
Mining Periodic Patterns with Gap Requirement from
Sequences ∗

Minghua Zhang Ben Kao David W. Cheung Kevin Y. Yip

Department of Computer Science,
The University of Hong Kong, Hong Kong.

{mhzhang, kao, dcheung, ylyip}@cs.hku.hk

ABSTRACT
We study a problem of mining frequently occurring periodic
patterns with a gap requirement from sequences. Given a
character sequence S of length L and a pattern P of length
l, we consider P a frequently occurring pattern in S if the
probability of observing P given a randomly picked length-l
subsequence of S exceeds a certain threshold. In many appli-
cations, particularly those related to bioinformatics, inter-
esting patterns are periodic with a gap requirement. That is
to say, the characters in P should match subsequences of S in
such a way that the matching characters in S are separated
by gaps of more or less the same size. We show the com-
plexity of the mining problem and discuss why traditional
mining algorithms are computationally infeasible. We pro-
pose practical algorithms for solving the problem, and study
their characteristics. We also present a case study in which
we apply our algorithms on some DNA sequences. We dis-
cuss some interesting patterns obtained from the case study.

1. INTRODUCTION
The completion of whole-genome sequencing of various

organisms facilitates the detection of many kinds of inter-
esting patterns in DNA and protein sequences. It is now well
known that the genomes of most plants and animals contain
large quantity of repetitive DNA fragments. For instance,
it is estimated that one third of the human genome is com-
posed of families of reiterated sequences [9]. The genomes
are thus far from pieces of random strings, and it is widely
believed that a substantial amount of currently unknown
information can be extracted from the sequences.

A large number of studies on genome sequence mining are
related to the identification of periodic patterns. This is
largely due to the abundance and variety of periodic pat-
terns existing in the genomes. From the short three base

∗This research is supported by Hong Kong Research Grants
Council grant HKU 7040/02E.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

pair (bp) periodicity in protein coding DNA [5] and the
medium-length repetitive motifs found in some proteins [4]
to the mosiac of very long DNA segments in the genome of
warm-blooded vertebrates [3], periodic patterns of different
lengths and types are found at both genomic and proteomic
levels. Some of the patterns have been identified as having
significant biological and medical values. For example, some
repeats have been shown to affect bacterial virulence to hu-
man [19], while the excessive expansions of some Variable
Number of Tandem Repeats (VNTRs) are the suspected
cause of some nervous system diseases [14]. Efficient algo-
rithms for searching periodic patterns from long sequences
are therefore of growing importance.

Computationally, a DNA or protein sequence is treated
as a long string of characters with a finite alphabet. The
alphabet used in modeling a DNA sequence is usually the
four-character set {A, C, G, T} representing the four nitroge-
nous bases Adenine, Cytosine, Guanine and Thymine. For
protein sequences, the commonly used alphabet is the set of
twenty amino acids.

Two types of periodic patterns have received much atten-
tions: tandem repeats and base pair oscillations. Given a
(DNA or protein) sequence s = s1s2s3 · · · sL of length L and
an integer p (the period), a tandem repeat is a subsequence
sisi+1si+2 · · · si+2p−1 where si+j = si+p+j , for 0 ≤ j < p.
The basic computational problem is to find all tandem re-
peats in a given sequence. There are many variations of the
problem, considering issues like the number of periods (tan-
dem repeats vs. tandem arrays), the maximality of patterns,
whether errors (insertions, deletions and substitutions) are
allowed and the corresponding cost functions, palindromic
reverses, and efficient approximate solutions. A recent sur-
vey on the works can be found in [9]. We are particularly
interested in tandem repeats that are related to the three-
dimensional structure of the sequence. For example, the
protein sequence of the molecule porcine ribonuclease in-
hibitor (SwissProt entry RINI PIG [2]) consists of an alter-
nating pattern of two kinds of repeats with lengths 29 and
28 residues [4]. The two can be combined to form a repeat-
ing unit of 57 residues, and there are 7.5 such units in the
molecule. As a result, the protein has a horseshoe shape
with the interior face formed by a parallel β sheet of 17 β
strands and the exterior face formed by 16 α helices1.

It should be noted that the repeats are not error-free. For
instance, a phase shift is found in one of the repeats, which

1A figure of the protein can be found in Figure 1 of [4] at
http://www.nslij-genetics.org/dnacorr/.



may be due to the insertion or deletion of a short sequence.
The second kind of important periodic pattern is base

pair oscillations, which correspond to unexpected correla-
tions between bases of distance p. For example, the proba-
bility of having a ‘T ’ located p bp after an ‘A’ can be cal-

culated as nAT (p)
L−p

, where nAT (p) is the number of such oc-
currences in the sequence and L − p is the number of base
pairs located p bp apart. If base pairs of distance p are inde-
pendent, then the expected probability will be pr(A)pr(T ),
which is the product of the probabilities of occurrence of
the two individual bases in the sequence. The difference
nAT (p)

L−p
− pr(A)pr(T ) can be used to reflect the correlation

between the two bases at a distance of p apart [7]. It has
been shown in [20, 7] that some base pairs exhibit an abnor-
mally high correlation at a period of 10-11 base pairs and
its multiples in many kinds of organisms. It is believed that
a partial reason for the phenomenon is related to the helical
structure of the DNA, which has a period of about 10-11
base pairs in some organisms [7]. In other words, for some
base pairs, if the first one is found in a certain position, there
is an abnormally high probability of finding the second one
after about one helical turn. Some interesting periodic pat-
terns may thus be found in successive bases with similar 3D
orientations.

Our study is based on the above observation. We would
like to search for frequent periodic patterns that consist of
bases physically located one helical turn after another. Sym-
bolically, a pattern is defined as a subsequence

sisi+g1si+g1+g2 · · · si+g1+g2+···+gl−1 ,

where l is the length (number of bases) in the subsequence
and gj , 1 ≤ j < l is the length of period j. Unlike previous
studies, we define gj as a range of integers instead of a fixed
integer. The reason for this setting is two-fold: 1) the actual
period of a helical turn is usually not an integer and 2) the
actual period may vary in organisms. The introduction of a
variable period thus provides a flexible way to capture any
interesting patterns hidden in a sequence.

While the primary focus of our study is on the periodic
patterns in DNA sequences due to its 3D structure, the tech-
niques being developed can also be applied to mine other
kinds of sequences, in which case the variable period can
be used to model the maximum allowed insertions/deletions
within a single period.

The rest of the paper is organized as follows. Section 2
mentions some related works. Section 3 formally defines
our computational problem. In Section 4 we prove a couple
of important theorems that lead to the derivation of effi-
cient algorithms for our mining problem. Section 5 presents
the algorithms. In Section 6 we analyze the algorithms’
performance. Section 7 presents a case study in which we
document an interesting finding obtained by applying our
algorithm to mining DNA sequences. Finally, Section 8 con-
cludes the paper.

2. RELATED WORKS
Besides the studies on tandem repeats and base-pair os-

cillation, there are other related works that include studies
on mining patterns from biological sequences with certain
support requirement. For example, the TEIRESIAS algo-
rithm [15] is designed for discovering patterns that are com-
posed of characters (such as {A, C, T, G}) and wild-cards

(which match any characters) from biological sequences. Al-
though wild-cards provide some flexibility in specifying a
pattern, too many unrestricted wild-cards in a pattern would
render the pattern uninteresting. Therefore, the authors re-
strict the number of wild-cards that can be present in the ex-
tracted patterns. In another study [8], the Pratt algorithm
is proposed for mining restricted patterns from a sequence
database. The restrictions include the maximum number of
characters and wild-cards in a pattern.

BLAST [1] is one of the famous algorithms in the area
of bioinformatics. Given a query sequence, it searches for
matched sequences from a database. In essence, BLAST is
a search algorithm with a query as input, while our model
is focused on mining unknown knowledge.

From the area of data mining, one related problem is to
find frequent sequences from transactional databases. Many
efficient algorithms have been proposed for the problem [16,
22, 24, 12]. Their goal is to find patterns that appear in at
least a certain number of sequences in the database. All the
algorithms are based on the well-known Apriori property.
Unfortunately, as we will see later, this property does not
hold for our problem. Also, the sequence mining algorithms
find patterns across sequences. On the other hand, our
model is to discover patterns within a sequence. Moreover,
the characteristics of the biological sequences (e.g., very long
sequence with very few different characters) makes a direct
application of those sequence mining algorithms inefficient.

There are also some algorithms on mining frequent pat-
terns from a single sequence [10, 6]. In [10], the input se-
quence is divided into some overlapped windows of fixed
width w, and every two neighboring windows share a com-
mon segment of length (w− 1). In [6], a sequence is divided
into non-overlapping windows. In both papers, a pattern is
frequent if it appears in at least a certain number of win-
dows. With this definition, it is shown that the Apriori
property applies. By segmenting a sequence into windows
and counting the number of windows in which a pattern oc-
curs greatly simplifies the design of the mining algorithm.
The drawback is that patterns that span multiple windows
cannot be discovered, and that in some cases, a suitable
window width is difficult to determine. Our model does not
have those restrictions.

Yang et al. studied asynchronous periodic patterns in
time series data [21]. In their model, shifts in the occur-
rence of patterns are permitted to filter out random noises.
They also consider a range of periods instead of the pre-
specified ones as used in [6]. However, although a range of
period length is considered, they still has a restriction on the
maximal length of the period. Also, the Apriori property is
applicable on patterns of the same period.

3. PROBLEM DEFINITION
In this section we give a formal definition of the periodic

pattern mining problem. To simplify our discussion, let us
first define a number of notations and terms.

A sequence from which we extract frequent patterns is
called a subject sequence. Let

P
be the alphabet of all

possible characters that occur in a subject sequence. For
example,

P
= {A, C, G, T} for DNA sequences; for protein

sequences,
P

is the set of 20 amino acids.
A wild-card (denoted by a single dot, ‘.’) is a special

symbol that matches any character in
P

. A gap is a se-
quence of wild-cards. The size of a gap refers to the number



of wild-cards in it. For example, the size of ‘.....’ is 5. We
use g(N) to represent a gap of size N ; we use g(N, M) to
represent a gap whose size is within the range [N,M ]. The
range [N,M ] is called a gap requirement.

A pattern is a sequence of characters and gaps that be-
gins and ends with characters. We define the length of a
pattern P , denoted by |P |, as the number of characters in
P . For example, if P = A..T.C, then |P | = 3. Note that
the wild-card symbols are not counted towards the pattern’s
length.

Given a pattern P , a substring Q of P is called a sub-
pattern of P if Q itself is also a pattern (i.e., Q also starts
and ends with characters). If |P | ≥ 2, its sub-pattern con-
taining the first |P | − 1 characters is called the prefix of P .
Similarly, the sub-pattern of P that contains the last |P |−1
characters is called the suffix of P . We use prefix(P ) and
suffix(P ) to represent the prefix and suffix of P , respectively.
For example, prefix(A..T.C) = A..T and suffix(A..T.C) =
T.C.

Given a subject sequence S (a pattern P ), we use S[i]
(P [i]) to represent the i-th character of S (P ). For example,
if S = ACGTA, then S[1] = A, S[2] = C, etc. If P =
A..T.C, then P [1] = A, P [2] = T .

For our problem of mining periodic patterns from a se-
quence, we are interested in patterns of the following form:

a1g(N, M)a2g(N, M) . . . al−1g(N, M)al (1)

where ai ∈ P
for 1 ≤ i ≤ l, and N , M are two user supplied

numbers that specify the minimum and maximum gap sizes
between two successive characters in a pattern, respectively.
If the gap size requirement is understood, as a shorthand,
we express a pattern P by simply specifying the characters
it contains (i.e., a1a2 . . . al). For example, if N = 8 and
M = 10, the pattern written as ATC refers to the pattern
Ag(8, 10)Tg(8, 10)C. Since the mining problem is defined
with specified values of N and M , in the following discussion,
we use the shorthand notation for patterns, unless otherwise
stated.

Given a sequence S of length L, an offset sequence of
length l is a sequence of integers [c1, . . . , cl], such that 1 ≤
cj ≤ L for all j, and cj+1 − cj − 1 ∈ [N,M ] for all 1 ≤ j ≤
l − 1. Essentially, an offset sequence is simply a sequence of
positions of S that satisfies the gap requirement.

Our goal is to determine frequently occurring patterns
given a subject sequence S. Hence, we need to define the
term frequency and how often a pattern P occurs before we
consider it frequent in S. We define frequency of a pattern
P by the probability of observing P if we randomly pick |P |
positions of S (i.e., a random offset sequence) that satisfy
the gap requirement. Also, a pattern P is considered fre-
quent, if its frequency exceeds certain user-specified thresh-
old value, ρs.

Given a sequence S, a pattern P , and an offset sequence
[c1, . . . , c|P |], we say that P matches S w.r.t. the offset se-
quence if S[cj ] = P [j] for all 1 ≤ j ≤ |P |. We define the
support of P w.r.t. S (denoted by sup(P )) as the number
of distinct offset sequences with respect to which P matches
S. For example, if S = AAGCC, P = AC, and gap re-
quirement is [2, 3], then P matches S w.r.t. the offset se-
quence [1, 4] since S[1] = P [1] and S[4] = P [2]. Similarly,
P matches S w.r.t. the offset sequences [1, 5] and [2, 5]. So
sup(P ) = 3. A straightforward way to compute P ’s sup-
port is to enumerate all possible offset sequences, check the

Symbol Definition
S A subject sequence
P A pattern
N The minimum gap between 2 successive

characters in a pattern
M The maximum gap between 2 successive

characters in a pattern
L Length of S; L = |S|
l Length of P ; l = |P |

W Flexibility of a gap; W = M − N + 1
minspan(l) The minimum span of a length-l pattern

minspan(l) = (l − 1)N + l
maxspan(l) The maximum span of a length-l pattern

maxspan(l) = (l − 1)M + l
l1 The length of a longest pattern whose

maximum span is ≤ |S|
l1 = �L+M

M+1
�

l2 The length of a longest pattern whose
minimum span is ≤ |S|
l2 = �L+N

N+1
�

Table 1: Notations

contents of S with respect to all those offset sequences, and
determine the fraction of the offset sequences with respect
to which P matches S. If the fraction exceeds the required
threshold ρs, P is frequent; otherwise P is infrequent.

To determine whether a pattern P of length l is frequent
with respect to a sequence S, we need two numbers: (1)
Nl, the number of offset sequences of length l in S and (2)
sup(P ). If the support ratio, sup(P )/Nl, is larger than ρs,
P is a frequent pattern.

In the following section, we derive a formula for computing
Nl. In Section 5, we derive algorithms for computing all
patterns P that satisfy the frequency requirement.

4. MATHEMATICAL ANALYSIS
In this section we derive a recurrence equation for deter-

mining the value of Nl. We also prove several important
theorems that allow us to formulate efficient algorithms for
solving the periodic pattern mining problem. For reference,
Table 1 shows the various symbols and their definitions we
use in this section.

We use the variable W to denote the flexibility of the gap
requirement. For example, if the gap requirement is [4, 6],
then the flexibility is 6 − 4 + 1 = 3. That is to say, if
the first character of a pattern P matches the sequence S
at a certain position, say j (i.e., P [1] = S[j]), then there
are three possible positions of S for P [2] to match against,
namely, S[j +5], S[j +6] and S[j +7]. Also, the larger is the
flexibility, the larger is the number of offset sequences that
satisfy the gap requirement, and so, the value of Nl will be
larger.

We use minspan(l) to denote the minimum span of a
length-l pattern P . As an example, with a gap requirement
of [3, 4], a length-3 pattern spans at least 9 positions of the
subject sequence. This is obtained by taking the smallest
gap of 3 positions between the first and the second charac-
ters of P , and 3 positions between the second and the third.
(Figure 1 illustrates the concept.) Since a length-l pattern
has l characters and l− 1 gaps and the minimum gap size is
N , the minimum span is thus equal to (l−1)N +l. Similarly,
we can determine the maximum span of a length-l pattern
(denoted by maxspan(l)), which is equal to (l − 1)M + l.



N  N  N

P[1]

. . .

P[3]P[2]

. . .

P[l]P[l-1]

. . .. . . . . . S: 

Figure 1: Illustration of minspan

Given a length-L sequence S, we use the symbol l1 to
denote the length of the longest patterns whose maximum
span does not exceed L. The number l1 can be obtained
by solving maxspan(l1) = (l1 − 1)M + l1 ≤ L, which gives
l1 = �L+M

M+1
�. Similarly, l2 denotes the length of the longest

patterns whose minimum span does not exceed L. We have
l2 = �L+N

N+1
�. Since M ≥ N , we have l2 ≥ l1.

4.1 Determining Nl

Given a pattern length l, a subject sequence length L, and
a gap requirement [N, M ], we would like to calculate Nl, the
number of distinct length-l offset sequences. Here, we first
summarize the result. We consider three cases:

1. For l > l2, Nl = 0.

2. For l ≤ l1, Nl =
ˆ
L − (l − 1)(M+N

2
+ 1)

˜
W l−1.

3. For l1 < l ≤ l2, Nl can be determined by a recursive
formula.

Case 1 (l > l2): The minimum span of a length-l pattern
exceeds the subject sequence’s length. Hence, there are no
length-l offset sequences.

Case 2 (l ≤ l1): The maximum span of a length-l pattern
is less than or equal to the subject sequence’s length. In this
case, we find that Nl grows exponentially with respect to l.
Also, the larger is the flexibility of the gap requirement (W ),
the larger is Nl. Let us consider an example to illustrate how
big Nl is. In one of the experiments we performed, we used
a DNA sequence fragment that consists of 1,000 characters
(i.e., L = 1, 000), a gap requirement of N = 9 and M = 12,
and so W = 4. The number of length-10 offset sequences
N10 is about 235 million.2

Case 3 (l1 < l ≤ l2): The boundary cases in which the
span of a length-l pattern may or may not exceed the subject
sequence’s length. In this case, instead of a closed-form
formula, we provide a computable recursive formula for Nl.

The analysis for deriving Nl for the cases is rather lengthy.
Interested readers are referred to [23] for details.

4.2 Determining Frequent Patterns
Like many other data mining problems, our objective is

to discover frequent patterns from data under a definition
of “frequent”. A common difficulty shared by most min-
ing problems is that the number of patterns is huge. So a
straightforward method of enumerating all possible patterns
and counting their supports is not feasible. Traditional min-
ing algorithms achieve efficiency by various pruning tech-
niques that aim at drastically reducing the number of pat-
terns that need to be checked. One very important prop-
erty that enables effective pruning is the Apriori property,

2A typical helix turn of some organism is about 10 to 11
characters. We use a slightly larger gap requirement so that
most patterns of interest are considered.

. . .

. . .. . .

i+l-d-1i
. . .

 i-1 d-i+1

 P: 

 Q: 

Figure 2: Patterns P and Q

which states that “the support of a pattern cannot exceed
the support of any of its sub-patterns.” The Apriori prop-
erty is shown to hold under many data mining problems and
models. The well-known Apriori algorithm [13] is a clas-
sic example that uses the Apriori property. In Apriori, an
itemset X cannot be frequent if any proper subset of X is
not frequent, and in which case, X is pruned.

For our mining problem, the Apriori property, however,
does not hold. As a simple example, consider the sequence
S = ACTTT , the pattern P1 = AT and its sub-pattern P2 =
A. If the gap requirement is [1, 3], we see that sup(P1) = 3
(corresponding to the offset sequences {[1, 3], [1, 4], [1, 5]})
while sup(P2) = 1 (corresponding to the offset sequence
{[1]}). Hence, the support of a pattern can exceed the sup-
port of its sub-pattern.

To achieve pruning, we derive an apriori-like property.
Theorems 1 and 2 summarize the property.

Theorem 1. Given a length-l pattern P and a length-
(l− d) sub-pattern Q = P [i]P [i + 1] . . . P [i + l − d− 1] of P ,
where 1 ≤ i ≤ d + 1, we have sup(Q) ≥ sup(P )/W d.

Proof: Let U be the set of all length-l offset sequences with
respect to which P matches S. We have sup(P ) = |U |. We
partition U into R subsets U1, . . . , UR such that two offset
sequences A = [ca1 , . . . , cal ] and B = [cb1 , . . . , cbl ] are in the
same subset Uj if and only if cak = cbk∀i ≤ k ≤ i+ l−d−1.
We see that each Uj corresponds to a unique offset sequence
with respect to which Q matches S. Therefore, sup(Q) ≥ R.
Since the offset sequences in a given Uj only differ in the first
i− 1 offsets and the last d− i + 1 offsets (see Figure 2), the

cardinality of each Uj cannot exceed W (i−1)+(d−i+1) or W d.
Hence, R, the number of subsets Uj ’s must be at least equal
to |U |/W d. Therefore,

sup(Q) ≥ R ≥ |U |/W d = sup(P )/W d.

�

Theorem 1 is an important one in that it allows us to
prune a large number of candidate patterns from considera-
tion. In particular, if a length-l pattern P is frequent, then
by definition, we have sup(P )/Nl ≥ ρs. Now, consider a
length-(l − d) sub-pattern Q of P . Theorem 1 requires that

sup(Q)

Nl−d
≥ sup(P )

Nl−dW d
≥ Nl

Nl−dW d
ρs = λl,d · ρs, (2)

where λl,d = Nl

Nl−dW d . That is, the support ratio of Q also

has to attain a certain value.
One can also verify the following transitivity property of

λ:

λl,d1+d2 = λl,d1 ·λl−d1,d2 ∀0 ≤ d1 ≤ l and ∀0 ≤ d1+d2 ≤ l.
(3)



Kr K1 K2 K3 K4 K5 K6 K7 K8

Value 2 1 2 1 0 0 0 0

Table 2: Kr of sequence ACGTCCGT

As an example, if l ≤ l1, then by Equation 2 and the value
of Nl stated in Section 4.1, one can easily show that,

sup(Q)

Nl−d
≥ Nl

Nl−dW d
ρs

=
L − (l − 1)(M+N

2
+ 1)

L − (l − d − 1)(M+N
2

+ 1)
ρs. (4)

Here λl,d = Nl

Nl−dW d =
L−(l−1)( M+N

2 +1)

L−(l−d−1)( M+N
2 +1)

.

For a long subject sequence (i.e., large L), a small pattern
length (i.e., small l), and a small d, the fraction λl,d is very
close to 1. Therefore, if a length-l pattern P is frequent (i.e.,
its support ratio exceeds ρs), Theorem 1 implies that any
length-(l − d) sub-pattern Q of P has to have its support
ratio exceed λl,d · ρs, or almost ρs as well. Hence, we ob-
tain a property that is very close to the apriori property.
One can derive an efficient pruning algorithm based on that
observation.

In the proof of Theorem 1, we bound the cardinality of
the set Uj by W d. The bound is obtained by consider-
ing the extreme case that given an offset sequence A =
[ca1 , . . . , cai , . . . cai+l−d−1 , . . . cal ] ∈ Uj , any perturbation of
the first i − 1 offsets and the last d − i + 1 offsets (as long
as the gap requirement is still satisfied) results in another
offset sequence in Uj . In other words, any such perturbation
gives us an offset sequence w.r.t. which P matches S. That
is to say, no matter how we change the first i − 1 offsets
[ca1 , . . . , cai−1 ], we observe the same sequence of characters
S[ca1 ] = P [1], . . . , S[cai−1 ] = P [i − 1], and the same can be
said for the last d− i+1 offsets. The bound is obviously too
loose.

We now consider a method of tightening the bound. Given
a small value m, we consider all length-(m + 1) offset se-
quences of the form [(r), (r + g1), . . . , (r + g1 + . . . + gm)],
where each gj ∈ [N+1, M+1]. Let us inspect S according to
those offset sequences and use Kr to denote the frequency
count of the most frequently occurring patterns observed.
We repeat the exercise for each value of 1 ≤ r ≤ L. Finally,
we take em = maxL

r=1 Kr. We illustrate the idea with a
simple example. Suppose S = ACGTCCGT , the gap re-
quirement is [1, 2], and m = 2. We first calculate K1. There
are 4 possible length-(m + 1) (or length-3) offset sequences
whose first element is equal to 1: [1, 3, 5], [1, 3, 6], [1, 4, 6] and
[1, 4, 7], and they correspond to patterns AGC, AGC, ATC,
and ATG, respectively. We see that AGC is the most fre-
quently occurring pattern and its count is 2, so K1 = 2. For
K2, the relevant offset sequences are [2, 4, 6], [2, 4, 7], [2, 5, 7]
and [2, 5, 8]. Since these 4 offset sequences give 4 different
patterns CTC, CTG, CCG and CCT , by definition K2 = 1.
Other Kr values are calculated similarly. The results are
shown in Table 2. Finally we get em = max8

r=1 Kr = 2.
Semantically, for any offset r, the value em tells us how

many times at most we will see the same character sequence
in S under the offset sequence [r, r + g1, . . . , r + g1 + . . . +
gm] however we perturb the last m offsets in the sequence.
Essentially, we use em to replace W m as a better bound

since W m

em
≥ 1. In the above example, W m

em
= 22

2
= 2. In

typical DNA sequences, we find that the ratio W m

em
becomes

larger as m increases.
To illustrate how the value em is used, let us re-visit The-

orem 1 again and consider the following example. Suppose
the sub-pattern Q is taken from the first l − 8 characters
of P (i.e., Q = P [1]P [2] . . . P [l − 8]). If we follow the
proof of Theorem 1 again, we see that all offset sequences
A = [ca1 , . . . , cal−8 , cal−7 , . . . , cal ] in Uj only differ in the last
8 offsets. Now, suppose we have determined the value of em

for the case m = 3. We know that, however we perturb the
offsets cal−7 , cal−6 , cal−5 , the maximum number of times
that we see the same character sequence (namely, P [l − 7],
P [l − 6] and P [l − 5]) over those three offsets is em. The
same is true for the offsets cal−4 , cal−3 , cal−2 . And finally,

there are at most W 2 ways for us to perturb the offsets cal−1

and cal . Hence, |Uj | ≤ e2
mW 2. This bound could be much

smaller than W 8 Theorem 1 uses. With this discussion, the
following theorem can be easily proved.

Theorem 2. Given a length-l pattern P and a length-
(l − d) sub-pattern Q = P [1] . . . P [l − d] of P such that s =

�d/m� and t = d − sm, we have sup(Q) ≥ sup(P )
es

mW t .

From Theorem 2, we know that if a length-l pattern P is
frequent, then the length-(l − d) sub-pattern Q of P such
that Q = P [1] . . . P [l− d] must have its support ratio lower-
bounded by:

sup(Q)/Nl−d ≥ sup(P )

es
mW tNl−d

≥ Nl

Nl−des
mW t

ρs

=
W d−t

es
m

· λl,d · ρs

= (
W m

em
)s · λl,d · ρs

= λ′
l,d · ρs, (5)

where s = �d/m�, t = d − sm, and λ′
l,d = (W m

em
)s · λl,d.

5. ALGORITHMS
In the previous section we discuss why pruning is an im-

portant issue in typical mining problems. In this section we
propose efficient algorithms that apply pruning techniques.

5.1 MPP
Consider Equation 4 in Section 4 again. We note that if a

length-l pattern P is frequent w.r.t. the support threshold
ρs, then any length-(l − d) sub-pattern Q of P must have a
support ratio not less than λl,d · ρs. This leads to the fol-
lowing apriori-like mining algorithm. We call our algorithm
MPP.

First, let us assume that the user has a rough idea about
the length of the longest frequent patterns in the subject
sequence S. Let n represents such a length. MPP guarantees
that all frequent patterns of length less than or equal to n
are returned. For the longer frequent patterns, MPP will take
a best-effort approach, i.e., it will return as many of those
frequent patterns as it could.

To obtain all frequent patterns of length less than or equal
to n, Equation 4 suggests that we obtain all length-1 pat-
terns whose support ratios are not less than λn,n−1 · ρs.



(Other length-1 patterns would not be the constituents of
any longer frequent patterns of interest.) From those pat-
terns, we join them to obtain a set of length-2 candidate
patterns. We examine the subject sequence and collect all
those candidate patterns whose support ratios are not less
than λn,n−2 · ρs. We then join those patterns collected to
form a set of length-3 candidate patterns and so on. In gen-
eral, during the i-th iteration, the algorithm determines a
set (denoted by L̂i) of length-i patterns whose support ra-
tios are not less than λn,n−i · ρs. In the (i + 1)-st iteration,

patterns in L̂i are joined to form the set of candidate length-
(i + 1) patterns (denote by Ci+1). Patterns in Ci+1 whose
support ratios are not less than λn,n−(i+1) · ρs are collected

in L̂i+1. The process repeats until either (1) MPP generates
an empty candidate set, or (2) when i = n + 1.

For the second case, MPP would have returned all frequent
patterns of lengths less than or equal to n. To find other
longer frequent patterns, MPP reverts to a basic Apriori-like
method. That is, during each iteration i > n, MPP generates
candidate set Ci based on Li−1. It then checks the pat-
terns in Ci and collects those whose support ratios are not
less than ρs in Li. The process repeats until MPP generates
an empty candidate set. Note that in this candidate pattern
generation process, a length-(n+k) pattern P (where k > 0)
is generated (and potentially is returned by the algorithm
as a frequent pattern) only if there is a length-n sub-pattern
Q of P whose support ratio is not less than ρs. From Equa-
tion 4, however, we see that a length-(n + k) pattern can be
frequent if all of its length-n sub-patterns have their support
ratios reach λn+k,k ·ρs, which is less than ρs. In other words,
there could be length-(n + k) frequent patterns that are not
generated and are thus missed. As a result, MPP can only
guarantee that all frequent patterns of lengths less than or
equal to n are discovered.

There are a few issues concerning MPP as outlined above:

• First, if the user does not have a good idea about how
long frequent patterns are, he may choose an arbitrar-
ily large n. In that case, pruning is not effective. For
example, consider the case when MPP is determining
L4. The pruning condition requires that every length-
4 candidate sequence with a support ratio not less than
λn,n−4 ·ρs be included in L4. If n is very large, λn,n−4

is very small, and few candidates can be removed.

• Second, for DNA sequences, the size of the alphabet,
(e.g., |{A, C, T, G}|), is small. The number of combi-
nations of short patterns is thus very small. Hence,
short patterns are likely frequent. For example, in our
experiment, we find that patterns of lengths one or two
are always frequent. These patterns are thus uninter-
esting.

• Third, given a length-i candidate pattern P , checking
its support might require us to examine the subject
sequence S with respect to every length-i offset se-
quences. As we have discussed in Section 4, the num-
ber of length-i offset sequences equals Ni, a very large
number even for a moderate value of i.

For the first issue, if n > l1, MPP restricts n to l1. That is
to say, MPP will only guarantee the extraction of all frequent
patterns whose lengths are less than or equal to l1. We
remark that even without a theoretical guarantee that all

patterns longer than l1 are found, the drawback, in practice,
may not be detrimental. Incidentally, in all of the experi-
ments we performed on DNA sequences, very long frequent
patterns do not occur.

For the second issue, MPP starts with length-3 patterns,
assuming that shorter ones are uninteresting. MPP does not
count their supports and saves a bit of computation.

For the third issue, MPP uses an index structure called par-
tial index list (PIL) to avoid examining all offset sequences
when counting a pattern’s support count.

Given a subject sequence S and a length-l pattern P ,
PIL(P ) is a list of (x, y) pairs where all x’s are of distinct
values. If the pair (x, y) is in PIL(P ), then there are ex-
actly y offset sequences of the form [x, c2, . . . , cl] with respect
to which P matches S (i.e., P [1] = S[x], . . . , P [l] = S[cl]).
For example, if S = AACCGTT , P = ACT , [N,M ] =
[1, 2], then PIL(P ) = {(1, 3), (2, 2)}. This is because P
matches S with respect to three offset sequences with the
first offset equals 1 (namely, {[1, 3, 6], [1, 4, 6], [1, 4, 7]}) and
two offset sequences with the first offset equals 2 (namely,
{[2, 4, 6], [2, 4, 7]}).

There are two properties of PIL(P ):

1. Given PIL(P ), one can easily compute sup(P ), which
is just the sum of all y’s in the list. Using our previ-
ous example, since PIL(P ) = {(1, 3), (2, 2)}, we have
sup(P ) = 3 + 2 = 5.

2. For a pattern P , let prefix(P ) = Q1, suffix(P ) = Q2.
PIL(P ) can be computed from PIL(Q1) and PIL(Q2)
using the following simple procedure.

1 ∀(x, y) ∈ PIL(Q1)
2 t = 0
3 ∀(x′, y′) ∈ PIL(Q2) s.t. x′ − x − 1 ∈ [N,M ]
4 t = t + y′

5 if (t > 0), insert (x, t) in PIL(P )

Figure 3 shows the algorithm MPP. The algorithm basically
follows our previous discussion. For generating length-(i+1)
candidates, MPP considers every pair of length-i patterns P1

and P2 in L̂i. If suffix(P1) = prefix(P2), then the candidate
pattern P1[1]P2 is put into Ci+1. For example, P1 = ACG
and P2 = CGT generate ACGT . MPP also calculates the
PIL list of the candidate using PIL(P1) and PIL(P2). The
PIL list of the candidate pattern allows us to determine its
support count and therefore whether the candidate should
be added to the set L̂i+1 or not. Finally, all patterns in all
L̂i’s with support ratios not less than ρs are returned to the
user.

5.2 MPPm
The efficiency of MPP relies on how effective pruning is. In

this subsection we discuss how MPP can be refined to improve
its pruning effectiveness and thus to achieve better efficiency.

Recall that given a value of n (the length of the longest
frequent patterns the user is interested in obtaining), a can-
didate length-i pattern Q in the set Ci is pruned if its sup-
port ratio is less than λn,n−i · ρs. So, the larger the value
λn,n−i is, the more effective is the pruning. By the defini-
tion of λ, that implies a small n− i, or equivalently, a small
n and a large i. While we don’t have many choices for i (the
algorithm always starts with mining length-3 patterns, so i
starts at 3), the above argument indicates that a reasonably



1 Algorithm MPP(S, ρs, N , M , n)
2 calculate W, l1, l2
3 if n > l1, n = l1
4 for i=3 to n
5 calculate Ni, λn,n−i

6 for i = n + 1 to l2
7 calculate Ni, and set λn,n−i = 1
8 C3 = the set of all length-3 patterns
9 scan S to compute the PILs of all patterns in C3

10 for each pattern P in C3

11 get sup(P ) from PIL(P )
12 if sup(P ) ≥ ρsN3, put P into L3

13 if sup(P ) ≥ λn,n−3ρsN3, put P into L̂3

14 i := 3

15 while (L̂i �= ∅)
16 Ci+1 := Gen(L̂i)
17 ∀P ∈ Ci+1

18 compute PIL(P ) to get sup(P )
19 if sup(P ) ≥ ρsNi+1, put P into Li+1

20 if sup(P ) ≥ λn,n−(i+1)ρsNi+1, put P into L̂i+1

21 i := i + 1
22 Return L3 ∪ L4 ∪ . . . ∪ Li−1

Figure 3: Algorithm MPP

small value of n can potentially speed up the algorithm. As
an example, in our experiment, we use a DNA fragment of
1,000 characters, a gap requirement of [9,12], and a sup-
port threshold ρs = 0.003%, the longest pattern mined has
a length of 13. If the user has a good idea of how long
frequent patterns are, and picks n = 13 as the algorithm’s
input, our experiment shows that MPP could achieve good
pruning and is efficient. The question is “what if the user
does not know what n to pick?” We will come back to this
question shortly.

In the derivation of Theorem 2, we discussed how to de-
rive a tighter bound that leads to a more effective pruning
strategy. Without repeating the details, the approach is to
pick a small number m and analyze the subject sequence to
obtain a number em. From Theorem 2 and Equation 5, we
know that if there is a length-k frequent pattern P , then the
sub-pattern Q of P that consists of the first k−d characters
(i.e., Q = P [1] . . . P [k − d]) must have its support ratio not

less than λ′
k,d · ρs, where λ′

k,d = (W m

em
)s · λk,d, s = �d/m�.

Now, let us consider the “pick-the-n” problem again. If
the user does not have a good idea of n, our approach is to
find a reasonable value automatically. The idea is to count
the supports of all length-3 patterns. Then, for every value
of 3 < k ≤ l1, we check and see if there is any length-3
pattern Q whose support is not less than λ′

k,k−3 · N3 · ρs. If
no such Q exists, then by Theorem 2, we know that there
are no length-k frequent patterns. Finally, the value of n is
taken as the largest k such that length-k frequent patterns
may exist. We thus modify MPP with the above procedure of
automatically determining n applied. We call the modified
algorithm MPPm.

6. EXPERIMENT RESULTS AND ANALY-
SIS

To analyze the performance of the mining algorithms,
we perform an extensive experimental study. This section
shows some representative results and discusses some inter-
esting properties of the algorithms.

The data used in the experiments is the Homo Sapiens

L=1,000, [N,M ] = [9, 12], m = 10

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

T
im

e
(s

ec
on

ds
)

Support threshold (%)

MPPm

��������

�
MPP (worst case)

+++
+

+

+

+

+

+

(a)

0

200

400

600

800

1000

1200

1400

1600

1800

0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

T
im

e
(s

ec
on

ds
)

Support threshold (%)

MPPm

���
�

�

�

�

�
�

MPP (best case)

++++
+

+

+

+

+

(b)

Figure 4: MPPm vs. MPP (worst case) and MPP (best
case)

(human) DNA sequence AX829174 downloaded from the
National Center for Biotechnology Information website [11].
The sequence consists of 10,011 characters. In the experi-
ments, we randomly pick a length-L segment from AX829174
as the subject sequence for various values of L.

As we have discussed, the difference between MPP and MPPm

is that MPP relies on a user input, n, which specifies an es-
timate of the length of the longest frequent patterns in the
subject sequence, while MPPm tries to determine the estimate
automatically. It is thus interesting to see how the estima-
tion accuracy affects the performance of the algorithms. In
our first experiment, we run MPP and MPPm for various values
of support threshold, ρs. We note that different values of ρs

yield different sets of frequent patterns. Let us use no(ρs)
to denote the length of the longest frequent patterns under
a certain value of ρs. For each ρs, we execute MPP twice, one
with the user input n = no(ρs) (i.e., the best case scenario
where the user has a perfect estimate of n), and the other
with n = l1 (i.e., the worst case scenario where the user has
no idea about n and uses the largest value).

Figure 4 shows the performance of the algorithms. In this
experiment, the subject sequence length L = 1, 000, the gap
requirement is [9, 12] and MPPm uses m = 10.



First, we observe from the figure that as the support
threshold increases, the execution times of the algorithms
decrease. This is because a larger ρs gives fewer frequent
patterns to extract. Also, from Figure 4(a), we see that
without a reasonable estimate of n, the performance of MPP
(worst case) is very bad. MPPm, on the other hand, is much
more efficient due to its ability to determine a much smaller
n. As an example, when ρs = 0.003%3, the experiment re-
sult shows that the longest frequent pattern has a length
of no(0.003%) = 13. While MPP uses n = l1 = 77, MPPm

estimates a value of n = 22. As we have explained in the
previous section, a small value of n enables a much bet-
ter pruning condition when the algorithms are determining
which candidate patterns in Ci should be collected in the
set L̂i. It explains why MPPm is much more efficient than MPP

under the worst case.
Figure 4(b) compares MPPm against MPP when the user has

a perfect estimate of n. From the figure, we see that MPPm

is less efficient than MPP (best case). There are two reasons
why MPPm takes longer time to execute. First, determining
the value em (so that MPPm can apply Theorem 2 to estimate
a value of n) requires MPPm to check quite a number of length-
m patterns in the subject sequence S (see the discussion
preceding Theorem 2). This overhead is not required for
MPP. Second, MPP (best case) uses a smaller (and accurate)
n value than MPPm does. Pruning is thus more effective.
The performance difference, however, is not as big as that
between MPPm and MPP (worst case). For example, in the
above experiments, MPPm is 1.5 to 3.7 times slower than MPP

(best case), and it is 16 to 30 times faster than MPP (worst
case).

Our experiment result also shows that both MPP and MPPm

are much more efficient than the straight forward way of
enumerating all candidates. Since the Apriori property does
not hold, the enumeration algorithm has to count all pos-
sible candidates. In our experiment settings, the number
of candidates counted by the enumeration method is 4i for
Ci . On the other hand, both MPP and MPPm are able to
prune a large number of candidates. Table 3 shows the num-
ber of candidates processed by the enumeration algorithm,
MPP (worst case), MPPm and MPP (best case), respectively.
The enumeration algorithm is impractical due to the large
number of candidates it needs to process. The number of
candidates MPP (worst case) has to deal with is also large,
however, it becomes computable. For MPPm, it counts much
fewer candidates than MPP (worst case), which explains why
MPPm is much faster than MPP (worst case). MPP (best case)
processes even fewer candidates than MPPm. Therefore it has
the shortest execution time. The large difference between
MPP (worst case) and MPP (best case) indicates that the effi-
ciency of the MPP algorithm is dominated by the user input
n, the estimated length of the longest frequent patterns.

To further illustrate the effect of the user input n, we
execute MPP over different values of n. In this experiment
no(ρs) = 13. Figure 5 shows the result. As expected, the
worse is the estimate (a larger n), the slower is MPP. What
is interesting about this figure is the execution time of MPP

when n = 10, a value that is smaller than no(ρs), the length
of the longest frequent patterns in S. That is to say, when
the user under-estimate no(ρs). From the figure, we see that

3Recall that a pattern P is frequent if sup(P ) ≥ Nlρs. Since
Nl is exponentially large w.r.t. l, even a small ρs implies a
fairly large support count of P .

Enumeration MPP MPPm MPP

Algorithm (worst case) (best case)
C3 64 64 64 64
C4 256 256 256 256
C5 1024 1024 1024 1024
C6 4096 4096 4096 4096
C7 16384 16384 16384 16384
C8 65536 65528 54588 50609
C9 262144 231161 17464 12198
C10 1048576 177140 2926 2262
C11 4194304 37543 1057 783
C12 16777216 16114 346 222
C13 413 7552 42 26
C14 414 2919 6 3
C15 415 1009 - -
C16 416 356 - -
C17 417 43 - -
C18 418 8 - -
C19 419 - - -
...

...
...

...
...

C77 477 - - -

Table 3: Number of candidates counted by different
algorithms

the execution time of MPP is smaller than the case when n
equals the real maximum length no(ρs).

Recall that for a given user input n, MPP will find all fre-
quent patterns of lengths less than or equal to n. For longer
patterns, MPP takes a best-effort approach and tries to return
those frequent patterns as many as possible. Therefore, if
n < no(ρs), not all frequent patterns are guaranteed to be
found. The small execution time of MPP when n = 10 as
shown in Figure 5, however, hints at an adaptive approach
to determine a suitable n value. Specifically, if a user has
no idea of a good n value, we could run MPP using a small
n, let’s say 10. After MPP finishes execution, it will return
all frequent patterns of length less than or equal to n plus
a number of longer frequent patterns. We could note the
longest pattern discovered, use its length to refine n and
re-execute MPP. This process could continue until we can-
not refine n further. Although we do not explore this ap-

L = 1, 000, [N, M ] = [9, 12], ρs = 0.003%

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

10 20 30 40 50 60

T
im

e
(s

ec
on

ds
)

n

�
�

�

�

�

�

Figure 5: Performance of MPP under different user
input n



L = 1, 000, N = 9, m = 8, ρs = 0.003%

0

500

1000

1500

2000

2500

4 5 6 7 8

T
im

e
(s

ec
on

ds
)

W

� �

�

�

�

Figure 6: Performance of MPPm under different values
of W

L = 1, 000, W = 4, m = 8, ρs = 0.003%

330

340

350

360

370

380

390

400

8 9 10 11 12

T
im

e
(s

ec
on

ds
)

N

�

�

�

�

�

Figure 7: Performance of MPPm under different values
of N

proach further in this paper, we remark that since the cost
of running MPP with a small n is low, running it a few times
adaptively as the way we just described could still be a very
efficient method.

In another experiment, we study the effect of the flexi-
bility of the gap W . We fix N = 9 and hence the gap re-
quirement is [9 . . . W + 8]. Figure 6 shows the performance
of MPPm when W changes from 4 to 8. From the figure, we
see that the larger is W , the larger is the execution time of
the algorithm. This is because, for a given l, the number of
length-l offset sequences, Nl, is proportional to W l−1 (see
Section 4.1). That is, the larger the value of W , the larger
is Nl. Hence, the PIL lists with which the algorithm uses
to count patterns’ supports are long. Therefore, more com-
putational effort is needed. From the figure, we see that for
MPPm (and MPP) to be practical, the gap flexibility, W , has
to be reasonably small. Fortunately, the helical structure of
DNA sequences does not imply a large flexibility. For ex-
ample, in some organism, a helical turn consists of 10 to 11
base pairs, which implies a flexibility of 2.

In the next experiment, we fix the gap flexibility W to
4 and vary the value of N . The gap requirement is thus
[N,N + 3]. Figure 7 shows the performance of MPPm as N
varies from 8 to 12. From the figure, we see that the execu-
tion time of MPPm increases with N . Recall that after MPPm

has estimated a value of n, it basically follows the logic of
MPP. In particular, during the iteration in which MPPm de-

ρs = 0.003%, [N, M ] = [9, 12], m = 10

500

1000

1500

2000

2500

3000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(s

ec
on

ds
)

L

�

�

�

�

�

�

�

�

�

�

Figure 8: Performance of MPPm for various values of
L

termines the set L̂i, a candidate pattern in Ci is removed
if its support ratio is less than λn,n−i · ρs. According to

Equation 4, λn,n−i =
L−(n−1)( M+N

2 +1)

L−(i−1)( M+N
2 +1)

. One can verify that

λn,n−i is a decreasing function of N . Hence, the smaller the
value of N , the larger λn,n−i is, and more candidate patterns
can be pruned. This leads to a more efficient algorithm.

Our final experiment studies the scalability property of
the algorithm. Figure 8 shows the execution time of MPPm

as the length of the subject sequence (L) varies from 1,000 to
10,000 characters. The result shows that MPPm scales linearly
with the sequence length.

7. A CASE STUDY
In this section we report a case study in which interest-

ing patterns are mined using our algorithms. We applied
MPPm to mine a number of DNA sequences, including the
whole genomes of the bacteria H. influenzae, H. pylori, M.
genitalium and M. pneumoniae. We segmented the genomes
into short fragments of 100 kilo-bases (kb), and ran the al-
gorithm on each fragment using a gap size of [10, 12] and
a support threshold of 0.006%. The length of the longest
patterns discovered was 10 bases (characters). We observed
a very interesting result: the bases ‘A’ and ‘T’ constitute
much more to the periodic patterns than ‘C’ and ‘G’. For
instance, there are 256 length-8 patterns that consist of only
‘A’s and ‘T’s. We found that all such patterns were frequent
in some fragments of all four genomes. Some of these pat-
terns were even frequent in every fragment examined. As
an example, if we consider fragments from bacteria genomes
only, then on average, about 250 of the 256 length-8 pat-
terns that consist of only ‘A’s and ‘T’s were frequent in a
given fragment. On the other hand, length-8 patterns that
consist of more than one ‘C’ or ‘G’ were unlikely to be fre-
quent. For example, there are 48 = 65, 536 possible length-8
patterns, among which 28 = 256 contain only ‘A’s and ‘T’s,
and 8×2×27 = 2, 048 contain exactly one ‘C’ or ‘G’. So, the
number of possible patterns that have more than one ‘C’ or
‘G’ is 65, 536−256−2, 048 = 63, 232. We found that among
these patterns, on average, only 3.9 of them were frequent
in a DNA fragment of bacteria genomes. Also, none such
frequent patterns is common in all genomes.

The results are consistent with the findings of a previ-
ous study [7], which shows the periodic occurrence of ‘A’



and ‘T’ in yeast and various bacteria and archaea with a
period length of 10-11 base pairs. Our results complement
its findings by showing that beyond the regularity that oc-
curs between nucleotide pairs, the patterns actually last for
quite a number of contiguous cycles. Also, some patterns
are ubiquitous in the genomes, not restricting to any spe-
cific regions.

In a previous work that extensively studies ApA dinu-
cleotide periodicity (the regular occurrence of base ‘A’ after
another base ‘A’ separated by a fixed period) in various eu-
bacteria, archaebacteria, eukaryotes and organelles, it has
been suggested that the periodic patterns are more promi-
nent in eubacteria than in eukaryotes [17]. For instance, the
genome of H. sapiens (human) shows very weak periodicity,
as compared to the eubacteria and some lower eukaryotes
such as the baker yeast S. cerevisiae. We would like to verify
whether the periodic patterns are really weakened in higher
eukaryotes, or strong periodic patterns still exist, but they
are composed of other bases or do not exhibit a rigorous pe-
riodicity with a fixed period length. We downloaded short
pieces of the genomes of the eukaryotes H. sapiens, C. ele-
gans and D. melanogaster, cut them into 100kb fragments,
and repeated the above experiments. To our surprise, all of
the 256 length-8 patterns that consists of ‘A’ and ‘T’ only
are still frequent in some fragments of all three sequences.
This result may imply that the flexible gap requirement is
able to tolerate some variations in the sequences, such as
the insertion or deletion of a nucleotide within a period that
affects the period length.

Besides, some patterns not detected in the bacterial genomes
are observed in the eukaryote sequences, many of which con-
sist of more ‘C’s and ‘G’s. For instance, the length-8 pattern
composing of ‘G’s only is frequent in some fragments of all
three sequences. In one of the fragments of H. sapiens, the
pattern composing of 16 G’s only is also found to be fre-
quent! All these suggest that the nucleotides involved in
the periodic patterns in bacteria and eukaryotes are quite
different.

Some former studies suggest two explanations for the din-
ucleotide oscillations [18, 17, 7]: (1) they are related to the
helical shape of the DNA. In particular, the repetition of
specific base-pair stacks with this periodicity would cause
uni-directional deflection of the DNA curvature; (2) the al-
ternation of hydrophobic and hydrophilic amino acids in
α-helices leads to a periodicity of about 3.5 amino acids
in protein sequences, which corresponds to 10-11 bases in
DNA sequences. Both explanations are still possible given
the new findings. The new results also further suggest that
in eukaryotes, the maintenance of the DNA curvature may
involve more ‘C’s and ‘G’s than in bacteria. Also, to verify
the second explanation, it is useful to actually look for some
proteins with a corresponding coding DNA sequence that
exhibits the mined periodic patterns.

Finally, we have applied our algorithm on mining DNA
sequences of many different species. We found that there
are unique periodic patterns for each species. Some of these
patterns are very interesting. For example, for C. elegans,
we found periodic patterns that repeat themselves, such as
ATATATATATA, GTAGTAGTAGT, etc. As another example, a
unique periodic pattern for H. sapiens consists of 17 ‘G’s.
Biologists may find those patterns insightful.

8. CONCLUSION

This paper studied the problem of mining periodic pat-
terns with a gap requirement from sequences. We formally
defined the data-mining model and proved several impor-
tant theorems that lead to the derivation of efficient algo-
rithms. We proposed two algorithms, namely, MPP and MPPm

for solving the problem. Extensive experiments had been
done to illustrate the various performance characteristics of
the algorithms. We found that for cases in which the user
has a good estimate of the length of the longest frequent
patterns, MPP is the most efficient algorithm. On the other
hand, if the user does not provide the estimate, MPPm is able
to determine a reasonably good one. We applied MPPm on a
number of real DNA sequences. Much of our mining result
is consistent with findings from previous studies.

9. REFERENCES
[1] Stephen F. Altschul, Warren Gish, Webb Miller,

Eugene W. Myers, and David J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology,
215:403–410, 1990.

[2] A. Bairoch and B. Boeckmann. The swiss-prot protein
sequence data bank. Nucleic Acids Research,
20(Suppl):2019–2022, 1992.

[3] Giorgio Bernardi, Birgitta Olofsson, Jan Filipski,
Marino Zerial, Julio Salinas, Gerard Cuny, Michele
Meunier-Rotival, and Francis Rodier. The mosaic
genome of warm-blooded vertebrates. Science,
228(4702):953–958, 1985.

[4] Eivind Coward and Finn Drablos. Detecting periodic
patterns in biological sequences. Bioinformatics,
14(6):498–507, 1998.

[5] J. W. Fickett and C. S. Tung. Assessment of protein
coding measures. Nucleuic Acids Research,
20:6441–6450, 1992.

[6] Jiawei Han, Guozhu Dong, and YiWen Yin. Efficient
mining of partial periodic patterns in time series
database. In Proc. of 15th International Conference
on Data Engineering, ICDE99, pages 106–115, 1999.

[7] H. Herzel, O. Weiss, and E. N. Trifonov. 10-11 bp
periodicities in complete genomes reflect protein
structure and DNA folding. Bioinformatics,
15(3):187–193, 1999.

[8] Inge Jonassen. Efficient discovery of conserved
patterns using a pattern graph. Technical Report
Report No. 118, University of Bergen, 1996.

[9] Stefan Kurtz, Enno Ohlebusch, Chris Schleiermacher,
Jens Stoye, and Robert Giegerich. Computation and
visualization of degenerate repeats in complete
genomes. In Proceedings of the 8th International
Conference on Intelligent Systems for Molecular
(ISMB-00), 2000.

[10] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1(3):259–289,
Nov 1997.

[11] http://www.ncbi.nlm.nih.gov.

[12] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen
Pinto, Qiming Chen, Umeshwar Dayal, and Mei-Chun
Hsu. Prefixspan: Mining sequential patterns by
prefix-projected growth. In Proc. 17th IEEE
International Conference on Data Engineering
(ICDE), Heidelberg, Germany, April 2001.



[13] T. Imielinski R. Agrawal and A. Swami. Mining
association rules between sets of items in large
databases. In Proc. ACM SIGMOD International
Conference on Management of Data, page 207,
Washington, D.C., May 1993.

[14] P.S. Reddy and D.E. Housman. The complex
pathology of trinucleotide repeats. Current Opinion in
Cell Biology, 9(3):364–372, 1997.

[15] Isidore Rigoutsos and Aris Floratos. Combinatorial
pattern discovery in biological sequences: the teiresias
algorithm. Bioinformatics, 14(1), 1998.

[16] Ramakrishnan Srikant and Rakesh Agrawal. Mining
sequential patterns: Generalizations and performance
improvements. In Proc. of the 5th Conference on
Extending Database Technology (EDBT), Avignion,
France, March 1996.

[17] Masaru Tomita, Masahiko Wada, and Yukihiro
Kawashima. ApA dinucleotide periodicity in
prokaryote, eukaryote, and organelle genomes. Journal
of Molecular Evolution, 49:182–192, 1999.

[18] E. N. Trifonov. 3-, 10.5-, 200- and 400-base
periodicities in genome sequences. Physica A,
249:511–516, 1998.

[19] A. van Belkum, S. Scherer amd W. van Leeuwen,
D. Willemse, L. van Alphen, and H. Verbrugh.
Variable number of tandem repeats in clinical strains
of haemophilus influenzae. Infection and Immunity,
65(12):5017–5027, 1997.

[20] J. Widom. Short-range order in two eukaryotic
genomes: Relation to chromosome structure. Journal
of Moleular Biology, 259:579–588, 1996.

[21] Jiong Yang, Wei Wang, and Philip S. Yu. Mining
asynchronous periodic patterns in time series data. In
Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 275–279, Boston, MA USA, 2000.

[22] Mohammed J. Zaki. Efficient enumeration of frequent
sequences. In Proceedings of the 1998 ACM 7th
International Conference on Information and
Knowledge Management(CIKM’98), Washington,
United States, November 1998.

[23] Minghua Zhang, Ben Kao, David W. Cheung, and
Kevin Y. Yip. Mining periodic patterns with gap
requirement from sequences. Technical Report CS
Technical Report TR-2005-6, The University of Hong
Kong, 2005.

[24] Minghua Zhang, Ben Kao, C.L. Yip, and David
Cheung. A GSP-based efficient algorithm for mining
frequent sequences. In Proc. of IC-AI’2001, Las Vegas,
Nevada, USA, June 2001.


