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We study a problem of mining frequently occurring periodic patterns with a gap requirement
from sequences. Given a character sequence S of length L and a pattern P of length l, we

consider P a frequently occurring pattern in S if the probability of observing P given a randomly

picked length-l subsequence of S exceeds a certain threshold. In many applications, particularly
those related to bioinformatics, interesting patterns are periodic with a gap requirement. That

is to say, the characters in P should match subsequences of S in such a way that the matching

characters in S are separated by gaps of more or less the same size. We show the complexity of
the mining problem and discuss why traditional mining algorithms are computationally infeasible.

We propose practical algorithms for solving the problem and study their characteristics. We also
present a case study in which we apply our algorithms on some DNA sequences. We discuss some

interesting patterns obtained from the case study.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—

Data Mining

General Terms: Algorithms

Additional Key Words and Phrases: Sequence mining, Periodic pattern, Gap requirement

1. INTRODUCTION

The completion of whole-genome sequencing of various organisms facilitates the
detection of many kinds of interesting patterns in DNA and protein sequences. It is
now well known that the genomes of most plants and animals contain large quantity
of repetitive DNA fragments. For instance, it is estimated that one third of the
human genome is composed of families of reiterated sequences [Kurtz et al. 2000].
The genomes are thus far from pieces of random strings, and it is widely believed
that a substantial amount of currently unknown information can be extracted from
the sequences.

A large number of studies on genome sequence mining are related to the identi-

1Part of the paper appears in [Zhang et al. 2005]. The main additions in this extended version

are Section 5.3 (a new algorithm MPPo), Section 6.3.1 (an analysis on the performance of MPP

with continuously refined values of user input n), Section 6.4 (an analysis on the performance of
MPPm under different values of m), Section 6.8 (an extensive study on the performance of the new

algorithm MPPo), and Section 9 (the proof of determining Nl).
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fication of periodic patterns. This is largely due to the abundance and variety of
periodic patterns that exist in the genomes. From the short three base pair (bp)
periodicity in protein coding DNA [Fickett and Tung 1992] and the medium-length
repetitive motifs found in some proteins [Coward and Drablos 1998] to the mosiac
of very long DNA segments in the genome of warm-blooded vertebrates [Bernardi
et al. 1985], periodic patterns of different lengths and types are found at both ge-
nomic and proteomic levels. Some of the patterns have been identified as having
significant biological and medical values. For example, some repeats have been
shown to affect bacterial virulence to human [van Belkum et al. 1997], while the ex-
cessive expansions of some Variable Number of Tandem Repeats (VNTRs) are the
suspected cause of some nervous system diseases [Reddy and Housman 1997]. Ef-
ficient algorithms for searching periodic patterns from long sequences are therefore
of growing importance.

Computationally, a DNA or protein sequence is treated as a long string of char-
acters with a finite alphabet. The alphabet used in modeling a DNA sequence is
usually the four-character set {A,C,G, T} representing the four nitrogenous bases
Adenine, Cytosine, Guanine and Thymine. For protein sequences, the commonly
used alphabet is the set of twenty amino acids.

Two types of periodic patterns have received much attention: tandem repeats
and base pair oscillations. Given a (DNA or protein) sequence S = s1s2s3 · · · sL

of length L and an integer p (the period), a tandem repeat is a subsequence
sisi+1si+2 · · · si+2p−1 where si+j = si+p+j , for 0 ≤ j < p. The basic computa-
tional problem is to find all tandem repeats in a given sequence. There are many
variations of the problem, considering issues like the number of periods (tandem
repeats vs. tandem arrays), the maximality of patterns, whether errors (insertions,
deletions and substitutions) are allowed and the corresponding cost functions, palin-
dromic reverses, and efficient approximate solutions. A recent survey on the works
can be found in [Kurtz et al. 2000]. We are particularly interested in tandem repeats
that are related to the three-dimensional structure of the sequence. For example,
the protein sequence of the molecule porcine ribonuclease inhibitor (SwissProt en-
try RINI PIG [Bairoch and Boeckmann 1992]) consists of an alternating pattern of
two kinds of repeats with lengths 29 and 28 residues [Coward and Drablos 1998].
The two can be combined to form a repeating unit of 57 residues, and there are
7.5 such units in the molecule. As a result, the protein has a horseshoe shape with
the interior face formed by a parallel β sheet of 17 β strands and the exterior face
formed by 16 α helices2.

It should be noted that the repeats are not error-free. For instance, a phase shift
is found in one of the repeats, which may be due to the insertion or deletion of a
short sequence.

The second kind of important periodic pattern is base pair oscillations, which
correspond to unexpected correlations between bases of distance p. For example,
the probability of having a ‘T ’ located p base pair (bp) after an ‘A’ can be calculated
as nAT (p)

L−p , where nAT (p) is the number of such occurrences in the sequence and
L− p is the number of base pairs located p bp apart. If base pairs of distance p are

2A figure of the protein can be found in Figure 1 of [Coward and Drablos 1998] at http://www.

nslij-genetics.org/dnacorr/.
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independent, then the expected probability will be pr(A)pr(T ), which is the product
of the probabilities of occurrence of the two individual bases in the sequence. The
difference nAT (p)

L−p − pr(A)pr(T ) can be used to reflect the correlation between the
two bases at a distance of p apart [Herzel et al. 1999]. It has been shown in [Widom
1996; Herzel et al. 1999] that some base pairs exhibit an abnormally high correlation
at a period of 10-11 base pairs and its multiples in many kinds of organisms. It is
believed that a partial reason for the phenomenon is related to the helical structure
of the DNA, which has a period of about 10-11 base pairs in some organisms [Herzel
et al. 1999]. In other words, for some base pairs, if the first one is found in a certain
position, there is an abnormally high probability of finding the second one after
about one helical turn. Some interesting periodic patterns may thus be found in
successive bases with similar 3D orientations.

Our study is based on the above observation. We would like to search for frequent
periodic patterns that consist of bases physically located one helical turn after
another. Symbolically, a pattern is defined as a subsequence

sisi+g1si+g1+g2 · · · si+g1+g2+···+gl−1 ,

where l is the length (number of bases) in the subsequence and gj , 1 ≤ j < l is
the length of period j. Unlike previous studies, we define gj as a range of integers
instead of a fixed integer. The reason for this setting is two-fold: 1) the actual
period of a helical turn is usually not an integer and 2) the actual period may vary
in organisms. The introduction of a variable period thus provides a flexible way to
capture any interesting patterns hidden in a sequence.

While the primary focus of our study is on the periodic patterns in DNA se-
quences due to its 3D structure, the techniques being developed can also be applied
to mine other kinds of sequences, in which case the variable period can be used to
model the maximum allowed insertions/deletions within a single period. As we will
see later in Section 4, the mathematic theorems we prove are rather general. They
are not dependent on any specific features of DNA sequences. So the algorithms
we propose in this paper are also applicable to other sequences, such as web log
sequences.

The rest of the paper is organized as follows. Section 2 mentions some related
works. Section 3 formally defines our computational problem. In Section 4 we prove
a couple of important theorems that lead to the derivation of efficient algorithms for
our mining problem. Section 5 presents the algorithms. In Section 6 we analyze the
algorithms’ performance. Section 7 presents a case study in which we document an
interesting finding obtained by applying our algorithm to mining DNA sequences.
Finally, Section 8 concludes the paper.

2. RELATED WORKS

Besides the studies on tandem repeats and base-pair oscillation, there are other
related works that include studies on mining patterns from biological sequences with
certain support requirement. For example, the TEIRESIAS algorithm [Rigoutsos and
Floratos 1998] is designed for discovering patterns that are composed of characters
(such as {A,C, T, G}) and wild-cards (which match any characters) from biological
sequences. Although wild-cards provide some flexibility in specifying a pattern, too
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many unrestricted wild-cards in a pattern would render the pattern uninteresting.
Therefore, the authors restrict the number of wild-cards that can be present in
the extracted patterns. In another study [Jonassen 1996], the Pratt algorithm is
proposed for mining restricted patterns from a sequence database. The restrictions
include the maximum number of characters and wild-cards in a pattern.

BLAST [Altschul et al. 1990] is one of the famous algorithms in the area of
bioinformatics. Given a query sequence, it searches for matched sequences from a
database. In essence, BLAST is a search algorithm with a known query as input,
while our study focuses on mining unknown knowledge.

From the area of data mining, one related problem is to find frequent subse-
quences from transactional databases. Many efficient algorithms have been pro-
posed for the problem [Srikant and Agrawal 1996; Zaki 1998; Zhang et al. 2001; Pei
et al. 2001]. Their goal is to find patterns that appear in at least a certain number
of sequences in the database. All the algorithms are based on the well-known Apri-
ori property. Unfortunately, as we will see later, this property does not hold for our
problem. Also, the sequence mining algorithms find patterns across sequences. On
the other hand, our model is to discover patterns within a single sequence. More-
over, the characteristics of the biological sequences (e.g., very long sequence with
very few different characters) makes a direct application of those sequence mining
algorithms inefficient.

There are also some algorithms on mining frequent patterns from a single se-
quence [Mannila et al. 1997; Han et al. 1999]. In [Mannila et al. 1997], the input
sequence is divided into some overlapped windows of fixed width w, and every two
neighboring windows share a common segment of length (w − 1). In [Han et al.
1999], a sequence is divided into non-overlapping windows. In both papers, a pat-
tern is frequent if it appears in at least a certain number of windows. With this
definition, it is shown that the Apriori property applies. By segmenting a sequence
into windows and counting the number of windows in which a pattern occurs greatly
simplifies the design of the mining algorithm. The drawback is that patterns that
span multiple windows cannot be discovered, and that in some cases, a suitable
window width is difficult to determine. Our model does not have those restrictions.

Yang et al. studied asynchronous periodic patterns in time series data [Yang
et al. 2000]. In their model, shifts in the occurrence of patterns are permitted
to filter out random noises. They also consider a range of periods instead of the
pre-specified ones as used in [Han et al. 1999], although there is still a limit on
the maximum length of a period. In their model, the Apriori property holds for
patterns of the same period.

3. PROBLEM DEFINITION

In this section we give a formal definition of the periodic pattern mining problem.
To simplify our discussion, let us first define a number of notations and terms.

A sequence from which we extract frequent patterns is called a subject se-
quence. Let

∑
be the alphabet of all possible characters that occur in a subject

sequence. For example,
∑

= {A,C, G, T} for DNA sequences; for protein se-
quences,

∑
is the set of 20 amino acids.

A wild-card (denoted by a single dot, ‘.’) is a special symbol that matches any
ACM Journal Name, Vol. ?, No. ?, ? 20?.
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character in
∑

. A gap is a sequence of wild-cards. The size of a gap refers to the
number of wild-cards in it. For example, the size of ‘.....’ is 5. We use g(N) to
represent a gap of size N ; we use g(N,M) to represent a gap whose size is within
the range [N,M ]. The range [N,M ] is called a gap requirement.

A pattern is a sequence of characters and gaps that begins and ends with char-
acters. We define the length of a pattern P , denoted by |P |, as the number of
characters in P . For example, if P = A..T.C, then |P | = 3. Note that the wild-
card symbols are not counted towards the pattern’s length.

Given a pattern P , a substring Q of P is called a sub-pattern of P if Q itself
is also a pattern (i.e., Q also starts and ends with characters). If |P | ≥ 2, its sub-
pattern containing the first |P |−1 characters is called the prefix of P . Similarly, the
sub-pattern of P that contains the last |P | − 1 characters is called the suffix of P .
We use prefix(P ) and suffix(P ) to represent the prefix and suffix of P , respectively.
For example, prefix(A..T.C) = A..T and suffix(A..T.C) = “T.C”.

Given a subject sequence S (a pattern P ), we use S[i] (P [i]) to represent the i-th
character of S (P ). For example, if S = ACGTA, then S[1] = A, S[2] = C, etc. If
P = A..T.C, then P [1] = A, P [2] = T .

For our problem of mining periodic patterns from a sequence, we are interested
in patterns of the following form:

a1g(N,M)a2g(N,M) . . . al−1g(N,M)al (1)

where ai ∈
∑

for 1 ≤ i ≤ l, and N , M are two user supplied numbers that
specify the minimum and maximum gap sizes between two successive characters in
a pattern, respectively. If the gap size requirement is understood, as a shorthand, we
express a pattern P by simply specifying the characters it contains (i.e., a1a2 . . . al).
For example, if N = 8 and M = 10, the pattern written as ATC refers to the pattern
Ag(8, 10)Tg(8, 10)C. Since the mining problem is defined with specified values of
N and M , in the following discussion, we use the shorthand notation for patterns,
unless otherwise stated.

Given a sequence S of length L, an offset sequence of length l is a sequence of
integers [c1, . . . , cl], such that 1 ≤ cj ≤ L for all j, and cj+1 − cj − 1 ∈ [N,M ] for
all 1 ≤ j ≤ l − 1. Essentially, an offset sequence is simply a sequence of positions
of S that satisfies the gap requirement.

Our goal is to determine frequently occurring patterns given a subject sequence
S. Hence, we need to define the term frequency and how often a pattern P occurs
before we consider it frequent in S. We define frequency of a pattern P by the
probability of observing P if we randomly pick |P | positions of S that satisfy the
gap requirement (i.e., a random offset sequence). Also, a pattern P is considered
frequent, if its frequency exceeds a certain user-specified threshold value, ρs.

Given a sequence S, a pattern P , and an offset sequence [c1, . . . , c|P |], we say
that P matches S w.r.t. the offset sequence if S[cj ] = P [j] for all 1 ≤ j ≤ |P |. We
define the support of P w.r.t. S (denoted by sup(P )) as the number of distinct
offset sequences with respect to which P matches S. For example, if S = AAGCC,
P = AC, and gap requirement is [2, 3], then P matches S w.r.t. the offset sequence
[1, 4] since S[1] = P [1] and S[4] = P [2]. Similarly, P matches S w.r.t. the offset
sequences [1, 5] and [2, 5]. So sup(P ) = 3. A straightforward way to compute
P ’s support is to enumerate all possible offset sequences, check the contents of S
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with respect to all those offset sequences, and determine the fraction of the offset
sequences with respect to which P matches S. If the fraction exceeds the required
threshold ρs, P is frequent; otherwise P is infrequent.

To determine whether a pattern P of length l is frequent in a sequence S, we
need two numbers: (1) Nl, the number of offset sequences of length l in S and
(2) sup(P ). If the support ratio, sup(P )/Nl, is larger than ρs, P is a frequent
pattern.

In the following section, we derive a formula for computing Nl. In Section 5, we
derive algorithms for computing all patterns P that satisfy the frequency require-
ment.

4. MATHEMATICAL ANALYSIS

In this section we derive a recurrence equation for determining the value of Nl. We
also prove several important theorems that allow us to formulate efficient algorithms
for solving the periodic pattern mining problem. For reference, Table I shows the
various symbols and their definitions we use in this section.

Symbol Definition

S A subject sequence
P A pattern
N The minimum gap between 2 successive

characters in a pattern
M The maximum gap between 2 successive

characters in a pattern

L Length of S; L = |S|
l Length of P ; l = |P |

W Flexibility of a gap; W = M − N + 1
minspan(l) The minimum span of a length-l pattern

minspan(l) = (l − 1)N + l
maxspan(l) The maximum span of a length-l pattern

maxspan(l) = (l − 1)M + l
l1 The length of a longest pattern whose

maximum span is ≤ |S|
l1 = bL+M

M+1
c

l2 The length of a longest pattern whose
minimum span is ≤ |S|
l2 = bL+N

N+1
c

Table I. Notations

We use the variable W to denote the flexibility of the gap requirement. For
example, if the gap requirement is [4, 6], then the flexibility is 6 − 4 + 1 = 3.
That is to say, if the first character of a pattern P matches the sequence S at a
certain position, say j (i.e., P [1] = S[j]), then there are three possible positions
of S for P [2] to match against, namely, S[j + 5], S[j + 6] and S[j + 7]. Also, the
larger the flexibility, the larger the number of offset sequences that satisfy the gap
requirement, and so, the larger the value of Nl.
ACM Journal Name, Vol. ?, No. ?, ? 20?.
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N  N  N

P[1]

. . .

P[3]P[2]

. . .

P[l]P[l-1]

. . .. . . . . . S: 

Fig. 1. Illustration of minspan

We use minspan(l) to denote the minimum span of a length-l pattern P . As
an example, with a gap requirement of [3, 4], a length-3 pattern spans at least 9
positions of the subject sequence. This is obtained by taking the smallest gap of 3
positions between the first and the second characters of P , and 3 positions between
the second and the third. (Figure 1 illustrates the concept.) Since a length-l pattern
has l characters and l− 1 gaps and the minimum gap size is N , the minimum span
is thus equal to (l − 1)N + l. Similarly, we can determine the maximum span of a
length-l pattern (denoted by maxspan(l)), which is equal to (l − 1)M + l.

Given a length-L sequence S, we use the symbol l1 to denote the length of the
longest patterns whose maximum span does not exceed L. The number l1 can be
obtained by solving maxspan(l1) = (l1 − 1)M + l1 ≤ L, which gives l1 = bL+M

M+1 c.
Similarly, l2 denotes the length of the longest patterns whose minimum span does
not exceed L. We have l2 = bL+N

N+1 c. Since M ≥ N , we have l2 ≥ l1.

4.1 Determining Nl

Given a pattern length l, a subject sequence length L, and a gap requirement
[N,M ], we would like to calculate Nl, the number of distinct length-l offset se-
quences. Here, we first summarize the result. We consider three cases:

(1) For l > l2, Nl = 0.
(2) For l ≤ l1, Nl =

[
L− (l − 1)(M+N

2 + 1)
]
W l−1.

(3) For l1 < l ≤ l2, Nl can be determined by a recursive formula.

Case 1 (l > l2): The minimum span of a length-l pattern exceeds the subject
sequence’s length. Hence, there are no length-l offset sequences.

Case 2 (l ≤ l1): The maximum span of a length-l pattern is less than or equal
to the subject sequence’s length. In this case, we find that Nl grows exponentially
with respect to l. Also, the larger is the flexibility of the gap requirement (W ),
the larger is Nl. Let us consider an example to illustrate how big Nl is. In one of
the experiments we performed, we used a DNA sequence fragment that consists of
1,000 characters (i.e., L = 1, 000), a gap requirement of N = 9 and M = 12, and
W = 4. The number of length-10 offset sequences N10 is about 235 million.3

Case 3 (l1 < l ≤ l2): The boundary cases in which the span of a length-l pattern
may or may not exceed the subject sequence’s length. In this case, instead of a
closed-form formula, we provide a computable recursive formula for Nl.

The analysis for deriving Nl for the cases is rather lengthy. We put it in the
Appendix (Section 9).

3A typical helix turn of some organism is about 10 to 11 characters. We use a slightly larger gap

requirement so that most patterns of interest are considered.
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. . .

. . .. . .

i+l-d-1i
. . .

 i-1 d-i+1

 P: 

 Q: 

Fig. 2. Patterns P and Q

4.2 Determining Frequent Patterns

Like many other data mining problems, our objective is to discover frequent pat-
terns from data under a definition of “frequent”. A common difficulty shared by
most mining problems is that the number of patterns is huge. So a straightfor-
ward method of enumerating all possible patterns and counting their supports is
not feasible. Traditional mining algorithms achieve efficiency by various pruning
techniques that aim at drastically reducing the number of patterns that need to be
checked. One very important property that enables effective pruning is the Apriori
property, which states that “the support of a pattern cannot exceed the support of
any of its sub-patterns.” The Apriori property is shown to hold under many data
mining problems and models. The well-known Apriori algorithm [R. Agrawal and
Swami 1993] is a classic example that uses the Apriori property. In Apriori, an
itemset X cannot be frequent if any proper subset of X is not frequent, and in
which case, X is pruned.

For our mining problem, the Apriori property, however, does not hold. As a
simple example, consider the sequence S = ACTTT , the pattern P1 = AT and
its sub-pattern P2 = A. If the gap requirement is [1, 3], we see that sup(P1) =
3 (corresponding to the offset sequences {[1, 3], [1, 4], [1, 5]}) while sup(P2) = 1
(corresponding to the offset sequence {[1]}). Hence, the support of a pattern can
exceed the support of its sub-pattern.

To achieve pruning, we derive an apriori-like property. Theorems 1 and 2 sum-
marize the property.

Theorem 1. Given a length-l pattern P and a length-(l − d) sub-pattern Q =
P [i]P [i + 1] . . . P [i + l − d − 1] of P , where 1 ≤ i ≤ d + 1, we have sup(Q) ≥
sup(P )/W d.

Proof: Consider Figure 2 which shows a pattern P and a subpattern Q such that
Q is the same as a segment of P that starts at the i-th character. Let U be the
set of all length-l offset sequences with respect to which P matches S. We have
sup(P ) = |U |. We partition U into R subsets U1, . . . , UR such that two offset
sequences A = [ca1 , . . . , cal

] and B = [cb1 , . . . , cbl
] are in the same subset Uj if and

only if cak
= cbk

∀i ≤ k ≤ i + l − d − 1. We see that each Uj corresponds to a
unique offset sequence with respect to which Q matches S. Therefore, sup(Q) ≥ R.
Since the offset sequences in a given Uj only differ in the first i − 1 offsets and
the last d − i + 1 offsets (see Figure 2), the cardinality of each Uj cannot exceed
W (i−1)+(d−i+1) or W d. Hence, R, the number of subsets Uj ’s must be at least equal
to |U |/W d. Therefore,

sup(Q) ≥ R ≥ |U |/W d = sup(P )/W d.

ACM Journal Name, Vol. ?, No. ?, ? 20?.
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2

Theorem 1 is an important one in that it allows us to prune a large number
of candidate patterns from consideration. In particular, if a length-l pattern P is
frequent, then by definition, we have sup(P )/Nl ≥ ρs. Now, consider a length-(l−d)
sub-pattern Q of P . Theorem 1 requires that

sup(Q)
Nl−d

≥ sup(P )
Nl−dW d

≥ Nl

Nl−dW d
ρs = λl,d · ρs, (2)

where λl,d = Nl

Nl−dW d . That is, the support ratio of Q also has to attain a certain
value.

One can also verify the following transitivity property of λ:

λl,d1+d2 = λl,d1 · λl−d1,d2 ∀d1, d2, 0 ≤ d1 ≤ l and 0 ≤ d2 ≤ l and 0 ≤ d1 + d2 ≤ l.
(3)

As an example, if l ≤ l1, then by Equation 2 and the value of Nl stated in Sec-
tion 4.1, one can easily show that,

sup(Q)
Nl−d

≥ Nl

Nl−dW d
ρs

=
L− (l − 1)(M+N

2 + 1)
L− (l − d− 1)(M+N

2 + 1)
ρs. (4)

Here λl,d = Nl

Nl−dW d = L−(l−1)( M+N
2 +1)

L−(l−d−1)( M+N
2 +1)

.

For a long subject sequence (i.e., large L), a small pattern length (i.e., small l),
and a small d, the fraction λl,d is very close to 1. Therefore, if a length-l pattern P
is frequent (i.e., its support ratio exceeds ρs), Theorem 1 implies that any length-
(l − d) sub-pattern Q of P has to have its support ratio exceed λl,d · ρs, or almost
ρs as well. Hence, we obtain a property that is very close to the apriori property.
One can derive an efficient pruning algorithm based on that observation.

In the proof of Theorem 1, we bound the cardinality of the set Uj by W d. The
bound is obtained by considering the extreme case that given an offset sequence
A = [ca1 , . . . , cai

, . . . cai+l−d−1 , . . . cal
] ∈ Uj , any perturbation of the first i−1 offsets

and the last d− i+1 offsets (as long as the gap requirement is still satisfied) results
in another offset sequence in Uj . In other words, any such perturbation gives us an
offset sequence w.r.t. which P matches S. That is to say, no matter how we change
the first i − 1 offsets [ca1 , . . . , cai−1 ], we observe the same sequence of characters
S[ca1 ] = P [1], . . . , S[cai−1 ] = P [i−1], and the same can be said for the last d− i+1
offsets. The bound is obviously too loose.

We now consider a method of tightening the bound. Given a small value m, we
consider all length-(m + 1) offset sequences of the form [(r), (r + g1), . . . , (r + g1 +
. . . + gm)], where each gj ∈ [N + 1,M + 1]. Let us inspect S according to those
offset sequences and use Kr to denote the frequency count of the most frequently
occurring patterns observed. We repeat the exercise for each value of 1 ≤ r ≤ L.
Finally, we take em = maxL

r=1 Kr. We illustrate the idea with a simple example.
Suppose S = ACGTCCGT , the gap requirement is [1, 2], and m = 2. We first
calculate K1. There are 4 possible length-(m + 1) (or length-3) offset sequences
whose first element is at position 1 of S: [1, 3, 5], [1, 3, 6], [1, 4, 6] and [1, 4, 7], and
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Kr K1 K2 K3 K4 K5 K6 K7 K8

Value 2 1 2 1 0 0 0 0

Table II. Kr of sequence ACGTCCGT

they correspond to the patterns AGC, AGC, ATC, and ATG, respectively. We see
that AGC is the most frequently occurring pattern and its count is 2, so K1 = 2.
For K2, the relevant offset sequences are [2, 4, 6], [2, 4, 7], [2, 5, 7] and [2, 5, 8]. Since
these 4 offset sequences give 4 different patterns CTC, CTG, CCG and CCT , by
definition, K2 = 1. Other Kr values are calculated similarly. The results are shown
in Table II. Finally we get em = max8

r=1 Kr = 2. Semantically, for any offset r, the
value em tells us how many times at most we will see the same character sequence
in S under the offset sequence [r, r + g1, . . . , r + g1 + . . . + gm] however we perturb
the last m offsets in the sequence. Therefore, we can use em to replace Wm as a
better bound since W m

em
≥ 1. In the above example, W m

em
= 22

2 = 2. In typical DNA
sequences, we find that the ratio W m

em
becomes larger as m increases.

To illustrate how the value em is used, let us re-visit Theorem 1 again and
consider the following example. Suppose the sub-pattern Q is taken from the first
l − 8 characters of P (i.e., Q = P [1]P [2] . . . P [l − 8]). If we follow the proof of
Theorem 1 again, we see that all offset sequences A = [ca1 , . . . , cal−8 , cal−7 , . . . , cal

]
in Uj only differ in the last 8 offsets. Now, suppose we have determined the value of
em for the case m = 3. We know that, however we perturb the offsets cal−7 , cal−6 ,
cal−5 , the maximum number of times that we see the same character sequence
(namely, P [l − 7], P [l − 6] and P [l − 5]) over those three offsets is e3. The same
is true for the offsets cal−4 , cal−3 , cal−2 . And finally, there are at most W 2 ways
for us to perturb the offsets cal−1 and cal

. Hence, |Uj | ≤ e2
3W

2. This bound could
be much smaller than W 8, which is used in Theorem 1. With this discussion, the
following theorem can be easily proved.

Theorem 2. Given a length-l pattern P and a length-(l − d) sub-pattern Q =
P [1] . . . P [l−d] of P such that s = bd/mc and t = d−sm, we have sup(Q) ≥ sup(P )

es
mW t .

From Theorem 2, we know that if a length-l pattern P is frequent, then the length-
(l − d) sub-pattern Q of P such that Q = P [1] . . . P [l − d] must have its support
ratio lower-bounded by:

sup(Q)/Nl−d ≥ sup(P )
es
mW tNl−d

≥ Nl

Nl−des
mW t

ρs

=
W d−t

es
m

· λl,d · ρs

= (
Wm

em
)s · λl,d · ρs

= λ′
l,d · ρs, (5)
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where s = bd/mc, t = d− sm, and λ′
l,d = (W m

em
)s · λl,d.

5. ALGORITHMS

In the previous section we discuss why pruning is an important issue in typical
mining problems. In this section we propose efficient algorithms that apply pruning
techniques.

5.1 MPP

Consider Equation 4 in Section 4 again. We note that if a length-l pattern P is
frequent w.r.t. the support threshold ρs, then any length-(l−d) sub-pattern Q of P
must have a support ratio not less than λl,d ·ρs. This leads to the following apriori-
like mining algorithm. We call our algorithm MPP (Mining Periodic Patterns).

We use Ci to represent the set of candidate patterns of length i, Li to represent
the set of frequent length-i patterns, and L̂i to represent a superset of Li which is
used for candidate generation.

First, let us assume that the user has a rough idea about the length of the longest
frequent patterns in the subject sequence S. Let n represent such a length. We will
discuss how n can be automatically estimated later in this paper. MPP guarantees
that all frequent patterns of length less than or equal to n are returned. For the
longer frequent patterns, MPP will take a best-effort approach, i.e., it will return as
many of those frequent patterns as it could.

To obtain all frequent patterns of length less than or equal to n, Equation 4
suggests that we obtain all length-1 patterns whose support ratios are not less than
λn,n−1 · ρs. (Other length-1 patterns would not be the constituents of any longer
frequent patterns of interest.) From those patterns, we join them to obtain a set of
length-2 candidate patterns. We examine the subject sequence and collect all those
candidate patterns whose support ratios are not less than λn,n−2 · ρs. We then join
those patterns collected to form a set of length-3 candidate patterns and so on. In
general, during the i-th iteration, the algorithm computes L̂i as the set of length-i
patterns whose support ratios are not less than λn,n−i · ρs. Obviously, Li ⊂ L̂i. In
the (i + 1)-st iteration, patterns in L̂i are joined to form the candidate set Ci+1.
Patterns in Ci+1 whose support ratios are not less than λn,n−(i+1) · ρs are collected
in L̂i+1. The process repeats until either (1) MPP generates an empty candidate set,
or (2) when i = n + 1.

For the second case (i.e., i = n + 1), MPP would have returned all frequent
patterns of lengths less than or equal to n. To find other longer frequent patterns,
MPP reverts to a basic Apriori-like method. That is, during each iteration i > n,
MPP generates candidate set Ci based on Li−1. It then checks the patterns in Ci

and collects those whose support ratios are not less than ρs in Li. The process
repeats until MPP generates an empty candidate set. Note that in this candidate
pattern generation process, a length-(n + k) pattern P (where k > 0) is generated
(and potentially is returned by the algorithm as a frequent pattern) only if there
is a length-n sub-pattern Q of P whose support ratio is not less than ρs. From
Equation 4, however, we see that a length-(n + k) pattern can be frequent if all of
its length-n sub-patterns have their support ratios reach λn+k,k · ρs, which is less
than ρs. In other words, there could be length-(n + k) frequent patterns that are
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not generated and are thus missed. As a result, MPP can only guarantee that all
frequent patterns of lengths less than or equal to n are discovered.

There are a few issues concerning MPP as outlined above:

—First, if the user does not have a good idea about how long frequent patterns are,
he may choose an arbitrarily large n. In that case, pruning is not effective. For
example, consider the case when MPP is determining L4. The pruning condition
requires that every length-4 candidate sequence with a support ratio not less
than λn,n−4 · ρs be included in L4. If n is very large, λn,n−4 is very small, and
few candidates can be removed.

—Second, for DNA sequences, the size of the alphabet (e.g., |{A,C, T, G}|) is small.
The number of combinations of short patterns is thus very small. Hence, short
patterns are likely frequent. For example, in our experiment, we find that pat-
terns of lengths one or two are always frequent. These patterns are thus uninter-
esting.

—Third, given a length-i candidate pattern P , checking its support might require us
to examine the subject sequence S with respect to every length-i offset sequences.
As we have discussed in Section 4, the number of length-i offset sequences equals
Ni, a very large number even for a moderate value of i.

For the first issue, if n > l1, MPP restricts n to l1. That is to say, MPP will only
guarantee the extraction of all frequent patterns whose lengths are less than or equal
to l1. We remark that even without a theoretical guarantee that all patterns longer
than l1 are found, the drawback, in practice, may not be detrimental. Incidentally,
in all of the experiments we performed on DNA sequences, very long frequent
patterns do not occur.

For the second issue, MPP starts with length-3 patterns, assuming that shorter
ones are uninteresting. MPP does not count their supports and saves a bit of com-
putation.

For the third issue, MPP uses an index structure called partial index list (PIL) to
avoid examining all offset sequences when counting a pattern’s support count.

Given a subject sequence S and a length-l pattern P , PIL(P ) is a list of (x, y)
pairs where all x’s are of distinct values. If the pair (x, y) is in PIL(P ), then there are
exactly y offset sequences of the form [x, c2, . . . , cl] with respect to which P matches
S (i.e., P [1] = S[x], . . . , P [l] = S[cl]). For example, if S = AACCGTT , P =
ACT , [N,M ] = [1, 2], then PIL(P ) = {(1, 3), (2, 2)}. This is because P matches
S with respect to three offset sequences with the first offset equals 1 (namely,
{[1, 3, 6], [1, 4, 6], [1, 4, 7]}) and two offset sequences with the first offset equals 2
(namely, {[2, 4, 6], [2, 4, 7]}).

There are two properties of PIL(P ):

(1) Given PIL(P ), one can easily compute sup(P ), which is just the sum of all y’s
in the list. Using our previous example, since PIL(P ) = {(1, 3), (2, 2)}, we have
sup(P ) = 3 + 2 = 5.

(2) For a pattern P , let prefix(P ) = Q1, suffix(P ) = Q2. PIL(P ) can be computed
from PIL(Q1) and PIL(Q2) using the following simple procedure.
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1 ∀(x, y) ∈ PIL(Q1)
2 t = 0
3 ∀(x′, y′) ∈ PIL(Q2) s.t. x′ − x− 1 ∈ [N,M ]
4 t = t + y′

5 if (t > 0), insert (x, t) in PIL(P )

Figure 3 shows the algorithm MPP. The algorithm basically follows our previous
discussion. For generating length-(i + 1) candidates, MPP considers every pair of
length-i patterns P1 and P2 in L̂i. If suffix(P1) = prefix(P2), then the candidate
pattern P1[1]P2 is put into Ci+1. For example, P1 = ACG and P2 = CGT generate
ACGT . MPP also calculates the PIL list of the candidate using PIL(P1) and PIL(P2).
The PIL list of the candidate pattern allows us to determine its support count and
therefore whether the candidate should be added to the set L̂i+1 or not. Finally,
all patterns in all L̂i’s with support ratios not less than ρs are returned to the user.

1 Algorithm MPP(S, ρs, N , M , n)
2 calculate W, l1, l2
3 if n > l1, n = l1
4 for i=3 to n
5 calculate Ni, λn,n−i

6 for i = n + 1 to l2
7 calculate Ni, and set λn,n−i = 1
8 C3 = the set of all length-3 patterns
9 scan S to compute the PILs of all patterns in C3

10 for each pattern P in C3

11 get sup(P ) from PIL(P )
12 if sup(P ) ≥ ρsN3, put P into L3

13 if sup(P ) ≥ λn,n−3ρsN3, put P into L̂3

14 i := 3

15 while (L̂i 6= ∅)
16 Ci+1 := Gen(L̂i)
17 ∀P ∈ Ci+1

18 compute PIL(P ) to get sup(P )
19 if sup(P ) ≥ ρsNi+1, put P into Li+1

20 if sup(P ) ≥ λn,n−(i+1)ρsNi+1, put P into L̂i+1

21 i := i + 1
22 Return L3 ∪ L4 ∪ . . . ∪ Li−1

Fig. 3. Algorithm MPP

Example 1 We illustrate the algorithm using an example. Suppose the subject
sequence is

S = TTCCTCCGCGAAGGCTCCTTTGATATTA,

N = 1, M = 2, and ρs = 0.03. We have L = |S| = 28, W = M − N + 1 = 2,
l1 = bL+M

M+1 c = 10, and l2 = bL+N
N+1 c = 14. Suppose the user input n (the estimated

length of the longest frequent patterns) is equal to l1, i.e, 10.
MPP starts by calculating the support count thresholds for determining which

patterns should be collected in Li and L̂i. As shown in Figure 3, these threshold
ACM Journal Name, Vol. ?, No. ?, ? 20?.
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values are equal to ρsNi (for Li) and ρsNiλ10,10−i (for L̂i) where

λ10,10−i =
{

N10
NiW 10−i , i ≤ 10
1, i > 10

Table III shows the threshold values.

i support count threshold for Li support count threshold for L̂i

3 3 1
4 5 2
5 9 3
6 15 6
7 25 11
8 41 22
9 62 43
10 85 85
11 93 93
12 57 57
13 12 12
14 1 1

Table III. Support count thresholds for Li and L̂i in MPP

After obtaining the threshold values, MPP scans the subject sequence once to
obtain the PILs of all length-3 patterns and count their supports. The patterns
whose supports are not less than 3 (support threshold for L3, see Table III) are
put into L3 (first row of Table IV). There are 42 patterns whose supports are not
less than 1 (support threshold for L̂3, see Table III), and they form L̂3. After that,
MPP uses L̂3 to generate length-4 candidate patterns. Among the 116 candidates
in C4, 4 patterns are frequent, i.e., with support not less than 5, (see Table IV).
In this iteration, 46 patterns are collected in L̂4. MPP then uses L̂4 to generate
C5 and computes L5 and L̂5. It repeats the above process until L̂i is empty. The
discovered frequent patterns are shown in Table IV. Although the longest frequent
pattern discovered is of length 6, L̂i is not empty until i = 8.

L3 {AGC, AGT, CAG, CCA, CCC, CCG, CCT, CTA, CTG, GAG, GTT,
TCC, TCT, TGA, TTT}

L4 {CCAG, CCCA, TCCC, TCCG}
L5 {CCCAG, TCCCA}
L6 {TCCCAG}

Table IV. Frequent patterns discovered by MPP
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5.2 MPPm

The efficiency of MPP relies on how effective pruning is. In this subsection we
discuss how MPP can be refined to improve its pruning effectiveness and thus to
achieve better efficiency.

Recall that given a value of n (the length of the longest frequent patterns the user
is interested in obtaining), a candidate length-i pattern Q in the set Ci is pruned
if its support ratio is less than λn,n−i · ρs. So, the larger the value λn,n−i is, the
more effective is the pruning. By the definition of λ, that implies a small n− i, or
equivalently, a small n and a large i. While we don’t have many choices for i (the
algorithm always starts with mining length-3 patterns, so i starts at 3), the above
argument indicates that a reasonably small value of n can potentially speed up the
algorithm. As an example, in our experiment, we use a DNA fragment of 1,000
characters, a gap requirement of [9,12], and a support threshold ρs = 0.003%, the
longest pattern mined has a length of 13. If the user has a good idea of how long
frequent patterns are, and picks n = 13 as the algorithm’s input, our experiment
shows that MPP could achieve good pruning and is efficient. The question is “what
if the user does not know what n to pick?” We will come back to this question
shortly.

In the derivation of Theorem 2, we discussed how to derive a tighter bound
that leads to a more effective pruning strategy. Without repeating the details, the
approach is to pick a small number m and analyze the subject sequence to obtain a
number em. From Theorem 2 and Equation 5, we know that if there is a length-k
frequent pattern P , then the sub-pattern Q of P that consists of the first k − d
characters (i.e., Q = P [1] . . . P [k − d]) must have its support ratio not less than
λ′

k,d · ρs, where λ′
k,d = (W m

em
)s · λk,d, s = bd/mc.

Now, let us consider the “pick-the-n” problem again. If the user does not have a
good idea of n, our approach is to find a reasonable value automatically. The idea is
to count the supports of all length-3 patterns. Then, for every value of 3 < k ≤ l1,
we check and see if there is any length-3 pattern Q whose support is not less than
λ′

k,k−3 · N3 · ρs. If no such Q exists, then by Theorem 2, we know that there are
no length-k frequent patterns. Finally, the value of n is taken as the largest k such
that length-k frequent patterns may exist. We thus modify MPP with the above
procedure of automatically determining n applied. We call the modified algorithm
MPPm (MPP modified).

To illustrate, let us consider Example 1 in Section 5.1. Assume MPPm is applied
with m = 7 to the subject sequence

S = TTCCTCCGCGAAGGCTCCTTTGATATTA.

MPPm first calculates e7 and obtains e7 = 12. Also, the largest support count of
length-3 patterns is found to be 6.
MPPm then checks whether there exist frequent patterns of length-k (for 3 < k ≤

l1 = 10). By comparing λ′
k,k−3 ·N3 ·ρs (shown in Table V) with the largest support

count 6, MPPm concludes that the length of the longest frequent patterns (with
length ≤ l1) is not longer than 9.

It then calculates the support count thresholds for collecting Li and L̂i. They are
ρsNi and ρsNiλ9,9−i, respectively. The values are shown in Table VI. Comparing
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k 4 5 6 7 8 9 10

λ′k,k−3 · N3 · ρs 2.46 2.16 1.86 1.56 1.26 0.96 7.04 (> 6)

Table V. Value of λ′k,k−3 ·N3 · ρs in MPPm

Table VI with Table III, we see that the thresholds for L̂i are larger than those in
MPP. So MPPm could prune more candidates and thus is more efficient.

i support count threshold for Li support count threshold for L̂i

3 3 1
4 5 2
5 9 4
6 15 8
7 25 16
8 41 31
9 62 62
10 85 85
11 93 93
12 57 57
13 12 12
14 1 1

Table VI. Support count thresholds for Li and L̂i in MPPm

5.3 MPPo

In this section, we optimize MPPm and describe another algorithm called MPPo (MPPm
with Optimizations).

Recall that MPPm makes use of Theorem 2 to automatically estimate n (the length
of the longest frequent patterns). Theorem 2 implies that if a length-l pattern P
is frequent, then its length-(l − d) subpattern Q = P [1] . . . P [l − d] should have its
support no less than λ′

l,d · ρs · Nl−d. Note that in the above statement, Q is not
just any subpattern of P , but of form Q = P [1] . . . P [l−d]. Here we discuss how to
obtain a support lower bound for any subpattern Q of P by extracting information
from the subject sequence S. The information we need is as follows.

(1) Instead of calculating em for a fixed value of m, we compute em values for all
m ≤ t, where t is a user specified integer. For example, if t = 8, we calculate
em values for 1 ≤ m ≤ 8.

(2) According to the definition of em, given a length-(m + 1) pattern P , if its
first character P [1] maps to a fixed offset in the subject sequence S, then we
could observe P in S at most em times by altering the offset sequences mapped
to its last m characters (i.e. P [2] . . . P [m + 1]). Similarly, if P [m + 1] maps
to a fixed offset in S, there is also an upper bound on how many times P
could be observed in S by altering the offset sequences mapped to its first m
characters (i.e., P [1] . . . P [m]). We call this upper bound rem (reverse em).
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The calculation of rem is similar to that of em. We compute rem values for all
m ≤ t as well.

We use an example to illustrate how to utilize the above information to ob-
tain a support requirement for any subpattern Q of P . Suppose |P | = 12, Q =
P [3]P [4]P [5], and t = 4. We set Q1 = QP [6]P [7]P [8]P [9], and Q2 = Q1P [10]P [11]P [12],
then P = P [1]P [2]Q2. According to the analysis of Theorem 2 (see Page 10), we
have

sup(Q1) ≤ sup(Q)× e4 (6)
sup(Q2) ≤ sup(Q1)× e3 (7)
sup(P ) ≤ sup(Q2)× re2 (8)

If P is frequent, then from the above equations, we get

sup(Q) ≥ sup(P )
e4 · e3 · re2

≥ ρsNl

e4 · e3 · re2
.

Here ρsNl

e4·e3·re2
is a support requirement on subpattern Q.

In general, if P is frequent, then for any subpattern Q of P , we can determine a
lower bound of sup(Q) using em values and rem values.

With a lower bound on all subpatterns, it is possible to pick a smaller n for the
mining algorithm. For a pattern P of length k, we first count the support lower
bounds of all its length-3 subpatterns. We then record the largest lower bound
maxlb. After that, we check whether there exists a length-3 pattern whose support
is no less than maxlb. If yes, there may exist frequent length-k patterns. Otherwise,
all length-k patterns are infrequent. Since we use the maximal support lower bound
of all length-3 subpatterns to pick n, instead of the lower bound of P [1]P [2]P [3]
used by MPPm, it is likely that a smaller n will be found.

The lower bound of all subpatterns could also be utilized to get smaller L̂i sets.
In MPP and MPPm, L̂i is the set of all length-i patterns whose supports are no less
than Nnρs/Wn−i (according to Theorem 1), where n is the length of the longest
frequent patterns. With em and rem values, for a frequent length-j pattern P , we
could find the lower bounds of all its subpatterns of length i. We use mini,j

lb to
represent the minimum lower bound among them. It is obvious that any length-j
frequent pattern could be composed from length-i patterns whose supports are no
less than mini,j

lb . We set L̂i to be the set of all length-i patterns whose supports
are no less than

n
min

j=i+1
mini,j

lb .

From the example at the beginning of this subsection on how to compute a support
lower bound of any subpattern Q of P , we know that

n
min

j=i+1
mini,j

lb ≥ Nnρs/Wn−i.

Therefore, with the same value of n, this definition of L̂i is a subset of that used
by MPP and MPPm. A smaller L̂i leads to fewer candidates generated and thus less
work in support counting.
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We could also increase the support requirement of a subpattern Q in another way.
We illustrate the idea with a simple example. Suppose |P | = 7, Q = P [1]P [2]P [3],
m = 4. Previously, we bound sup(Q) by

sup(Q) ≥ sup(P )/em =
sup(P )

maxL
r=1 Kr

,

where L is the length of the subject sequence S.
We note that the first possible offset positions of P [3] (the last character in Q)

in S is not 1, but minspan(3). The reason is that P [3] is the third character of Q.
Also, the last possible offset position of P [3] in S is not L, but L+1−minspan(5),
because P [3] is the first character of a length-5 subpattern P [3] . . . P [7]. Therefore,
we could use

sup(P )

maxL+1−minspan(5)
r=minspan(3) Kr

instead of sup(P )

maxL
r=1 Kr

as a tighter lower bound for sup(Q).
We design MPPo using the above-mentioned methods in tightening the bounds.

With a smaller n and smaller L̂i sets, MPPo could reduce the mining time. On
the other hand, a longer pre-processing time is required to count em, rem, and
the support threshold for L̂i, i.e. minn

j=i+1 mini,j
lb . So its performance depends on

which factor outweights the other.
To illustrate, let us consider Example 1 in Section 5.1 again. Suppose t = 7.

MPPo first counts the values of em and rem (shown in Table VII).

e1 e2 e3 e4 e5 e6 e7 re1 re2 re3 re4 re5 re6 re7

2 4 4 6 9 9 12 2 3 5 6 10 15 15

Table VII. em and rem values for 2 ≤ m ≤ 7

MPPo then checks whether there exist frequent patterns of length-k (for 3 < k ≤
l1 = 10). According to our above analysis, MPPo discovers that if a length-k pattern
is frequent, one of its length-3 subpatterns must have its support count not less
than the value shown in Table VIII.

k 4 5 6 7 8 9 10

support
requirement 2.46 2.88 3.72 6.24(> 6) 6.72(> 6) 10.24(> 6) 10.56(> 6)

Table VIII. If a length-k pattern is frequent, the smallest support count value that one of its
length-3 subpatterns must attain

Since the largest support count of length-3 patterns is 6, it is obvious that the
length of the longest frequent pattern (with length ≤ l1) is not longer than 6.
MPPo then applies the new optimization techniques to calculate the support count

thresholds for computing L̂i. The resulting values are shown in Table IX. They
are larger than the values used in the MPPm algorithm (Table VI). So MPPo is able
to process smaller sets of Ci and L̂i compared to MPPm and MPP.
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i support count threshold for Li support count threshold for L̂i

3 3 2
4 5 4
5 9 8
6 15 15
7 25 25
8 41 41
9 62 62
10 85 85
11 93 93
12 57 57
13 12 12
14 1 1

Table IX. Support count thresholds for Li and L̂i in MPPo

6. EXPERIMENT RESULTS AND ANALYSIS

To analyze the performance of the mining algorithms, we perform an extensive
experimental study. This section shows some representative results and discusses
some interesting properties of the algorithms.

The data used in the experiments is the Homo Sapiens (human) DNA sequence
AX829174 downloaded from the National Center for Biotechnology Information
website [NCBI ]. The sequence consists of 10,011 characters. In the experiments,
we randomly pick a length-L segment from AX829174 as the subject sequence for
various values of L.

6.1 Performance of MPP and MPPm under Different Support Thresholds

As we have discussed, the difference between MPP and MPPm is that MPP relies on
a user input, n, which specifies an estimate of the length of the longest frequent
patterns in the subject sequence, while MPPm tries to determine the estimate au-
tomatically. It is thus interesting to see how the estimation accuracy affects the
performance of the algorithms. In our first experiment, we run MPP and MPPm for
various values of support threshold, ρs. We note that different values of ρs yield
different sets of frequent patterns. Let us use no(ρs) to denote the length of the
longest frequent patterns under a certain value of ρs. For each ρs, we execute MPP
twice, one with the user input n = no(ρs) (i.e., the best case scenario where the
user has a perfect estimate of n), and the other with n = l1 (i.e., the worst case
scenario where the user has no idea about n and uses the largest value).

Figure 4 shows the performance of the algorithms. In this experiment, the subject
sequence length L = 1, 000, the gap requirement is [9, 12] and MPPm uses m = 10.

First, we observe from the figure that as the support threshold increases, the
execution times of the algorithms decrease. This is because a larger ρs gives fewer
frequent patterns to extract. Also, from Figure 4(a), we see that without a reason-
able estimate of n, the performance of MPP (worst case) is very bad. MPPm, on the
other hand, is much more efficient due to its ability to determine a much smaller n.
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L=1,000, [N, M ] = [9, 12], m = 10
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Fig. 4. MPPm vs. MPP (worst case) and MPP (best case)
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As an example, when ρs = 0.003%4, the experiment result shows that the longest
frequent pattern has a length of no(0.003%) = 13. While MPP uses n = l1 = 77,
MPPm estimates a value of n = 22. As we have explained in the previous section, a
small value of n enables a much better pruning condition when the algorithms are
determining which candidate patterns in Ci should be collected in the set L̂i. It
explains why MPPm is much more efficient than MPP under the worst case.

Figure 4(b) compares MPPm against MPP when the user has a perfect estimate of
n. From the figure, we see that MPPm is less efficient than MPP (best case). There are
two reasons why MPPm takes longer time to execute. First, determining the value em

(so that MPPm can apply Theorem 2 to estimate a value of n) requires MPPm to check
quite a number of length-m patterns in the subject sequence S (see the discussion
preceding Theorem 2). This overhead is not required for MPP. Second, MPP (best
case) uses a smaller (and accurate) n value than MPPm does. Pruning is thus more
effective. The performance difference, however, is not as big as that between MPPm
and MPP (worst case). For example, in the above experiments, MPPm is 1.5 to 3.7
times slower than MPP (best case), and it is 16 to 30 times faster than MPP (worst
case).

6.2 Number of Candidates and Number of Patterns in L̂i and Li

Our experiment result also shows that both MPP and MPPm are much more efficient
than the straight forward way of enumerating all candidates. Since the Apriori
property does not hold, the enumeration algorithm has to count all possible can-
didates. In our experiment settings, the number of candidates counted by the
enumeration method is 4i for Ci . On the other hand, both MPP and MPPm are able
to prune a large number of candidates. Table X(a) shows the number of candidates
processed by the enumeration algorithm, MPP (worst case), MPPm and MPP (best
case) under support threshold 0.003%. The enumeration algorithm is impractical
due to the large number of candidates it needs to process. The number of candi-
dates MPP (worst case) has to deal with is also large, however, it is manageable. For
MPPm, it counts much fewer candidates than MPP (worst case), which explains why
MPPm is much faster than MPP (worst case). MPP (best case) processes even fewer
candidates than MPPm. Therefore it has the shortest execution time.

Table X(b) shows the sizes of L̂i for the algorithms. They follow a similar trend
as that of candidate numbers. That is to say, MPP (worst case) has the largest L̂i,
and MPPm has a much smaller L̂i, while the size of L̂i for MPP (best case) is even
smaller. The rightmost column of Table X(b) shows |Li|. We observe that the sizes
of L̂i for MPPm and MPP (best case) are about the same as the size of Li, which
illustrates the efficiency of MPPm and MPP (best case).

The large difference between MPP (worst case) and MPP (best case) indicates that
the efficiency of the MPP algorithm is dominated by the user input n, the estimated
length of the longest frequent patterns.

4Recall that a pattern P is frequent if sup(P ) ≥ Nlρs. Since Nl is exponentially large w.r.t. l,

even a small ρs implies a fairly large support count of P .
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Enumeration Algorithm MPP (worst case) MPPm MPP (best case)

|C3| 64 64 64 64
|C4| 256 256 256 256
|C5| 1024 1024 1024 1024
|C6| 4096 4096 4096 4096
|C7| 16384 16384 16384 16384
|C8| 65536 65528 54588 50609
|C9| 262144 231161 17464 12198
|C10| 1048576 177140 2926 2262
|C11| 4194304 37543 1057 783
|C12| 16777216 16114 346 222
|C13| 413 7552 42 26
|C14| 414 2919 6 3
|C15| 415 1009 - -
|C16| 416 356 - -
|C17| 417 43 - -
|C18| 418 8 - -
|C19| 419 - - -

...
...

...
...

...
|C77| 477 - - -

(a) Number of candidates counted by different algorithms

MPP (worst case) MPPm MPP (best case) |Li|
|L̂3| 64 64 64 64

|L̂4| 256 256 256 256

|L̂5| 1024 1024 1024 1024

|L̂6| 4096 4096 4096 4096

|L̂7| 16383 14671 13979 13374

|L̂8| 60779 8854 6633 5678

|L̂9| 72310 2130 1691 1514

|L̂10| 23914 900 683 623

|L̂11| 11251 368 260 242

|L̂12| 5904 91 59 55

|L̂13| 2752 24 12 12

|L̂14| 1086 0 0 0

|L̂15| 450 - - -

|L̂16| 104 - - -

|L̂17| 8 - - -

|L̂18| 0 - - -

(b) Size of L̂i in different algorithms and size of Li

Table X.
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Fig. 5. Performance of MPP under different user input n

6.3 Performance of MPP under different user input n

To further illustrate the effect of the user input n, we execute MPP over different
values of n. In this experiment no(ρs) = 13. Figure 5 shows the result. As expected,
the worse is the estimate (a larger n), the slower is MPP. What is interesting about
this figure is the execution time of MPP when n = 10, a value that is smaller than
no(ρs), the length of the longest frequent patterns in S, that is to say, when the user
under-estimates no(ρs). From the figure, we see that when n = 10 the execution
time of MPP is smaller than the case when n equals the real maximum length no(ρs).

6.3.1 Continuously Refine n. Recall that for a given user input n, MPP will find
all frequent patterns of lengths less than or equal to n. For longer patterns, MPP
takes a best-effort approach and tries to return those frequent patterns as many as
possible. Therefore, if n < no(ρs), not all frequent patterns are guaranteed to be
found. The small execution time of MPP when n = 10 as shown in Figure 5, however,
hints at an adaptive approach to determine a suitable n value. Specifically, if a user
has no idea of a good n value, we could run MPP using a small n, let’s say 10. After
MPP finishes execution, it will return all frequent patterns of length less than or
equal to n plus a number of longer frequent patterns. We could note the longest
pattern discovered, use its length to refine n and re-execute MPP. This process could
continue until we cannot refine n further. We did this experiment with different
starting n values. The result is shown in Figure 6.

We see that when the starting estimated value of n is less than n0(ρs) (i.e., 13),
the running time is about 2 times that of MPP (best case). In these cases, MPP runs
twice to finish the refining process. Since the cost of running MPP with a small n
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Fig. 6. Performance of MPP by continuously refining the value of n

is low, the total execution time is still smaller than that of MPPm (m=10). When
n > 13, the trend is similar to that shown in Figure 5.

6.4 Performance of MPPm under different values of m

Algorithm MPPm derives a value em to estimate the length of the longest frequent
patterns. In this set of experiment we study how the choice of m affects the per-
formance of MPPm. Figure 7 shows the running time of MPPm under different values
of m.

We see that as m increases, the running time of MPPm decreases first then in-
creases. The reason is that with a larger m, the ratio Wm/em is larger. So MPPm
could estimate a more accurate n, and the running time reduces. When m contin-
ues to increase, the efforts of computing em becomes the major factor. Therefore,
the total execution time increases.

6.5 Performance of MPPm under different values of W

In another experiment, we study the effect of the flexibility of the gap W . We fix
N = 9 and hence the gap requirement is [9,W +8]. Figure 8 shows the performance
of MPPm when W changes from 2 to 8. From the figure, we see that as W increases,
the execution time of MPPm drops initially then rises. This is due to the following
two factors. First, a larger W implies a tighter bound computed from em and thus
more pruning power. This reduces the running time. On the other hand, for a
given l, the number of length-l offset sequences, Nl, is proportional to W l−1 (see
ACM Journal Name, Vol. ?, No. ?, ? 20?.
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Fig. 7. Performance of MPPm under different values of m

Section 4.1). That is, the larger the value of W , the larger is Nl. Hence, the PIL
lists with which the algorithm uses to count patterns’ supports are long. Therefore,
more computational effort is needed. When W ∈ [2, 4], the first factor dominates
the second one, so the net effect is a drop in running time. When W continues
to increase, the second factor becomes dominant, so MPPm requires more execution
time.

6.6 Performance of MPPm under different values of N

In the next experiment, we fix the gap flexibility W to 4 and vary the value of
N . The gap requirement is thus [N,N + 3]. Figure 9 shows the performance of
MPPm as N varies from 8 to 12. From the figure, we see that the execution time
of MPPm increases with N . Recall that after MPPm has estimated a value of n, it
basically follows the logic of MPP. In particular, during the iteration in which MPPm
determines the set L̂i, a candidate pattern in Ci is removed if its support ratio is
less than λn,n−i ·ρs. According to Equation 4, λn,n−i = L−(n−1)( M+N

2 +1)

L−(i−1)( M+N
2 +1)

. One can
verify that λn,n−i is a decreasing function of N . Hence, the smaller the value of N ,
the larger λn,n−i is, and more candidate patterns can be pruned. This leads to a
more efficient algorithm.

6.7 Scalability of MPPm with increasing sequence length

We study the scalability of MPPm with respect to the length of the subject sequence
(L). Figure 10 shows the execution time of MPPm as L varies from 1,000 to 10,000
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Fig. 8. Performance of MPPm under different values of W

characters. The result shows that MPPm scales linearly with the sequence length.

6.8 MPPo

In this subsection, we study the performance of algorithm MPPo. In all the experi-
ments, we set t = 8. That is to say, we count em and rem values for m ≤ 8.

6.8.1 Compare MPPo with MPP (best case). Our first experiment compares the
performance of MPPo and MPP (best case) under different support thresholds and
gap requirement W . Figures 11–13 show their running times under W = 2, 4, and
6, respectively.

We see that when W is small (W = 2), MPPo outperforms MPP (best case) (Fig-
ure 11). The reason is that MPPo deals with smaller L̂i sets than MPP. Hence, it
spends less effort on candidate generation. As an example, Table XI shows the
sizes of Ci and L̂i processed by MPPo and MPP (best case) in each iteration when
ρs = 0.002%. From the table, we see that the total number of candidates handled
by MPPo (119,548) is about 2/3 of that of MPP (best case) (177,313). With fewer
candidates to process, MPPo is more efficient.

When W is moderate (W = 4), the performances of MPPo and MPP (best case)
are comparable (see Figure 12). The reason is that a larger W implies more pre-
processing time for MPPo to compute the values of em’s and rem’s. When W = 4,
the extra amount of time spent on pre-processing is about the same as the savings
MPPo obtains from smaller Ci and L̂i. As a result, MPPo and MPP (best case) have
similar performance.
ACM Journal Name, Vol. ?, No. ?, ? 20?.
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Fig. 9. Performance of MPPm under different values of N

When W increases to 6, the pre-processing cost of MPPo overweights the resulting
savings. Hence, in this case, MPP (best case) outperforms MPPo (Figure 13). We
remark that for a typical organism, the flexibility (W ) should not be too large. In
summary, in most cases, MPPo has better or comparable performance compared to
MPP (best case).

6.8.2 Compare MPPo with MPPm under Different Gap Requirement W . We then
compare the performance of MPPo and MPPm under different values of W . Figure 14
shows the result. We see that when W is not large (say W ∈ [2, 4]), the performance
of MPPo is much better than MPPm. The reason is that in this case, MPPo could obtain
a much tighter bound than MPPm, which in turn results in more effective pruning
power. On the other hand, MPPo needs to gather more information from the subject
sequence S, and the amount of calculation increases with the value of W . Therefore,
when W is large (W = 6), the performance of MPPo is not as good as that of MPPm.

6.8.3 Compare MPPo with MPPm under Different Values of N . Figure 15 shows
the performance of MPPo and MPPm when N changes. Unlike MPPm, the running time
of MPPo stays relatively steady when N changes. Recall that for MPPm, a larger
N implies a smaller support threshold of L̂i, and thus more processing time. For
MPPo, the support threshold of L̂i is not directly related to the value of N . So the
performance of MPPo is relatively unaffected by the value of N .
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ρs = 0.003%, [N, M ] = [9, 12], m = 10

0

500

1000

1500

2000

2500

3000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(s

ec
o
n
d
s)

L

MPPm

3

3

3

3

3

3

3

3

3

3

3

Fig. 10. Performance of MPPm for various values of L

6.9 Summary

In summary, when the gap requirement W is not large, MPPo is the most efficient
algorithm. If W is large and a user has a good idea about the length of the longest
frequent patterns in the subject sequence S, MPP is the best choice. Otherwise we
should choose MPPm.

7. A CASE STUDY

In this section we report a case study in which interesting patterns are mined using
our algorithms. We applied MPPm to mine a number of DNA sequences, including
the whole genomes of the bacteria H. influenzae, H. pylori, M. genitalium and M.
pneumoniae. We segmented the genomes into short fragments of 100 kilo-bases
(kb), and ran MPPo on each fragment using a gap size of [10, 12] and a support
threshold of 0.006%. The length of the longest patterns discovered was 10 bases
(characters). We observed a very interesting result: the bases ‘A’ and ‘T’ constitute
much more to the periodic patterns than ‘C’ and ‘G’. For instance, there are 256
length-8 patterns that consist of only ‘A’s and ‘T’s. We found that all such patterns
were frequent in some fragments of all four genomes. Some of these patterns were
even frequent in every fragment examined. As an example, if we consider fragments
from the bacterial genomes, then on average, about 250 of the 256 length-8 patterns
that consist of only ‘A’s and ‘T’s were frequent in a given fragment. On the other
hand, length-8 patterns that consist of more than one ‘C’ or ‘G’ were unlikely to
be frequent. For example, there are 48 = 65, 536 possible length-8 patterns, among
ACM Journal Name, Vol. ?, No. ?, ? 20?.
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Fig. 11. Performance of MPPo and MPP (best case) when W=2

which 28 = 256 contain only ‘A’s and ‘T’s, and 8× 2× 27 = 2, 048 contain exactly
one ‘C’ or ‘G’. So, the number of possible patterns that have more than one ‘C’
or ‘G’ is 65, 536 − 256 − 2, 048 = 63, 232. We found that among these patterns,
on average, only 3.9 of them were frequent in a DNA fragment of the bacterial
genomes. Also, none of these frequent patterns are common in all genomes.

The results are consistent with the findings of a previous study [Herzel et al. 1999],
which shows the periodic occurrence of ‘A’ and ‘T’ in yeast and various bacteria
and archaea with a period length of 10-11 base pairs. Our results complement
its findings by showing that beyond the regularity that occurs between nucleotide
pairs, the patterns actually last for quite a number of contiguous cycles. Also, some
patterns are ubiquitous in the genomes, not restricting to any specific regions.

In a previous work that extensively studies ApA dinucleotide periodicity (the
regular occurrence of base ‘A’ after another base ‘A’ separated by a fixed period)
in various eubacteria, archaebacteria, eukaryotes and organelles, it has been sug-
gested that the periodic patterns are more prominent in eubacteria than in eukary-
otes [Tomita et al. 1999]. For instance, the genome of H. sapiens (human) shows
very weak periodicity, as compared to the eubacteria and some lower eukaryotes
such as the baker yeast S. cerevisiae. We would like to verify whether the periodic
patterns are really weakened in higher eukaryotes, or strong periodic patterns still
exist, but they are composed of other bases or do not exhibit a rigorous periodic-
ity with a fixed period length. We downloaded short pieces of the genomes of the
eukaryotes H. sapiens, C. elegans and D. melanogaster, cut them into 100kb frag-
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|Ci| L̂i

MPPo MPP (best case) MPPo MPP (best case)

i = 3 64 64 64 64
i = 4 256 256 256 256
i = 5 1024 1024 1024 1024
i = 6 4096 4096 3952 3952
i = 7 15324 15324 10184 12731
i = 8 30006 42779 14769 22967
i = 9 29512 53650 12634 20808
i = 10 17890 32294 8248 12125
i = 11 9967 14547 4869 6205
i = 12 5427 6732 2587 3072
i = 13 2552 2965 1441 1613
i = 14 1362 1499 791 855
i = 15 727 768 458 486
i = 16 414 431 296 303
i = 17 297 301 218 212
i = 18 217 210 165 154
i = 19 182 167 114 101
i = 20 114 104 73 65
i = 21 80 72 36 34
i = 22 25 24 15 11
i = 23 12 6 3 1
i = 24 0 0 - -

total 119548 177313 62197 87039

Table XI. Size of Ci and L̂i for MPPo and MPP (best case)

ments, and repeated the above experiments. To our surprise, all of the 256 length-8
patterns that consists of ‘A’ and ‘T’ only are still frequent in some fragments of all
three sequences. This result may imply that the flexible gap requirement is able
to tolerate some variations in the sequences, such as the insertion or deletion of a
nucleotide within a period that affects the period length.

Besides, some patterns not detected in the bacterial genomes are observed in the
eukaryote sequences, many of which consist of more ‘C’s and ‘G’s. For instance, the
length-8 pattern composing of ‘G’s only is frequent in some fragments of all three
sequences. In one of the fragments of H. sapiens, the pattern composing of 16 G’s
only is also found to be frequent! All these suggest that the nucleotides involved in
the periodic patterns in bacteria and eukaryotes are quite different.

Some former studies suggest two explanations for the dinucleotide oscillations [Tri-
fonov 1998; Tomita et al. 1999; Herzel et al. 1999]: (1) they are related to the
helical shape of the DNA. In particular, the repetition of specific base-pair stacks
with this periodicity would cause uni-directional deflection of the DNA curvature;
(2) the alternation of hydrophobic and hydrophilic amino acids in α-helices leads to
a periodicity of about 3.5 amino acids in protein sequences, which corresponds to
10-11 bases in DNA sequences. Both explanations are still possible given the new
findings. The new results also further suggest that in eukaryotes, the maintenance
of the DNA curvature may involve more ‘C’s and ‘G’s than in bacteria. Also, to
ACM Journal Name, Vol. ?, No. ?, ? 20?.
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Fig. 12. Performance of MPPo and MPP (best case) when W=4

verify the second explanation, it is useful to actually look for some proteins with a
corresponding coding DNA sequence that exhibits the mined periodic patterns.

Finally, we have applied our algorithm on mining DNA sequences of many dif-
ferent species. We found that there are unique periodic patterns for each species.
Some of these patterns are very interesting. For example, for C. elegans, we found
periodic patterns that repeat themselves, such as ATATATATATA, GTAGTAGTAGT, etc.
As another example, a unique periodic pattern for H. sapiens consists of 17 ‘G’s.
Biologists may find those patterns insightful.

8. CONCLUSION

This paper studied the problem of mining periodic patterns with a gap requirement
from sequences. We formally defined the data-mining model and proved several
important theorems that lead to the derivation of efficient algorithms. We proposed
three algorithms, namely, MPP, MPPm and MPPo for solving the problem. Extensive
experiments had been done to illustrate the various performance characteristics of
the algorithms. We found that for cases when the gap requirement is not large,
MPPo is the most efficient algorithm. On the other hand, if the gap requirement
is large and if the user has a good estimate of the length of the longest frequent
patterns, MPP is the best choice. However, if the user does not provide the estimate,
MPPm is able to determine a reasonably good one. We applied MPPm on a number
of real DNA sequences. Much of our mining result is consistent with findings from
previous studies.
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L = 1, 000, W = 4, ρs = 0.003%, m=8 for MPPm
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Fig. 15. Performance of MPPo and MPPm under different values of N
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9. APPENDIX: DERIVING THE FORMULA FOR NL

First, let i = maxspan(l) − L. Consider all length-l offset sequences of the form
[c1 = 1, c2, . . . , cl] where cl ≤ L, i.e., those offset sequences with the first offset
being ‘1’, the first position of the subject sequence S. Let us use f(l, i) to denote
the number of such offset sequences.

If i ≤ 0, we have maxspan(l) ≤ L. So, if the first offset is 1, cl ≤ L even if every
gap takes on the maximum value M . Hence, we have W choices for each of the
remaining l − 1 offsets, and f(l, i) = W l−1. Also, if i > (l − 1)(W − 1), we have
maxspan(l)−L > (l− 1)(W − 1), or equivalently, minspan(l) > L, In this case, the
offset sequence exceeds the span of the subject sequence even if every gap takes on
the minimum value. Therefore, f(l, i) = 0. Hence,

f(l, i) = W l−1 (i ≤ 0) (9)
f(l, i) = 0 (i > (l − 1)(W − 1)) (10)
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L = maxspan (k+1) - i

 M 
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. . .
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N+1
. . . . . .

possible values of c2

L - (N+j)

Fig. 16. An illustration

The values of f(l, i) for other values of i are related by the equation specified in
the following theorem:

Theorem 3.
∑(l−1)(W−1)

i=1 f(l, i) = l−1
2 (W − 1)W l−1, for l > 1.

Proof:
For l = 2, let us consider the length-2 offset sequence [1, c2]. Since the second

offset (i.e., c2) must be within bound (i.e., ≤ L) and the gap must satisfy the
gap requirement (i.e., N ≤ c2 − 2 ≤ M), we have N + 2 ≤ c2 ≤ min(M + 2, L).
Since i = maxspan(2) − L, we have i = (2 − 1)M + 2 − L, or M + 2 = L + i.
Therefore, for 1 ≤ i ≤ M − N = W − 1, the number of possible values of c2 is
L− (N + 2) + 1 = M + 2− i−N − 1 = M −N + 1− i = W − i. Hence,

f(2, i) = W − i ∀1 ≤ i ≤ W − 1.

And thus
(2−1)(W−1)∑

i=1

f(2, i) = (W − 1) + (W − 2) + . . . + 2 + 1

=
W (W − 1)

2

=
2− 1

2
(W − 1)W 2−1

So, Theorem 3 is true for l = 2.
Suppose Theorem 3 is true for l = k where k ≥ 2. We consider the case for

l = k + 1. Recall that f(k + 1, i) refers to the number of distinct offset sequences
of the form [1, c2, . . . , ck+1], where ck+1 ≤ L. Due to the gap requirement, we
have c2 = (N + 1) + j where 1 ≤ j ≤ W (see Figure 16). Now, let us fix the
value of j (and hence c2) and focus on the segment of the sequence S[c2 . . . L].
From Figure 16, we see that the number of distinct offset sequences is equal to the
number of ways of selecting k offsets within the segment S[c2 . . . L], which is of
length L− (N +j), such that the gap requirement is satisfied among the offsets and
that the first offset is taken as c2. Since L = maxspan(k+1)− i, we have the length
of the segment being maxspan(k + 1)− i− (N + j) = kM + (k + 1)− i− (N + j) =
(k − 1)M + k − (i − W + j) = maxspan(k) − (i − W + j). Hence, the number of
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such selections is equal to f(k, i − W + j). This leads to the following recurrence
equation:

f(k + 1, i) =
W∑

j=1

f(k, i−W + j). (11)

Now,

(k+1−1)(W−1)∑
i=1

f(k + 1, i)

=
(k+1−1)(W−1)∑

i=1

W∑
j=1

f(k, i−W + j)

=
k(W−1)∑

i=1

W∑
j=1

f(k, i−W + j)

=
W∑

j=1

k(W−1)∑
i=1

f(k, i−W + j) (replace the order of i, j)

=
W∑

j=1

k(W−1)−W+j∑
m=1−W+j

f(k,m) (by m = i−W + j)

Splitting j into 3 parts: j = 1, 2 ≤ j ≤ W − 1 and j = W , we have

(k+1−1)(W−1)∑
i=1

f(k + 1, i)

=
1∑

j=1

k(W−1)−W+j∑
m=1−W+j

f(k,m) +
W−1∑
j=2

k(W−1)−W+j∑
m=1−W+j

f(k,m)

+
W∑

j=W

k(W−1)−W+j∑
m=1−W+j

f(k,m) (12)

By Equation 9, we get

1∑
j=1

k(W−1)−W+j∑
m=1−W+j

f(k, m)

=
(k−1)(W−1)∑

m=2−W

f(k, m)

=
0∑

m=2−W

f(k, m) +
(k−1)(W−1)∑

m=1

f(k,m)
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= (W − 1)W k−1 +
(k−1)(W−1)∑

m=1

f(k, m) (13)

Since when 2 ≤ j ≤ W − 1, we have 1 − W + j ≤ 0, (k − 1)(W − 1) + 1 ≤
k(W − 1)−W + j, by Equations 9 and 10,

W−1∑
j=2

k(W−1)−W+j∑
m=1−W+j

f(k,m)

=
W−1∑
j=2

0∑
m=1−W+j

f(k,m) +
W−1∑
j=2

(k−1)(W−1)∑
m=1

f(k, m)

+
W−1∑
j=2

k(W−1)−W+j∑
m=(k−1)(W−1)+1

f(k,m)

=
W−1∑
j=2

(W − j)W k−1 +
W−1∑
j=2

(k−1)(W−1)∑
m=1

f(k,m) + 0

=
(W − 2)(W − 1)

2
W k−1 + (W − 2)

(k−1)(W−1)∑
m=1

f(k,m)

(14)

Also by Equation 10,

W∑
j=W

k(W−1)−W+j∑
m=1−W+j

f(k,m)

=
k(W−1)∑

m=1

f(k, m)

=
(k−1)(W−1)∑

m=1

f(k,m) +
k(W−1)∑

m=(k−1)(W−1)+1

f(k, m)

=
(k−1)(W−1)∑

m=1

f(k,m) + 0

=
(k−1)(W−1)∑

m=1

f(k,m) (15)

Combing Equations 12, 13, 14 and 15, we get
(k+1−1)(W−1)∑

i=1

f(k + 1, i)

=
1∑

j=1

k(W−1)−W+j∑
m=1−W+j

f(k, m) +
W−1∑
j=2

k(W−1)−W+j∑
m=1−W+j

f(k,m)
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+
W∑

j=W

k(W−1)−W+j∑
m=1−W+j

f(k, m)

= (W − 1)W k−1 +
(k−1)(W−1)∑

m=1

f(k, m)

+
(W − 2)(W − 1)

2
W k−1 + (W − 2)

(k−1)(W−1)∑
m=1

f(k, m)

+
(k−1)(W−1)∑

m=1

f(k,m)

=
W (W − 1)

2
W k−1 + W

(k−1)(W−1)∑
m=1

f(k,m)

=
1
2
(W − 1)W k

+
k − 1

2
(W − 1)W k (by induction hypothesis)

=
k + 1− 1

2
(W − 1)W k+1−1

Hence, Theorem 3 is true for l = k + 1. By induction, Theorem 3 is true. 2

With Theorem 3, we are ready to determine Nl. We consider three cases.
Case 1: l > l2. In this case, minspan(l) > L. That is, the minimum span of

any length-l pattern exceeds the length of the subject sequence. So, there are no
length-l offset sequences, or Nl = 0.

Case 2: l ≤ l1. In this case, Nl is given by the following theorem.

Theorem 4. Given a sequence S of length L and a gap requirement [N,M ], if
l ≤ l1, then Nl = [L− (l − 1)(M+N

2 + 1)]W l−1.

Proof: Let n(i) represent the number of distinct length-l offset sequences of the
form [i, c2, . . . , cl] (i.e., the first offset equals i). We have Nl =

∑L
i=1 n(i).

One can easily see that n(i) is equivalent to the number of distinct offset sequences
over a length-(L − (i − 1)) subject sequence with the first offset being 1. Hence,
n(i) = f(l,maxspan(l)− (L− i + 1)).

Since l ≤ l1, we have maxspan(l) ≤ L, so from Equations 9, 10 and Theorem 3,

Nl =
L∑

i=1

n(i)

=
L∑

i=1

f(l,maxspan(l)− (L− i + 1))

=
maxspan(l)−1∑

i=maxspan(l)−L

f(l, i)
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=
0∑

i=maxspan(l)−L

f(l, i) +
maxspan(l)−minspan(l)∑

i=1

f(l, i)

+
maxspan(l)−1∑

i=maxspan(l)−minspan(l)+1

f(l, i)

=
0∑

i=maxspan(l)−L

f(l, i) +
(l−1)(W−1)∑

i=1

f(l, i)

+
maxspan(l)−1∑

i=(l−1)(W−1))+1

f(l, i)

=
0∑

i=maxspan(l)−L

W l−1 +
l − 1

2
(W − 1)W l−1

+
maxspan(l)−1∑

i=(l−1)(W−1))+1

0

= (L−maxspan(l) + 1)W l−1 +
l − 1

2
(W − 1)W l−1

=
[
L− (l − 1)(

M + N

2
+ 1)

]
W l−1

2

Case 3: l1 < l ≤ l2. In this case, maxspan(l) > L. From Equation 10 we have,

Nl =
maxspan(l)−minspan(l)∑

i=maxspan(l)−L

f(l, i)

+
maxspan(l)−1∑

i=maxspan(l)−minspan(l)+1

f(l, i)

=
(l−1)(W−1)∑

i=maxspan(l)−L

f(l, i) +
maxspan(l)−1∑

i=(l−1)(W−1)+1

0

=
(l−1)(W−1)∑

i=maxspan(l)−L

f(l, i)

Although not a closed-form formula, we can compute Nl using Equation 11.
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