 4 Example fractions of miRNA-mRNA pairs satisfying the correlation threshold. Type Lgen
MTBs were identified from the high-confidence expression union set of miRNA-target interactions
with TarBase inputs. For each MTB, the fraction of miRNA-mRNA pairs with expression
correlation more negative than t=-0.2 among the 10 cell lines was computed. The distribution of
these fractional values is shown by a histogram. Also shown are the distributions of fraction values
for random groups of miRNAs and mRNAs of the same sizes as the MTBs, and for groups of
miRNAs and their target mRNAs not within same MTBs.

Figure 5 Statistics of the MTBs identified from the high-confidence integrated expressed union
set with TarBase interactions. For each type of MTB, the average number of mRNAs per MTB,
average number of miRNAs per MTB and the number of MTBs identified by our algorithm are
shown.

Figure 6 Comparing MTBs with the miRNA regulatory modules (MRMs) identified by the Yoon
and De Micheli method. The p-values were computed by comparing the fractions of correlations
more negative than the threshold t of miRNA-mRNA pairs within MTBs, as compared to those
from the MRMs. In the figure, 1E-16 represents the smallest p-value that could be outputted by
our program.

Figure 7 Statistical significance of the positive Pearson correlations between the expression levels
of mRNAs in the same type Lgen MTBs. The p-values were computed by comparing the fractions
of correlations more positive than the threshold t of the mRNA pairs within MTBs, as compared
to (a) a background consisting of random mRNA pairs, or (b) a background consisting of mRNA
pairs targeted by a common miRNA in the input interaction network but not in same MTBs. In
the figures, 1E-16 represents the smallest p-value that could be outputted by our program.

Figure 8 Statistical significance of the extra information provided by an mRNA in our MTBs in
explaining the relationship between a miRNA and another mRNA in the same MTB. The p-values
were computed by comparing the fractions of d(R, T1, T2) (see Materials and Methods) more
negative than the threshold t of the (R, T1, T2) combinations within MTBs, as compared to a
background consisting of (R, T1, T2) combinations where R comes from the same MTBs but T1
and T2 do not. In the figure, 1E-16 represents the smallest p-value that could be outputted by
our program.

Figure 9 Statistical significance of the functional enrichment scores of the genes from same type
Lgen MTBs. The p-values were computed based on the expressed union sets with TarBase
interactions, for (a) the high-confidence set and (b) the high-coverage set. In the figures, 1E-16
represents the smallest p-value that could be outputted by our program.

Figure 10 Comparison of the functional enrichment scores of the mRNAs in same MTBs with
random co-expressed mRNAs. In the figure, 1E-16 represents the smallest p-value that could be
outputted by our program.

Table 1 Summary statistics of the different datasets used in our study. The integrated datasets
involve data from all the prediction sets with or without the experimentally validated miRNA-target
pairs. Among them, the expressed union sets were formed by considering only the expressed miRNAs
and mRNAs in the corresponding union sets. We used these four expressed union sets (with or
without TarBase, high confidence or high coverage) in our analyses.

High confidence High coverage
Dataset Type miRNAs mRNAs interactions miRNAs mRNAs interactions
TarBase [73] Validated 202 2,315 9,569 202 2,315 9,569
miRanda [39] Predicted 409 567 1,000 856 2,633 5,000
miRGen [3] Predicted 503 37 1,041 828 103 5,230
PicTar [5] Predicted 91 438 1,000 164 1,541 5,000
PITA [44] Predicted 290 760 1,000 582 2,708 5,000
TargetScan [47] Predicted 29 214 1,000 40 948 5,000
Union (without TarBase) Integrated 926 1,818 4,983 1,505 6,063 24,553
Expressed union (without TarBase) Integrated 163 448 701 240 2,034 4,337
Union (with TarBase) Integrated 1,063 3,711 14,548 1,631 7,208 34,111
Expressed union (with TarBase) Integrated 181 605 1,020 256 2,188 4,653
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Table 2 Pearson correlation between d(R, T1|T2) and f(T1, T2) for all combinations of miRNA R,
mRNAs T1 and T2 from the same type Lgen MTBs.

Pearson correlation High-confidence miRNA target predictions High-coverage miRNA target predictions
With TarBase miRNA-target pairs -0.32 (p<1E-16) -0.30 (p<1E-16)
Without TarBase miRNA-target pairs -0.19 (p=4.1E-5) -0.30 (p<1E-16)

Table 3 Illustrating examples of using MTBs to functionally annotate miRNAs. Each row corresponds
to one example MTB.

Enriched GO term
MTB ID Total number of mRNAs mRNAs annotated with the GO term miRNAs
GO:0004674 Protein serine/threonine kinase activity

1 4 AAK1, MAPK1, PDK3 miR-17, miR-20b, miR-93, miR-320a
GO:0000792 Heterochromatin

2 4 CBX5, HMGA2, RNF20 let-7b, let-7c, let-7d, let-7e, let-7g, miR-185
GO:0007219 Notch signaling pathway

3 3 CDK6, TNRC6B miR-15a, miR-34a, miR-449a, miR-497
GO:0043161 Proteasome-mediated ubiquitin-dependent protein catabolic process

4 19 EDEM1, UBE2W, WWP2 miR-25, miR-32, miR-363
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Figure 7: Statistical significance of the extra information provided by an mRNA in our MTBs in explaining
the relationship between a miRNA and another mRNA in the same MTB. The p-values were computed
by comparing the fractions of d(R, T1, T2) (see Materials and Methods) more negative than the threshold
t of the (R, T1, T2) combinations within MTBs, as compared to a background consisting of (R, T1, T2)
combinations where R comes from the same MTBs but T1 and T2 do not. In the figure, 1E-16 represents
the smallest p-value that could be outputted by our program.
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Figure 8: Statistical significance of the functional enrichment scores of the genes from same type Lgen
MTBs. The p-values were computed based on the expressed union sets with TarBase interactions, for
(a) the high-confidence set and (b) the high-coverage set. In the figures, 1E-16 represents the smallest
p-value that could be outputted by our program.
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Figure 9: Comparison of the functional enrichment scores of the mRNAs in same MTBs with random
co-expressed mRNAs. In the figure, 1E-16 represents the smallest p-value that could be outputted by
our program.
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Figure 5: Comparing MTBs with the miRNA regulatory modules (MRMs) identified by the Yoon and De
Micheli method. The p-values were computed by comparing the fractions of correlations more negative
than the threshold t of miRNA-mRNA pairs within MTBs, as compared to those from the MRMs. In
the figure, 1E-16 represents the smallest p-value that could be outputted by our program.
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(b)

Figure 6: Statistical significance of the positive Pearson correlations between the expression levels of
mRNAs in the same type Lgen MTBs. The p-values were computed by comparing the fractions of
correlations more positive than the threshold t of the mRNA pairs within MTBs, as compared to (a) a
background consisting of random mRNA pairs, or (b) a background consisting of mRNA pairs targeted
by a common miRNA in the input interaction network but not in same MTBs. In the figures, 1E-16
represents the smallest p-value that could be outputted by our program.
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Figure 2: Statistical significance of the negative correlations between the expression levels of miRNAs
and mRNAs in the same MTBs. The p-values were computed based on the expressed union sets with
TarBase interactions, for (a) the high-confidence set and (b) the high-coverage set as compared to a
random background sampled from all expressed mRNAs and miRNAs; and (c) the high-confidence set
and (d) the high-coverage set as compared to a background consisting of miRNA-mRNA pairs with
interactions in the input network but are not in same MTBs. In the figures, 1E-16 represents the smallest
p-value that could be outputted by our program. MTB types with no identified MTBs are omitted.
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Table 2: Summary on the eight types of MTB. The different types are named according to (1) whether
the defining submatrix of an MTB can only contain 1’s (restrictive, R) or is allowed to contain 0’s
(loose, L), and (2) whether the miRNAs (mi) are not allowed to have extra targets, the mRNAs (m)
are not allowed to be targeted by extra miRNAs, or the general case (gen) that both are allowed. In
the formal mathematical definitions, r and c correspond to the sets of row and column indices defining
an MTB, where each row corresponds to an mRNA and each column corresponds to a miRNA. aij is
the value at row i and column j of the adjacency matrix. In the matrix representation, an example is
shown for each type of MTB, where the sub-matrix enclosed by the rectangle corresponds to the example
MTB. For visualization purpose, they are drawn to occupy consecutive rows and columns, but this is
not required in the actual definitions of the MTB types. Values of irrelevant cells, i.e., those not on the
rows and columns defining the MTB, are omitted. In the graphical representation, the red nodes are
the mRNAs and miRNAs defining the example MTB, red lines are edges between them, and blue lines
are edges connecting them to mRNAs or miRNAs outside the MTB. In the formulas for showing the
number of MTBs of each type, R and C are the full sets of miRNAs and genes in the miRNA-target
network, respectively, and |R| and |C| are their sizes. The function connected(i, j) means the nodes in
the graphical representation corresponding to row i and column j are connected, which can be formally
defined as ∃i1, i2, ..., ik ∈ r, j1, j2, ..., jk ∈ s, s.t.aij1 = ai1j1 = ai1j2 = ai2j2 = ... = aikjk

= aikj = 1.
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Supplementary materials
Supplementary methods

Pseudocode of the MTB identification algorithms

Algorithm 1 Algorithm for identifying all type R MTBs from a miRNA-target interaction

network
1: function TypeRMTB(R, C, A) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA
. A: the adjacency matrix of the miRNA-mRNA network

2: Define MapR as a (bit string → row index set) hash map, initialized to an empty map
3: for each i ∈ R do . For each mRNA i
4: MapR.put(A[i, .], i), where A[i, .] represents the i-th row of matrix A

. Use the miRNAs targeting i as the key to get the existing set or create a new set in MapR, then add i
to this set

5: end for
6: Define MapC as a (bit string → column index set) hash map, initialized to an empty map
7: for each j ∈ C do . For each miRNA j
8: MapC.put(A[., j], j), where A[., j] represents the j-th column of matrix A

. Use j’s mRNA targets as the key to get the existing set or create a new set in MapC, then add j to this
set

9: end for
10: Define MTBs as the list of MTBs, initialized to an empty list
11: for each c ∈ MapR.keys do . For each key c of MapR, i.e., each group signature
12: Define r as a bit vector corresponding to the row indices of MapR.get(c)

. r is the members of the group, where each mRNA in r is targeted by only and all of the miRNAs in c
13: if r is a key of MapC and MapC.get(r) == c then

. The miRNAs in c also target only and all of the mRNAs in r
14: MTBs.add((r, c)) . The mRNAs and the miRNAs form an MTB
15: end if
16: end for
17: Return MTBs
18: end function
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Algorithm 2 Algorithm for identifying all maximal type Rmi MTBs from a miRNA-

target interaction network
1: function TypeRmiMTB(R, C, A) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA
. A: the adjacency matrix of the miRNA-mRNA network

2: Define Map as a (bit string → column index set) hash map, initialized to an empty map
3: for each j ∈ C do . For each miRNA j
4: Map.put(A[., j], j), where A[., j] represents the j-th column of matrix A

. Use j’s mRNA targets as the key to get the existing set or create a new set in Map, then add j to this
set

5: end for
6: Define MTBs as the list of MTBs, initialized to an empty list
7: for each r ∈ Map.keys do . For each key r of Map, i.e., each group signature
8: MTBs.add((r, Map.get(r))) . The group signature (mRNAs) and the group members (miRNAs) form

an MTB
9: end for
10: Return MTBs
11: end function
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Algorithm 3 Algorithm for identifying all maximal type Rm MTBs from a miRNA-target

interaction network
1: function TypeRmMTB(R, C, A) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA
. A: the adjacency matrix of the miRNA-mRNA network

2: Define Map as a (bit string → row index set) hash map, initialized to an empty map
3: for each i ∈ R do . For each mRNA i
4: Map.put(A[i, .], i), where A[i, .] represents the i-th row of matrix A

. Use the miRNAs targeting i as the key to get the existing set or create a new set in Map, then add i to
this set

5: end for
6: Define MTBs as the list of MTBs, initialized to an empty list
7: for each c ∈ Map.keys do . For each key c of Map, i.e., each group signature
8: MTBs.add((Map.get(c), c)) . The group members (mRNAs) and the group signature (miRNAs) form

an MTB
9: end for
10: Return MTBs
11: end function
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Algorithm 4 Algorithm for identifying all maximal type Rgen MTBs from a miRNA-

target interaction network
1: function TypeRgenMTB(R, C, A) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA
. A: the adjacency matrix of the miRNA-mRNA network

2: Preprocess A to group all rows with identical signatures together and all columns with identical signatures
together, using hash maps as in the algorithms for type R. Define the resulting matrix with no identical rows or
columns as A′, and its rows and columns as R′ and C′

3: Define MTBs, MTBsCurr and MTBsNext as the lists of all MTBs discovered, MTBs for the current
iteration and MTBs for the next iteration, respectively, all initialized to an empty list

4: for each j ∈ C′ do . For each column of the pre-processed adjacency matrix
5: MTBsNext.add((A′[., j], j)), where A′[., j] is the j-th column of A′

. (A’[.,j], j) is an MTB, but may or may not be maximal
6: end for
7: while MTBNext is not empty do . Beginning of the k-th iteration, where k starts with 1
8: MTBs.addall(MTBsNext) . Add all MTBs in MTBsNext to MTBs
9: MTBsCurr := MTBsNext
10: MTBsNext := ∅ . All MTBs newly discovered in the previous iteration are to be worked on in this

iteration
11: for each pair of MTBs (r1, c1) and (r2, c2) in MTBsCurr, such that the k − 1 smallest indexes of

both sets are the same do . Trying to merge these two MTBs to form a new MTB
12: if r1 ∪ r2 6= ∅ then . The two MTBs have some common rows
13: Define M = (r1 ∪ r2, c1 ∩ c2) as a new MTB
14: Remove any MTBs (r, c) in MTBs where r ∈ r1 ∪ r2 and c ∈ c1 ∩ c2 . Remove any

non-maximal MTBs
15: MTBsNext.add(M)
16: end if
17: end for
18: end while
19: for each MTB in MTBs do
20: Replace any grouped rows and columns with the original row and column indices in A
21: end for
22: Return MTBs
23: end function
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Algorithm 5 Algorithm for identifying all type L MTBs from a miRNA-target interaction

network
1: function TypeLMTB(R, C, A) . R: the set of all row nodes, each representing an mRNA

. C: the set of all column nodes, each representing a miRNA
. A: the miRNA-mRNA network in a (node → neighbor set) hash map format

2: Define S := R ∪ C as the set of row and column nodes not in any MTB yet
3: Define MTBs as the list of MTBs, initialized to an empty list
4: while S 6= ∅ do . While there are still row or column nodes not in any MTB
5: Get any node x from S
6: Define M as the nodes in the connected component of x, initialized to an empty set
7: Define Q as the set of newly discovered nodes in the connected component of x, initialized to {x}
8: while Q 6= ∅ do . While there may still be undiscovered members of the connected component
9: Define Q′ as the set of nodes in the connected component to be discovered, initialized to an empty

set
10: for each node y ∈ Q do
11: Q′ := Q′ ∪ A.get(y) . Add all neighbors of y to Q′

12: end for
13: M := M ∪ Q . Add all nodes discovered in the previous iterations to the MTB
14: Q := Q′ − M . Determine the set of newly discovered members of the connected component
15: end while
16: MTBs.add(M) . Add M as a new MTB
17: S := S − M . Redetermine the nodes not yet associated with any MTB
18: end while
19: Return MTBs
20: end function
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Algorithm 6 Algorithm for identifying high-scoring type Lmi MTBs from a miRNA-

target interaction network
1: function TypeLmiMTB(R, C, A, d, ρ) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA
. A: the adjacency matrix of the miRNA-mRNA network

. d: minimum distance between two initial MTBs both of which are to be kept
. ρ: minimum density of an MTB

2: Define MTBs := TypeRmiMTB(R, C, A) as the starting set of MTBs
3: for each pair of MTBs M1 = (r1, c1) and M2 = (r2, c2) in MTBs do

. Remove initial MTBs that are too similar to some others
4: if dist(M1, M2) < d then . Remove the smaller one if the two initial MTBs are too similar, checked in

the same way as in Algorithm 1 of Du et al., 2008
5: if r1 + c1 < r2 + c2 then
6: MTBs := MTBs - M1
7: else
8: MTBs := MTBs - M2
9: end if
10: end if
11: end for
12: Define R′ as the set of mRNAs not participating in any MTBs in MTBs
13: while R′ 6= ∅ do . Try adding one of the rows not in any MTBs to one of the MTBs
14: Define den as the highest density of the resulting MTB after any of the additions, initialized to 0
15: for each i ∈ R′ do
16: Define js as the columns with 1’s in A[i, .], the i-th row of A
17: for each M = (r, c) ∈ MTBs do
18: if Density((r ∪ {i}, c ∪ js)) > den then den := Density((r ∪ {i}, c ∪ js))
19: end if
20: end for
21: end for
22: if den > ρ then . Perform the addition only if the resulting density is higher than the threshold
23: Add the rows and columns to the MTB
24: Remove the rows from R′

25: if the resulting MTB is identical to another one in MTBs then
26: Remove it from MTBs
27: end if
28: else
29: Break the while loop
30: end if
31: end while
32: Return MTBs
33: end function
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Algorithm 7 Algorithm for identifying high-scoring type Lm MTBs from a miRNA-

target interaction network
1: function TypeLmMTB(R, C, A, d, ρ) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA
. A: the adjacency matrix of the miRNA-mRNA network

. d: minimum distance between two initial MTBs both of which are to be kept
. ρ: minimum density of an MTB

2: Define MTBs := TypeRmMTB(R, C, A) as the starting set of MTBs
3: for each pair of MTBs M1 = (r1, c1) and M2 = (r2, c2) in MTBs do

. Remove initial MTBs that are too similar to some others
4: if dist(M1, M2) < d then . Remove the smaller one if the two initial MTBs are too similar, checked in

the same way as in Algorithm 1 of Du et al., 2008
5: if r1 + c1 < r2 + c2 then
6: MTBs := MTBs - M1
7: else
8: MTBs := MTBs - M2
9: end if
10: end if
11: end for
12: Define C′ as the set of miRNAs not participating in any MTBs in MTBs
13: while C′ 6= ∅ do . Try adding one of the columns not in any MTBs to one of the MTBs
14: Define den as the highest density of the resulting MTB after any of the additions, initialized to 0
15: for each j ∈ C′ do
16: Define is as the rows with 1’s in A[., j], the j-th column of A
17: for each M = (r, c) ∈ MTBs do
18: if Density((r ∪ is, c ∪ {j})) > den then den := Density((r ∪ is, c ∪ {j}))
19: end if
20: end for
21: end for
22: if den > ρ then . Perform the addition only if the resulting density is higher than the threshold
23: Add the rows and columns to the MTB
24: Remove the columns from C′

25: if the resulting MTB is identical to another one in MTBs then
26: Remove it from MTBs
27: end if
28: else
29: Break the while loop
30: end if
31: end while
32: Return MTBs
33: end function
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Algorithm 8 Algorithm for identifying high-scoring type Lgen MTBs from a miRNA-

target interaction network
1: function TypeLgenMTB(R, C, A, d, ρ) . R: the set of all row indices, each representing an mRNA

. C: the set of all column indices, each representing a miRNA
. A: the adjacency matrix of the miRNA-mRNA network

. d: minimum distance between two initial MTBs both of which are to be kept
. ρ: minimum density of an MTB

2: Define MTBs := TypeRgenMTB(R, C, A) as the starting set of MTBs
3: for each pair of MTBs M1 = (r1, c1) and M2 = (r2, c2) in MTBs do

. Remove initial MTBs that are too similar to some others
4: if dist(M1, M2) < d then . Remove the smaller one if the two initial MTBs are too similar, checked in

the same way as in Algorithm 1 of Du et al., 2008
5: if r1 + c1 < r2 + c2 then
6: MTBs := MTBs - M1
7: else
8: MTBs := MTBs - M2
9: end if
10: end if
11: end for
12: Define R′ as the set of mRNAs not participating in any MTBs in MTBs
13: Define C′ as the set of miRNAs not participating in any MTBs in MTBs
14: while R′ 6= ∅ or C′ 6= ∅ do . Try adding one of the rows not in any MTBs to one of the MTBs
15: Define denR as the highest density of the resulting MTB after any of the additions, initialized to 0
16: for each i ∈ R′ do
17: for each M = (r, c) ∈ MTBs do
18: if Density((r ∪ {i}, c)) > denR then denR := Density((r ∪ {i}, c))
19: end if
20: end for
21: end for
22: if denR > ρ then . Perform the addition only if the resulting density is higher than the threshold
23: Add the row to the MTB
24: Remove the row from R′

25: if the resulting MTB is identical to another one in MTBs then
26: Remove it from MTBs
27: end if
28: end if

. Try adding one of the columns not in any MTBs to one of the MTBs
29: Define denC as the highest density of the resulting MTB after any of the additions, initialized to 0
30: for each j ∈ C′ do
31: for each M = (r, c) ∈ MTBs do
32: if Density((r, c ∪ {j})) > denC then denC := Density((r, c ∪ {j}))
33: end if
34: end for
35: end for
36: if denC > ρ then . Perform the addition only if the resulting density is higher than the threshold
37: Add the column to the MTB
38: Remove the column from C′

39: if the resulting MTB is identical to another one in MTBs then
40: Remove it from MTBs
41: end if
42: end if
43: if denR ≤ ρ and denC ≤ ρ then
44: Break the while loop
45: end if
46: end while
47: Return MTBs
48: end function
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A unified general model of MTB
It is possible to generalize all eight types of MTB by one single unified model.
A general MTB is defined as a submatrix of the input matrix of miRNA-mRNA
interactions. Each MTB is associated with a score indicating its proximity to the
ideal case. Specifically, let R and C be respectively the sets of all rows (mRNAs)
and all columns (miRNAs) in the input matrix, r and c be the rows and columns
involved in an MTB, aij represents the element at row i and column j of the matrix,
and k0, k1 and k2 are parameters with non-negative values. The score of an MTB
(r, c), f(r, c), is defined by the following formula:

f(r, c) = 1− k0

∑
i∈r,j∈c(1− aij)

|r||c|
− k1

∑
p∈(R−r),j∈c apj

|R− r||c|
− k2

∑
i∈r,q∈(C−c) aiq

|r||C − c|

The scoring formula consists of four parts. The first part is the constant value 1,
which represents the maximum score of an MTB. The other three parts are penalty
terms for missing 1’s in the MTB, extra 1’s on the same columns outside the MTB,
and extra 1’s on the same rows outside the MTB, respectively. The three parameters
determine which penalty terms to apply and their relative weights. For the eight
MTB types defined, the algorithms we used to identify the corresponding MTBs can
be considered as algorithms for finding top-scoring MTBs, defined as some specific
instantiations of this general model with different sets of parameter values, as shown
in Table S1.

Table S1 Relationships between the unified general model and the MTBs identified by our algorithms
for the eight types of MTB. *: For the L, Lmi, Lm and Lgen types, we also have an additional
connectedness requirement between the rows and columns.

MTB type k0 k1 k2

R ∞ ∞ ∞
Rmi ∞ ∞ 0
Rm ∞ 0 ∞

Rgen ∞ 0 0
L 0* ∞ ∞

Lmi 1* ∞ 0
Lm 1* 0 ∞

Lgen 1* 0 0

For type R MTB, having any missing 1’s in a submatrix or extra 1’s on the
same rows or columns outside the submatrix would result in a negative infinity
score, which disqualifies it as a valid MTB. For type Rmi, the penalty terms for
missing 1’s in a submatrix and extra 1’s on the same columns outside it still apply,
but the penalty for extra 1’s on the same rows outside the submatrix is waived.
Similarly, for type Rm, extra 1’s on the same rows are penalized, but extra 1’s on
the same columns are not. For type Rgen, both are not penalized and any submatrix
having only 1’s is qualified as a MTB. For type L, extra 1’s on the same rows and
columns outside a submatrix are penalized, but missing 1’s within it is not. Similar
arguments apply for types Lmi, Lm and Lgen, except that in these cases the within-
MTB density of 1’s is used to evaluate the quality of a MTB, but the allowed extra
1’s on the same rows or columns are simply ignored.

In addition to the eight standard types, new types of MTB can be defined by
using different combinations of values for the parameters k0, k1 and k2. High-scoring
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MTBs can be found by heuristic optimization algorithms. In some special cases, as
with some of the eight standard types, it is also possible to derive efficient algorithms
to return all MTBs or all maximal MTBs.

The scoring formula can also be written in another way. Suppose now r is a binary
vector with |R| entries in total, where an entry is 1 if the corresponding row is a
member of the MTB of interest and 0 if not. Similarly, we redefine c as the binary
vector with |C| entries in total, where an entry is 1 if the corresponding column is
a member of the MTB and 0 if not. The scoring formula can then be written in
terms of these vectors and the whole miRNA-mRNA interaction matrix A:

f(r, c) = 1− k0
rtrctc− rtAc

rtrctc
− k1

(1− r)tAc

(R− r)t(R− r)ctc
− k2

rtA(1− c)
rtr(C − c)t(C − c)

,

where 1 represents the binary vector of all 1’s (with a length depending on the
context).

The main reason to write the scoring formula using the vector and matrix rep-
resentations is that the general MTB model can then be extended to handle non-
binary interaction matrices, in which each element aij takes on a continuous value
between 0 and 1 that represents the confidence of the miRNA targeting the mRNA.
Correspondingly, one may also allow fractional values in the r and c vectors to
represent fussy MTB memberships. With these changes, a whole series of other
well-established optimization methods can be applied to identify MTBs of high
scores.
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Supplementary figures
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Figure S1 Workflow for studying (a) expression correlations between members of same MTBs and
(b) functional relationships between genes in same MTBs.
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Figure S2 Statistical significance of the negative correlations between the expression levels of
miRNAs and mRNAs in the same MTBs. The p-values were computed based on the expressed
union sets without TarBase interactions, for (a) the high-confidence set and (b) the high-coverage
set as compared to a random background sampled from all expressed mRNAs and miRNAs; and
(c) the high-confidence set and (d) the high-coverage set as compared to a background consisting
of miRNA-mRNA pairs with interactions in the input network but are not in same MTBs. In the
figures, 1E-16 represents the smallest p-value that could be outputted by our program. MTB
types with no identified MTBs are omitted.

1.0E-16 

1.0E-14 

1.0E-12 

1.0E-10 

1.0E-08 

1.0E-06 

1.0E-04 

1.0E-02 

1.0E+00 
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

p-
va

lu
e 

Correlation threshold, t 

Rmi 

Rm 

Rgen 

L 

Lmi 

Lm 

Lgen 

(a)

1.0E-16 

1.0E-14 

1.0E-12 

1.0E-10 

1.0E-08 

1.0E-06 

1.0E-04 

1.0E-02 

1.0E+00 
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

p-
va

lu
e 

Correlation threshold, t 

Rm 

Rgen 

Lm 

Lgen 

(b)

1.0E-16 

1.0E-14 

1.0E-12 

1.0E-10 

1.0E-08 

1.0E-06 

1.0E-04 

1.0E-02 

1.0E+00 
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

p-
va

lu
e 

Correlation threshold, t 

Rmi 

Rm 

Rgen 

L 

Lmi 

Lm 

Lgen 

(c)

1.0E-16 

1.0E-14 

1.0E-12 

1.0E-10 

1.0E-08 

1.0E-06 

1.0E-04 

1.0E-02 

1.0E+00 
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 

p-
va

lu
e 

Correlation threshold, t 

Rm 

Rgen 

Lm 

Lgen 

(d)

Figure S3 Statistical significance of the negative correlations between the expression levels of
miRNAs and mRNAs in the same MTBs, when related miRNAs were grouped. The p-values were
computed based on the expressed union sets with TarBase interactions, for (a) the high-confidence
set and (b) the high-coverage set as compared to a random background sampled from all
expressed mRNAs and miRNAs; and (c) the high-confidence set and (d) the high-coverage set as
compared to a background consisting of miRNA-mRNA pairs with interactions in the input
network but are not in same MTBs. In the figures, 1E-16 represents the smallest p-value that
could be outputted by our program. MTB types with no identified MTBs are omitted.
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Figure S4 Statistical significance of the negative correlations between the expression levels of
miRNAs and mRNAs in the same MTBs, when related miRNAs were grouped. The p-values were
computed based on the expressed union sets without TarBase interactions, for (a) the
high-confidence set and (b) the high-coverage set as compared to a random background sampled
from all expressed mRNAs and miRNAs; and (c) the high-confidence set and (d) the high-coverage
set as compared to a background consisting of miRNA-mRNA pairs with interactions in the input
network but are not in same MTBs. In the figures, 1E-16 represents the smallest p-value that
could be outputted by our program. MTB types with no identified MTBs are omitted.
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Figure S5 Statistics of the MTBs identified from the high-confidence expressed union set without
TarBase interactions. For each type of MTB, the average number of mRNAs per MTB, average
number of miRNAs per MTB and the number of MTBs identified by our algorithm are shown.
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Figure S6 Statistics of the MTBs identified from the high-coverage integrated expressed union set
with TarBase interactions. For each type of MTB, the average number of mRNAs per MTB,
average number of miRNAs per MTB and the number of MTBs identified by our algorithm are
shown.
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Figure S7 Statistics of the MTBs identified from the high-coverage integrated expressed union set
without TarBase interactions. For each type of MTB, the average number of mRNAs per MTB,
average number of miRNAs per MTB and the number of MTBs identified by our algorithm are
shown.
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Figure S8 Statistical significance of the functional enrichment scores of the genes from same type
Lgen MTBs. The p-values were computed based on the expressed union sets without TarBase
interactions, for (a) the high-confidence set and (b) the high-coverage set. In the figures, 1E-16
represents the smallest p-value that could be outputted by our program.




