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Abstract

A large proportion of research work on supervised learning has been focused on learning
from positive and negative examples. In some situations, for example in some bioinformatics
applications, there exists some information about the relationships between different objects
(data instances) that can be used in learning, but has been under-utilized. In this project
we mainly study two such kinds of instance-level relationships: must-links and cannot-links.
A must-link specifies that two objects are both in the target concept or are both not in
it, and a cannot-link specifies that exactly one of two objects is in the target concept. We
assume that the relationships are provided by some active and passive oracles, the former
accepts queries about the relationship between two objects and about the target concept,
and the latter returns the relationships between random object pairs. We develop a generic
algorithm for learning a target concept completely using linear number of oracle calls, time
and space. Based on this generic method, we consider special situations in which we are
allowed to use only active oracles, only passive oracles, and both. We also consider some
practical issues, including the different cost and reward of different oracle calls, learning
in a disjoint or non-disjoint multi-concept environment, and oracles that may be unable to
answer some queries or may return incorrect relationships.

1 Introduction

This project studies the problem of learning a target concept from instance-level relationships
in a theoretical setting. An instance-level relationship is a relationship between a set of data
instances (objects). We will mainly study two types of instance-level relationships: must-links
and cannot-links [18], both of which are binary relationships (relationships between two objects).
A must-link between two objects specifies that the two objects are both in the target concept
or are both not in the concept. A cannot-link between two objects specifies that exactly one
of the two objects is in the target concept. The terms “must-link” and “cannot-link” originate
from their more general definitions in a disjoint multi-concept scenario, in which the goal is to
learn a set of disjoint concepts (classes) 1, and there is a must-link between two objects if and
only if they are in the same concept. We can view the current problem as a disjoint two-concept
scenario, in which the target concept is the first one, and its complement is the other.

There are practical situations in which the cost of obtaining a must-link or cannot-link is
much lower than that of knowing whether an object is in the target concept. For example,
given a set of genes, one important problem is to identify the ones that are essential, i.e., the
ones of which the malfunctioning would be lethal to the organism. It could be quite costly to

1We avoid calling a concept a “class” in order not to get confused with the concept classes, which are sets of
concepts.
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find out whether a gene is essential since this may involve manual low-throughput laboratory
experiments. On the other hand, if the translated protein sequences of two genes are very
similar, or if their expression patterns are highly correlated, it might be reasonable to predict
that they are both essential or are both non-essential, i.e., there is a must-link between them.
Similarly, when predicting whether a protein has a certain function, if the expression patterns
of two genes are completely uncorrelated, it is reasonable to assume that they have different
functions, i.e., there is a cannot-link between them. Testing whether two sequences are similar
can be done by running a sequence comparison program at low cost, while expression patterns
can be obtained from high-throughput experiments that have much lower cost than doing a large
number of low-throughput experiments. Therefore in such situations, it would be beneficial if
object membership tests can be replaced by a reasonable number of instance-level relationship
tests.

Now we give some formal definitions. Given a set X of objects, a concept class C, and a
target concept c ⊆ X, there is a must-link between a pair of objects x1, x2 ∈ X if and only if
(x1 ∈ c∧x2 ∈ c)∨ (x1 /∈ c∧x2 /∈ c). There is a cannot-link between a pair of objects x1, x2 ∈ X
if and only if (x1 ∈ c ∧ x2 /∈ c) ∨ (x1 /∈ c ∧ x2 ∈ c). As a shorthand, we write an instance-level
relationship between two objects x1 and x2 as ((x1, x2), r), where r = 1 if it is a must-link,
and r = −1 if it is a cannot-link. The notation (x1, x2) refers to an unordered pair of objects,
such that (x1, x2) is identical to (x2, x1). We treat ((x1, x2), r) as a Boolean variable whose
value depends on the target concept c. There are some obvious properties of instance-level
relationships:

Property 1 Well-defined concepts:
For any object x ∈ X, ((x, x), 1) is true.

Property 2 Complementarity:
For any objects x1, x2 ∈ X and r ∈ {−1,+1}, ((x1, x2), r) ⇔ ¬((x1, x2),−r).

That is, exactly one of the two types of relationships holds for each pair of objects.
The task is to learn c from the information supplied by some oracles. We consider several

kinds of oracles:

• Active relationship oracle (AR): a function AR : X ×X → {true, false} that takes two
objects x1 and x2 as inputs, and returns true if and only if (x1, x2) is a must-link. When
there is a need to explicitly specify the underlying concept of an oracle, we add the name
of the concept as a subscript. For example, AR means the same oracle as ARc.

• Passive relationship oracle (PR): it takes no inputs, and returns a true relationship
((x1, x2), r), where (x1, x2) is a pair of distinct objects drawn randomly from a probability
distribution over all pairs of distinct objects in X.

• Equivalence oracle with relationships as counter-examples (ER): it takes a representation
of a concept c′ as input, and returns true if c and c′ are equivalent subject to permutation
of the concepts, i.e., c = c′ or c = X − c′. Otherwise, ER returns false and a relationship
((x1, x2), r) such that x1 6= x2 and ARc(x1, x2) 6= ARc′(x1, x2). The relationship is called
a counter-example. The pair (x1, x2) is drawn randomly from a probability distribution
over all pairs of distinct objects in X.
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To compare with some previous results, we also consider the corresponding oracles based
on memberships, i.e., whether an object is in the target concept c:

• Active membership oracle (AM): a function AM : X → {true, false} that takes an
object x as input, and returns true if and only if x ∈ c.

• Passive relationship oracle (PM): it takes no inputs, and returns a pair (x,m), where x
is an object drawn randomly from a probability distribution over X, and m = 1 if x ∈ c,
m = −1 if x /∈ c.

• Equivalence oracle with memberships as counter-examples (EM): it takes a representation
of a concept c′ as input, and returns true if c = c′. Otherwise, EM returns false and a
true membership (x,m), where x ∈ X and m = 1 if x ∈ c, m = −1 if x /∈ c, such that
AMc(x) 6= AMc′(x). The membership is called a counter-example. The object x is drawn
randomly from a probability distribution over X.

Efficient algorithms exist [2, 3] that learn concepts of some concept classes from AM and EM
only. A major goal of this project is to study the feasibility of learning by other combinations
of the oracles. This involves understanding the relationships between the three relationship
oracles and their membership counterparts. The passive oracles are to simulate situations in
which some knowledge about the target concept is available and can be acquired at some cost,
but there are no simple ways to answer specific questions about the concept.

2 Related work

Gold’s classical paper on language identification [12] studies the identification of a language in
the limit by using various kinds of text and informant, where a text is a sequence of positive
examples such that each object in the target concept appears at least once, and an informant is a
sequence of examples (positive or negative), with some requirements on the sequence according
to the informant type. Both text and informant are membership information about individual
objects. In Valiant’s paper that describes the probably approximately correct (PAC) learning
model [17], concepts are learnt from positive examples and active membership oracles, which
are also membership information about individual objects.

Angluin’s papers on learning from queries [2, 3] brought up the idea of using some other
kinds of information in machine learning, namely the relationships between the target concept
and the current hypothesis, such as equivalence and disjointness. We will call such information
“language-level information”.

Since then, however, a large proportion of research efforts in machine learning have been
focused on learning from positive and negative examples only. This problem has been so popular
that the term “supervised-learning” is now almost equivalent to “classification”, or “learning
from positive and negative examples”2, despite the fact that a learner can be “supervised”
by other means. The many well-known machine learning methods, such as decision trees, k-
nearest neighbors, neural networks, näıve Bayes classifiers, and support vector machines, are
all designed for this setting.

2In a multi-concept scenario, this is generalized as “learning from labeled examples”.
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On the other extreme, many researchers have focused on unsupervised learning, which is
to learn some concepts without receiving any information other than the dataset itself, which
contains a set of objects, each described by a set of attributes. There is a controversy about
whether this is a real learning problem, since most, if not all, natural learning processes involve
some kinds of feedback, from a dedicated teacher or from the environment. As a result, the
problem is now more commonly known as clustering, and is vaguely defined as a process to
group the data objects such that objects in the same cluster are similar, and objects in different
clusters are dissimilar.

Recently, the distinction between supervised and unsupervised learning methods has become
less obvious due to the invention of semi-supervised algorithms. They arose due to practical
situations in which both classification and clustering methods are not ideal for learning. On the
one hand, classification is inappropriate when the information available is not in the form of
positive and negative examples, or the examples are too few or too biased to capture the general
properties of the target concept. On the other hand, clustering completely ignores all external
knowledge, which could make it inappropriate when some external knowledge is necessary for
producing the desired clusters. According to the design objectives, semi-supervised methods
can be classified into semi-supervised classification and semi-supervised clustering methods.

Most current work on semi-supervised classification focuses on exploiting the data attributes
of unlabeled objects (objects not known to be in the target concept or not) in improving the
classification performance. In the co-training setting [8], each data object has two sets of data
attributes corresponding to two kinds of information. For example, each web page can be
described by two sets of attributes, one corresponding to the text on the web page, the other
corresponding to the anchor text attached to the hyperlinks that point to the web page. If
class labels can be assigned based on one set of attributes alone, then assigning a class label to
an object based on its values in the first set of attributes implies that other objects having the
same attribute values in the second set as this object can also be given the same label. This
technique has been used in a practical way as follows: label some objects according to the first
set of attributes. Search for objects that have values in the second set of attributes very close
to the labeled objects, and give them the same labels. Then reverse the roles of the two sets,
and repeat.

Another popular semi-supervised classification method is based on a Markov random walk [15].
The dataset is modeled as a graph, with each vertex being an object of the dataset. There is an
edge between two objects if the similarity between them exceeds a certain threshold. Starting
with only a few examples with known labels, the labels diffuse probabilistically to neighboring
vertices according to the similarity between the current object and the neighbor. After a certain
number of time steps, each vertex is associated with a certain probability of being a member
of each concept. The object is then predicted to be a member of the concept with the highest
probability. This method can be viewed as a generalization of k-nearest neighbors, but with a
more extensive use of object similarities.

In bioinformatics, there is a popular program called PSI-BLAST [1] for searching for se-
quences that share a common motif. First, some example sequences are used to search for
similar sequences. Then the sequences in the results are added to the examples for the next
round of similarity search. The process repeats until no new sequences are returned. The
methodology is similar to that of the semi-supervised classification methods, although it was
not developed based on the corresponding computational learning theories.

Semi-supervised clustering methods aim at utilizing some domain knowledge in guiding the
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clustering process. They can be categorized according to the kinds of knowledge being input,
the time that the knowledge is input, and the way the knowledge is used to affect the clustering
process.

The simplest type of inputs is labeled objects [4, 11, 21], which is the same as the examples
used in classification. In some cases, users do not know the exact class labels of objects, but they
have some knowledge on which objects should be/should not be put into the same cluster, which
can be specified by must-links and cannot-links [5, 6, 7, 13, 18, 19]. In projected clustering, the
input of known relevant dimensions is also useful [21]. Some other studies propose the input
of classification rules [16], examples of similar objects [20], or even general comments such as
which cluster a particular object should not be put into [10].

The knowledge can be supplied at different time. It can be supplied before clustering to
guide the clustering process [4, 5, 6, 7, 11, 13, 18, 19, 20, 21], or after clustering to evaluate the
clusters and guide the next round of clustering [10]. Some algorithms can also actively request
users to supply some specific information at the most appropriate time [5, 13].

Some algorithms treat the input knowledge as hard constraints that should not be vio-
lated [4, 19], but most treat it as soft constraints, as it may contain errors. There are various
ways to use the input knowledge, such as guiding the formation of seed clusters [4, 5, 6, 7,
21], forcing or recommending some objects to be put into the same cluster or different clus-
ters [18, 19], and modifying the objective function [5, 6, 7, 11], similarity function [6, 7, 10, 20]
or distance matrix [13].

In general, a new trend in machine learning algorithm design is to maximize the use of all
available information: labeled examples, data attributes, language-level information, instance-
level relationships, and so on. While instance-level relationships have been used in practical
semi-supervised clustering algorithms, as far as the author is aware of, they have not been
studied from a theoretical perspective. This project is an initial attempt to study the properties
of the two types of instance-level relationships, must-links and cannot-links, in a theoretical
setting. It is hoped that the current project would also shed some light on the larger goal of
understanding semi-supervised learning methods.

3 A general learning method

We now study a basic problem of learning from instance-level relationships. The target concept
c can be represented as a graph G = (V,E), where V = X and E = {(x1, x2) : x1, x2 ∈
X∧ARc(x1, x2)}, i.e., the set of all must-links (again, if we need to specify the concept explicitly,
we use subscripts, e.g., Gc = (Vc, Ec) = G = (V,E)). We call G the (unique) relationship graph
of c. G contains two cliques3, one for the objects in c and one for the objects not in c. The
complement of G, G̃ = (V, Ẽ) = (V, V × V − E) is a bipartite graph, with every vertex in the
first part connecting to every vertex in the second part. Each edge represents a cannot-link.
We will name the vertices by the objects that they represent. For example, the vertex that
represents the object x1 will also be called x1.

If we know the exact members in c, we know the exact members in E. Therefore identifying
E is a necessary condition for identifying c. The basic learning problem that we are going to
study is as follows: at time 0, we start with two empty sets E0 = Ẽ0 = ∅, and make an oracle
call (AR, ER or PR) to get some information. Then we update the two sets by adding all

3In case c = X or c = ∅, one of the cliques has size zero. The complement G̃ then has one part empty.
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newly known must-links to E0 to form E1 and all newly known cannot-links to Ẽ0 to form Ẽ1.
The process is repeated until a time t∗ at which Et∗+1 = E and Ẽt∗+1 = Ẽ. A brute force
approach to learning E is to make an AR call for every pair of objects. Since there are O(|V |2)
object pairs, this brute force approach requires O(|V |2) oracle calls.

The worst-case number of oracle calls required is actually much smaller than O(|V |2). This
is because existing knowledge can derive new knowledge without making oracle calls. All these
derivations are based on the following three properties:

Property 3 Transitivity of must-links:
For any objects x1, x2, x3 ∈ X, ((x1, x2), 1) ∧ ((x2, x3), 1) ⇒ ((x1, x3), 1).

Property 4 Propagation of cannot-links:
For any objects x1, x2, x3 ∈ X, ((x1, x2), 1) ∧ ((x2, x3),−1) ⇒ ((x1, x3),−1).

Property 5 Elimination of cannot-links:
For any objects x1, x2, x3 ∈ X, ((x1, x2),−1) ∧ ((x2, x3),−1) ⇒ ((x1, x3), 1).

Therefore a single oracle call may result in multiple newly known must-links and/or cannot-
links. Notice that each rule is able to infer some knowledge that cannot be inferred by the other
two rules.

There is an interesting way to summarize the three rules into a single statement: every three
objects in X form an odd number of must-links and an even number of cannot-links. Putting it
into an equation, suppose the relationships of the three pairs are r1,2, r1,3 and r2,3 respectively,
then r1,2r1,3r2,3 = 1. It can be easily verified that the above three rules are the only non-trivial
inference rules that can be derived from this statement. A nice thing about the three properties
is that for every three objects, whenever we have the relationships between two of the three
pairs, we can always deduce the relationship between the third pair.

We are going to describe learning algorithms that use different combinations of oracle calls
in the coming sections. Suppose now that we have no control of what oracle calls to make.
Then the only thing that we can do is to infer all relationships that can be inferred after each
oracle call. This can be achieved as follows. Suppose the oracle call at time t is ER(c′) and
the oracle returns true, then E and Ẽ can be immediately deduced and we are done. If the
oracle returns false and in cases where the call is made to AR or PR, we get the relationship
between a pair of objects x1 and x2. If the relationship is not already known, we add it to
Et or Ẽt according to its type, and use the three rules to infer an edge for each existing edge
that involves x1 or x2. We can easily show that one single pass of inference is sufficient to infer
all new edges that can be inferred. Suppose there is an existing edge (x1, x3) so that together
with the new pair (x1, x2) the relationship between x2 and x3 can be inferred. If there is an
edge between x3 and an object x4, then we can further infer the relationship between x2 and
x4. However, since the relationships between x1 and x3 and between x3 and x4 are both known
before the current oracle call, the relationship between x1 and x4 should have already inferred.
Therefore the relationship being “further” inferred can actually be directly inferred from the
two pairs (x1, x4) and (x1, x2), which is covered by the first pass of inference.

Suppose in each oracle call we receive a relationship that is not already known. We want to
analyze the worst-case number of oracle calls required. But in order to make the analysis simple,
let us first discuss a practical implementation of the above procedure. A direct implementation
requires Θ(|V |2) time and space, because of the quadratic number of edges we need to create
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in Et and Ẽt. There is a simple alternative that runs in linear time and space as follows.
Whenever we are to add an edge (x1, x2) to Et, instead we merge x1 and x2 into a single vertex
x1,2 in both Gt and G̃t. All edges originally incident on x1 or x2 in G̃t are then incident on x1,2.
Suppose after performing all possible merges at time t, the resulting set of vertices is V t+1. Due
to Property 3, for any vertex x3 and any time t′ > t, the vertex that represents both x1 and x2

also represents x3 in this new implementation if and only if (x1, x3) ∈ Et′ and (x2, x3) ∈ Et′ in
the direct implementation. Similarly, due to Property 4, for any vertex x3 and any time t′ > t,
(x1,2, x3) ∈ Ẽt′ in the new implementation if and only if (x1, x3) ∈ Ẽt′ and (x2, x3) ∈ Ẽt′ in the
direct implementation. Therefore the new implementation changes the representation of the
graphs, but does not alter the procedure.

We now analyze the time and space complexities of this new implementation, as well as the
number of oracle calls required to completely determine E. For simplicity, if a vertex represents
multiple objects, we can call it by any of the objects. For example, after merging the vertices x1

and x2, the three symbols x1,2, x1 and x2 are all valid names of the resulting vertex. Suppose
the information received at time t is ((x1, x2), r), then there are only five different cases of graph
updates:

1. r = 1, and either x1 or x2 does not have any incident edge in G̃t. In this case, we simply
merge x1 and x2. Therefore |V t+1| = |V t| − 1, and |Ẽt+1| = |Ẽt|.

2. r = 1, and both x1 and x2 have an incident edge in G̃t. Suppose they are (x1, x3) and
(x2, x4) respectively, then (x3, x4) is inferred to be a must-link. In this case, we merge x1

and x2, and x3 and x4. The two cannot links (x1, x3) and (x2, x4) then become the same
edge in G̃t+1. Therefore |V t+1| = |V t| − 2, and |Ẽt+1| = |Ẽt| − 1.

3. r = 0, and both x1 and x2 do not have any incident edge in G̃t. In this case, we simply
add an edge between x1 and x2 to G̃t+1. Therefore |V t+1| = |V t|, and |Ẽt+1| = |Ẽt|+ 1.

4. r = 0, and exactly one of x1 and x2 have an incident edge in G̃t. Suppose it is (x1, x3),
then (x2, x3) is inferred to be a must-link. In this case, we merge x2 and x3, and the new
cannot-link edge between x1 and x2 becomes the same as the existing edge between x1

and x3. Therefore |V t+1| = |V t| − 1, and |Ẽt+1| = |Ẽt|.

5. r = 0, and both x1 and x2 have an incident edge in G̃t. Suppose they are (x1, x3) and
(x2, x4) respectively. Then (x2, x3) and (x1, x4) are inferred to be must-links. In this case,
we merge x1 and x4, and x2 and x3, and the new cannot-link edge between x1 and x2

becomes the same as the two existing edges between x1 and x3 and between x2 and x4.
Therefore |V t+1| = |V t| − 2, and |Ẽt+1| = |Ẽt| − 1.

If each vertex in Ẽt has at most one edge incident on it, it can be easily verified that the
above list includes all possible graph updates that can be performed at time t. We now prove
that this sufficient condition is true:

Lemma 1 At any time t, each vertex in G̃t can have at most one edge incident on it.

Proof. We prove it by contradiction. Suppose t is the first time that there is a vertex in G̃t

with two different edges incident on it. Then a must-link is inferred between the two neighbors,
and thus the updating procedure guarantees that they should have been merged at a time t′ < t
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because at that time each vertex in G̃t′ has at most one edge incident on it and thus the above
list of graph updates is exhaustive at that time, which is a contradiction. Therefore such t does
not exist and thus the lemma follows.

Based on the above results, after completing the merges at a given time, all objects known
to be must-linked at that time are put into the same vertices.

Corollary 1 At any time t, |Ẽt| ≤ b |V
t|

2 c.

The following lemma concerns the termination condition.

Lemma 2 When the learning algorithm terminates, if c = X or c = ∅, then |V t∗+1| = 1 and
|Ẽt∗+1| = 0. Otherwise, |V t∗+1| = 2 and |Ẽt∗+1| = 1.

Proof. The algorithm terminates when Et∗+1 = E. The lemma then follows form the facts
that 1) G contains one single clique if c = X or c = ∅, and two cliques otherwise; and 2) all
known must-linked objects are put into the same vertices after completing the merges at any
given time.

Finally, the following lemma concerns the total number of received and inferred must-links.

Lemma 3 The total number of distinct must-links between different vertices received from or-
acles and inferred by the three inference rules is exactly |V | − 1 if c = X or c = ∅, and exactly
|V | − 2 otherwise.

Proof. The lemma is based on Lemma 2, and the facts that 1) |V 0| = |V |; 2) |V | is reduced
only when a must-link is received or inferred; and 3) each received or inferred must-link reduces
|V | by exactly one.

If we denote the number of times that the five cases occur as m1,m2,m3,m4 and m5

respectively, then from Lemmas 2 and 3, by considering the change of |V t| we know that
m1 + 2m2 + m4 + 2m5 = |V | − |Ẽt∗+1|, and from Lemma 2, by considering the change of |Et|
we know that −m2 +m3−m5 = |Ẽt∗+1|. Summing the two equations, we get the total number
of oracle calls, m1 + m2 + m3 + m4 + m5 = |V | − |Ẽt∗+1|+ |Ẽt∗+1| = |V | − 1.

We summarize the result in the following theorem.

Theorem 1 For any concept c defined over a set of objects X, the corresponding relationship
graph G = (X, {(x1, x2) : x1, x2 ∈ X ∧ARc(x1, x2)}) can be learnt from any sequence of |X|− 1
calls to AR, ER and PR with arbitrary arguments using O(|X|) time and O(|X|) space if every
call returns some new information.

Proof. We have just proved the number of oracle calls. Then, since each update involves a
constant number of operations and uses a constant amount of extra space, the time and space
complexities follow. Corollary 1 gives a tight bound on the space required, which happens when
the first b |X|

2 c oracle calls all lead to the third case of graph updates.
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Figure 1: Definition of U t. Notice that Et is a set of edges while U t is a set of objects.

During the development we assumed that we know exactly when Et∗+1 = E and Ẽt∗+1 = Ẽ.
Again, a straightforward implementation of the algorithm would perform an ER call after each
update, which either increases the number of oracle calls required, or restrict the sequence of
oracle calls. This check is actually not necessary because the termination condition can occur at
time t only if |V t| equals one or two. Therefore we can proceed without checking the termination
condition until |V t| = 2, when we simply make one final oracle call, which ensures that at time
t + 1, the termination condition must be satisfied.

Now, we study a strategy for making oracle calls that ensures we get some new information
after each call. At any time t, we can freely choose to make either of the following calls:

• AR(x1, x2), where x1 and x2 are represented by two different vertices in V t, and (x1, x2) /∈
Ẽt.

• ER(U t), where U t is a set of objects formed by the following method. From Lemma 1, we
know that no three vertices in Ẽt have two edges in between. Therefore we can imagine
that the vertices in Ẽt are sorted such that the first vertex v1 connects only to the second
vertex v2, the third only to the fourth, and so on. Let k be the number of such vertex
pairs. Then U t = ∪k

i=1v2i−1, where we overload the symbol vi to mean the set of objects
represented by vertex vi (Figure 1).

In the first case, we do not know whether (x1, x2) is a must-link (otherwise they would
be in the same vertex), or a cannot-link (otherwise (x1, x2) would be in Ẽt). Therefore the
response of AR must contain some new information. In the second case, suppose ER returns
false and the counter example is a must-link, the two objects involved must be represented by
different vertices in V t since all known must-linked objects are either both in U or both not in
U . Therefore it is a new piece of knowledge. If the counter example is a cannot-link, the two
objects involved must be both in U or both not in U , which is also a new piece of knowledge
since all cannot-links known at time t are between an object in U and an object not in U .

We therefore can state the following theorem.

Theorem 2 For any concept c defined over a set of objects X, the corresponding relationship
graph G = (|X|, {(x1, x2) : x1, x2 ∈ X∧ARc(x1, x2)}) can be learnt from any sequence of |X|−1
calls to AR and ER with arguments determined by the described strategy using O(|X|) time and
O(|X|) space.

One important feature of this algorithm is that no matter what oracle calls have been
made previously, as long as E and Ẽ has not been learnt completely, the algorithm can always
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make an oracle call that guarantees to return some new information. Therefore, the algorithm
can maximize the use of prior knowledge. Given any known instance-level relationships, the
algorithm simply initializes V 0, E0 and Ẽ0 accordingly, and starts running as if the knowledge
was obtained through oracle calls. Similarly, if some knowledge becomes freely available at any
time during the execution, it can be imported to the algorithm as if it was obtained through
oracle calls, so that after the import the algorithm can resume at a state that contains the
union of knowledge from both the learning process and the import.

There are two pending issues to be discussed. First, although learning E is a necessary
condition for learning c, it is not sufficient. Second, it is important to know the tightness of
the upper bounds in Theorem 1 and Theorem 2. In other words, whether it is possible to learn
E using fewer than |X| − 1 oracle calls in the worst case. Both topics will be discussed in the
coming section.

4 Active Learning

In this section we study the problem of learning c actively, i.e., using AR and ER calls. We
first discuss some relationships between AR and AM .

Property 6 Simulating AR by AM :
The call AR(x1, x2) can be simulated by the calls AM(x1) and AM(x2) as follows: AR(x1, x2) =
(AM(x1) ∧AM(x2)) ∨ (¬AM(x1) ∧ ¬AM(x2)).

Property 7 Simulating AM by AR:
If there is a (positive or negative) example x of c, the call AM(x′) can be simulated by the call
AR(x, x′) as follows: AM(x′) = (AR(x, x′) ∧ (x ∈ c)) ∨ (¬AR(x, x′) ∧ (x /∈ c)).

Now we switch to the equivalence oracles.

Property 8 Relationship between ER and EM :
If ER accepts a concept c′ (i.e., returns true when taking c′ as input), we can get a concept c′′

that EM accepts if there exists one positive or negative example of c. If such an example is not
available, it can be obtained by calling AM once using any object in X as input, or calling PM
once.

This property follows from the fact that the relationship graph G contains two disconnected
cliques, so by knowing the label of only one single object, the labels of all objects can be inferred.
The property suggests that if there is an efficient algorithm to learn E, learning c afterwards is
straightforward.

The above property also suggests ways for ER and EM to simulate each other.

Property 9 Simulating ER by EM :
The call ER(c′) can be simulated by the calls EM(c′) and EM(X−c′) as follows. The simulator
returns true if either EM(c′) or EM(X− c′) returns true. Otherwise, it returns false. Suppose
the counter examples from EM(c′) and EM(X−c′) are (x1,m1) and (x2,m2) respectively, then
the counterexample for ER(c′) is ((x1, x2),m1m2).

Notice that x1 and x2 must be different objects, since either one of them is in c and the
other in X − c, or one of them is in c′ and the other in X − c′.
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Property 10 Simulating EM by ER and AR:
If there is a (positive or negative) example x of c, the call EM(c′) can be simulated by the call
ER(c′) as follows. The simulator returns true if ER(c′)∧ ((x ∈ c∧ x ∈ c′)∨ (x /∈ c∧ x /∈ c′)) is
true. Otherwise, it returns false. Suppose the counter example from ER(c′) is ((x1, x2), r), we
need to determine whether x1 is in c by simulating AM(x1) by AR(x, x1) as discussed. Then
the counter example for EM(c′) is based on the following table:

x1 ∈ c′ x2 ∈ c′ x1 ∈ c Counter example
True True True (x2,−1)
True True False (x1,−1)
True False True (x2, 1)
True False False (x1,−1)
False True True (x1, 1)
False True False (x2,−1)
False False True (x1, 1)
False False False (x2, 1)

Based on Property 7 and Property 10, if a positive or negative example is available at the
beginning, any algorithm that can learn c using w1 calls to AM and w2 calls to EM regardless
of the distribution of counter examples returned by EM can be simulated by using w1 + w2

calls to AR and w2 calls to ER.
If the example is not available at the beginning, the simulation can be performed as follows.

Pick one object x′ ∈ X as the reference point, and assume it is in c. Simulate each AM call by
an AR call as described in Property 7, but EM calls are simulated by ER calls in a slightly
different way. For each EM(c′) call, if ER(c′) returns false, returns false with the counter
example discussed in Property 10. If ER(c′) returns true, we pause the simulation and wait
for the example to come (or get one by an AM or PM call), and use the example to verify our
assumption that x′ is in c. If the assumption is correct, we simply returns true and c′ is the
correct hypothesis. Otherwise, c′ must be equal to X − c, so we terminate the simulation, and
report that X − c′ is the correct hypothesis.

We summarize the above results in the following theorem.

Theorem 3 For any concept class C, if every concept can be learnt by making w1 calls to AM
and w2 calls to EM regardless of the distribution of counter examples returned by EM , then
every concept can be learnt by making w1 + w2 calls to AR, w2 calls to ER, and at most one
call to AM or PM .

So, for example, since regular sets can be learnt from AM and EM in time polynomial
in the number of states of the corresponding deterministic finite-state acceptor of the target
concept and the maximum length of the counter examples without making any assumption of
the distribution of counter examples returned by EM [2], they can also be learnt from AR and
ER in polynomial time if we have one single string that is known to be in the target regular
set or not.

Intuitively, since each response of an AM call and each counter example returned by an EM
call contains the information of one single object only, while those for AR and ER contain the
information about two objects, it seems reasonable to postulate that there are concept classes
in which the concepts can be learnt by using fewer AR and ER calls then AM and EM calls.
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The following example shows that such concept classes do exist if the argument to each EM
call must be a valid concept in C.

Example 1 Let X = {x1, x2, ..., xn} and C be the set of all (n − 1)-subsets of X. For an
algorithm that uses AM and EM only, in the worst case n − 1 calls are needed to learn a
concept. The worst case happens when all AM calls return true and all EM(c′) calls return
false, with X− c′ as the positive counter example. On the other hand, if at any time the answer
to an AR call is false, then only two concepts are still possible. So the worst case happens
when all the answers to AR calls are true. In that case, each AR call eliminates two candidate
concepts, so in total only dn

2 e AR calls are needed to learn any target concept in C.

We can visualize the difference between the two approaches by a “learning tree”, which is
similar to a binary decision tree, but the set of training examples in each node is replaced by
the set of consistent concepts, each attribute test is replaced by an oracle call, and each leaf
node contains exactly one concept. If only AM and EM calls are allowed, each time one of
the branches is a leaf node with a single concept. An adversary can thus manipulate the path
of going down the tree such that it takes n− 1 steps to reach a leaf node. On the other hand,
each AR call has one of the branches being a tree with two leaf nodes. Thus the longest path
that an adversary can produce has length dn

2 e.
This “learning tree” analysis is similar to Littlestone’s mistake tree analysis [14] in that in

both cases:

• The learning process is to traverse along a path down a tree from the root to the leaf
node that represents the target concept.

• We can imagine that the worst case scenario is due to an adversary who chooses the path
of going down the tree (by choosing a concept) such that the total cost of the learner is
maximized.

• An optimal learning algorithm is one that minimizes the worst-case total cost.

The differences between the two analyses are as follows:

• In the mistake tree case, three things occur at each tree node: the adversary chooses a
test, the learner responds, and the adversary discloses the correct answer; while in the
learning tree case, only two things occur: the learner posts a question and the adversary
answers.

• In the mistake tree case, the total cost is the number of incorrect responses of the learner;
while in the learning tree case, the total cost is the length of the traversed path.

The last point leads to an interesting phenomenon: the kind of unbalanced tree that an AM
and EM algorithm would encounter in Example 1 is welcome by the learning tree adversary
since it maximizes the maximum path length, but is hated by the mistake tree adversary since
it minimizes the minimum number of mistakes, namely one. On the other hand, a complete tree
is welcome by the mistake tree adversary since it maximizes the minimum number of mistakes,
while it is hated by the learning tree adversary since it minimizes the maximum path length.

Since each AR call can be simulated by two AM calls, this example illustrates a situation
in which the advantage of using relationship oracles over membership oracles is maximum.
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From a theoretical point of view, if we ignore the constant factors, and assume that 1) we
have one positive or negative example of the target concept some time before or after the learning
process; and 2) the learning algorithm does not rely on the distribution of counter examples
returned by equivalence oracles, then any AM and EM algorithm has a corresponding AR and
ER algorithm that uses the same order of the number of oracle calls, and vice versa.

We now return to the question raised at the end of the last section: whether the upper
bounds in Theorem 1 and Theorem 2 is tight. We first observe the fact that there are concept
classes of which the concepts are intrinsically hard to learn:

Lemma 4 If C = 2X , i.e., C contains all possible subsets of X, then all oracle algorithms
require at least |X| oracle calls to learn the target concept c in the worst case, if there is no
prior knowledge about c.

Proof. The lemma follows from the fact that each oracle call can at most reduce the version
space by one half in the worst case.

Since after learning E, c can be learnt by making one additional oracle call, for the concept
class C = 2X , E cannot be learnt from fewer than |X| − 1 oracle calls. Therefore the upper
bounds in Theorem 1 and Theorem 2 cannot be improved in general.

5 Relationship concept classes

In Section 3, we studied an algorithm for learning E from AR and ER calls. From the results
in Section 4, we know that this algorithm can be simulated by AM and EM calls. What if we
wanted to learn E from AM and EM directly in the first place? We could have formulated
the problem as follows. Define the function f that takes a concept c ∈ C as input and returns
the set Ec = {(x1, x2) : x1, x2 ∈ X ∧ ARc(x1, x2)} of all must-links in c. Then we denote the
range of f as C2 = {f(c) : c ∈ C}. We will call C2 the relationship concept class of C, and it
is defined over (X, X) 4. For a given concept c ∈ C, learning Ec is equivalent to learning f(c).
The relationship oracles for c become exactly the membership oracles for f(c).

In bioinformatics, network (i.e., graph) learning has become a popular topic. Instead of
learning some features of individual genes or proteins, more and more studies have switched
to studying the relationships between different biological objects. For example, protein-protein
interaction networks concern the interactions between different proteins, regulatory networks
concern how transcription factors regulate the expression of genes, metabolic networks concern
the interactions between enzymes and metabolites in metabolic pathways, co-expression net-
works concern the co-expression of genes, and co-essentiality networks concern genes that are
co-essential. There is an edge between two objects if they have a certain kind of relationship,
and the relationship can be due to some underlying features of the two individual objects.
Putting in our current language, the relationships may be due to some hidden concepts, but
what we can observe are the relationships rather than the concept memberships. Therefore
it has become popular to treat each object pair as a higher order object, each relationship a
higher order membership, and the set of all relationships the target concept to be learnt. The

4We write (X, X) instead of X2 to emphasize that the order is unimportant, and that the size of the set is
|X|(|X|+1)

2
instead of |X|2.
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class of such concepts is precisely the relationship concept class of the original concept class
defined over the set of individual objects.

We begin the study by noticing that properties of must-links and cannot-links are automat-
ically translated into properties of the relationship concept class C2. For example,

Property 11 Concept size:
For any concept class C defined over the set X of objects and any concept c ∈ C, |f(c)| =
1
2 |c|(|c|+1)+ 1

2 |X−c|(|X−c|+1). Therefore each concept in C2 has a size between d1
4 |X|(|X|+1)e

and 1
2 |X|(|X|+ 1).

Since C2 is defined over (X, X), there are 2O(|X|2) possible concepts. Among them, only a
small proportion satisfies the size requirement. And in fact, since C2 is the image of C under f ,
the size of C2 is at most 2O(|X|). The huge difference between 2O(|X|2) and 2O(|X|) shows that
the properties of must-links and cannot-links impose a very strong constraint on the concepts
in C2.

More precisely, the maximum size of C2 is 2|X|−1, since for all c ∈ C, f(c) = f(X − c).
Therefore, the VC-dimension of any relationship concept class C2 is at most |X| − 1 (we sim-
ply do not have enough concepts to sustain a higher VC-dimension). We can show that it
is a tight bound. Suppose X = {x1, x2, ..., x|X|} using some arbitrary ordering of the ob-
jects in X, then when |C| = 2|X|, C2 can shatter the following (|X| − 1)-subset of (X, X):
{(x1, x2), (x1, x3), ..., (x1, x|X|)}. This is because the set contains no two edges between any
three objects in X, which means each pair in the set is independent of all others, i.e., it can
freely choose its relationship regardless of the other pairs.

Therefore, if we treat the members in (X, X) as Boolean variables whose values depend
on the target concept, it is possible to pick at most |X| − 1 of them such that they are all
independent.

We now study some bounds of the VC-dimension of the relationship concept class C2 of an
arbitrary concept class C.

Lemma 5 Let d be the VC-dimension of a concept class C, then the VC-dimension of the
corresponding relationship concept class is at least d− 1.

Proof. The VC-dimension of C is d means that there exists a set of d objects in X that
can be shattered by C. Let the objects be x1, x2, ..., xd. Then the set of d − 1 object pairs
(x1, x2), (x1, x3), ..., (x1, xd) can be shattered by C2 since each relationship assignment A (as-
signing each of the pairs as a must-link or a cannot-link) can be realized by the concept c
where x1 ∈ c, and xi ∈ c ⇔ A(x1, xi), for all i ∈ {2, 3, ..., d}, i.e., xi is in c if and only if it is
must-linked to x1.

This lower bound is tight because for any d, when |X| = d and |C| = 2|X|, we have shown
that the VC-dimension of C2 is |X| − 1.

We now switch to the upper bound. We first prove a useful lemma.

Lemma 6 Given a concept class C defined over a set X of objects, let Y ⊆ (X, X) be a set of
object pairs and X ′ ⊆ X be the set of objects in X that participate in at least one of the pairs
in Y . If the relationship concept class of C, C2, can shatter Y , then there must be a concept in
C in which at least d |Y |2 e objects in X ′ are present, and at least d |Y |2 e objects in X ′ are absent.
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Proof. We prove the lemma by showing that there exists a relationship assignment of Y that
can only be satisfied by such a concept. We will make use of the vertex merging procedure
introduced in Section 3 as follows. Given the set Y of pairs, we obtain the corresponding set of
objects X ′, and construct the graph G̃0 = (X ′, ∅). Then we choose a suitable assignment for Y
(to be discussed), and treat Y as a set of instance-level relationships obtained from oracle calls.
We repeatedly take out a relationship from the assignment at each time step, and merge the
vertices of G̃t for each must-link, and add an edge between two vertices for each cannot-link.
Each relationship taken out must contain some new information, for otherwise some pairs in Y
will not be completely independent, and thus C2 cannot shatter it. By Lemma 1, the resulting
graph after the merging procedure contains a number of connected components, each with one
or two vertices. For convenience, for connected components that contain a single vertex, we
imagine that there are two vertices, but one of them represents zero objects.

Suppose there are n connected components, and the numbers of objects represented by the
two vertices in the i-th connected component are qi and q′i respectively. Let s =

∑n
i=1 min(qi, q

′
i),

then any concept in C that satisfies this assignment must have at least s of the objects in X ′

present, and at least s of the objects in X ′ absent. Therefore our goal is to find an assignment
such that s ≥ d |Y |2 e.

To find the assignment, we use X and Y to form the graph H = (X, Y ). Notice that we use
a new symbol H here, since it is not a relationship graph for we still have not determined which
of the edges are must-links and which are cannot-links. H contains exactly n connected com-
ponents, each corresponding to one of the connected components in G̃|Y |, the final relationship
graph based on Y . Let pi be the number of pairs in the i-th connected component, then the
number of objects represented by the two vertices in the connected component is exactly pi +1,
since H is acyclic, again for otherwise some pairs in Y will not be completely independent.
Then we arbitrarily color bpi+1

2 c of the vertices red, and the remaining vertices blue. Each edge
connecting two vertices of the same color is assigned as a must-link, and each edge connecting
two vertices of different colors is assigned as a cannot-link.

For each connected component, the merging procedure combines all red vertices into one
vertex and all blue vertices into one vertex. Therefore min(qi, q

′
i) = bpi+1

2 c, and thus s =∑n
i=1b

pi+1
2 c ≥ d

∑n
i=1

pi
2 e = d |Y |2 e.

We can now prove the following upper bound:

Lemma 7 Given a concept class C, let m = min(maxc∈C |c|, maxc∈C |X − c|). Then the VC-
dimension of the relationship concept class of C is at most 2m.

Proof. Let d be the VC-dimension of the relationship concept class of C, m1 = maxc∈C |c|
and m2 = maxc∈C |X − c|. From Lemma 6, we know that d ≤ 2m1 and d ≤ 2m2, therefore
d ≤ 2min(m1,m2) = 2m.

It turns out that this bound is again a tight one in that there exists a family of concept
classes in which the VC-dimension of the relationship concept class is exactly 2m. Let X =
{x1, x2, ..., x|X|} where |X| is odd and C be the concept class that includes all subsets of X

of size m or less, where m ≤ b |X|
2 c. Then m equals min(maxc∈C |c|, maxc∈C |X − c|). Let C2

be the relationship concept class of C. The VC-dimension of C2 is 2m, since it can shatter
the following 2m-subset of (X, X): {(x1, x2), (x1, x3), ..., (x1, x2m+1)}. This is because for any
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assignment taken as input knowledge, the final relationship graph produced by the merging
procedure consists of two vertices, the smaller of which contains at most m objects. Therefore
this assignment is satisfied by the concept of C that includes all the objects in the smaller
vertex but none in the larger vertex.

We summarize the results in the following theorem.

Theorem 4 Given a concept class C of VC-dimension d, let m = min(maxc∈C |c|, maxc∈C |X−
c|), C2 be the relationship concept class of C and d2 be its VC-dimension. Then d−1 ≤ d2 ≤ 2m.
Furthermore, there exist concept classes for which d − 1 = d2, and there exist concept classes
for which d2 = 2m.

So far we have been implicitly assuming that X is finite. A nice thing about the above
theorem is that the VC-dimension of C2 does not directly depend on |X|, such that as long
as all concepts in C have a finite size, the VC-dimension of C2 is finite, even if |X| is infinite.
However, according to Property 11, if |X| is infinite, every concept in C2 is infinite. This is
because there is a must-link between every pair of the infinite number of objects not in the
target concept. In this situation, if C is finite, and all concepts in C are finite, then any target
concept c ∈ C can be trivially learnt by enumerating all concepts in C. This guarantees that the
corresponding relationship concept f(c) must also be learnable by enumerating a finite number
of concepts, albeit each of them is infinite. Therefore we need a finite representation for the
argument of the EMf(c) calls. For each concept f(c) in C2, c is precisely a finite representation
that can uniquely determine f(c). If we need to make EMf(c) calls with an argument c′2 that
is not in C2, there is a finite representation c′ such that c′2 = f(c′) if and only if c′2 involves a
finite number of objects in X, and the pairs in c′2 form two cliques (one of them can be empty).
Otherwise, c′2 may or may not have a finite representation.

For example, the halving algorithm [3] that minimizes the worst case number of EM calls
by reducing the version space by half after each call may need to use some concepts c′2 that has
no corresponding concepts c ∈ C such that c′2 = f(c). To illustrate, suppose X is the infinite
set {x1, x2, ...} and C contains only three concepts: {x1, x2}, {x1, x3} and {x1, x2, x3}. Then
the pair (x1, x2) receives two votes, (x1, x3) receives two votes, but (x2, x3) receives only one
vote. Therefore, the algorithm will make an EM call with the argument containing the first
two pairs but not the third, which violates the “odd number of must-links” rule and is thus
inconsistent with all concepts in C.

6 Passive learning

In this section we study the problem of learning c passively, i.e., using PR calls. We will focus
on the problem of learning E, the set of must-links of the target concept c. We will also focus
on concept classes that are defined over a finite set of objects. Since we have no control of the
relationships returned by PR, an adversary can easily prohibit a learner from learning E by
returning the same relationship again and again, if the relationship is consistent with at least
two concepts in the concept class. It is therefore unreasonable to ask a learner to completely
identify E if there are no constraints on the information returned.

We are interested in two problems. First, we want to know what constraints need to be
imposed on PR so that E can be completely learnt, and the corresponding learning cost.
Second, if the goal is to learn a set of relationships that is sufficiently similar to E according
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to a certain measure (e.g. based on the PAC model) rather than to identify E completely, we
want to study the number of oracle calls required.

We first study the necessary and sufficient conditions for learning E completely by making
PR calls only. After making a sequence of oracle calls, we say that two objects x, x′ ∈ X are
directly oracle-connected if ((x, x′), r) was either 1) the argument of one or more AR calls, 2)
the response of one or more PR calls, or 3) the counter example of one or more ER calls.
Two objects x, x′ ∈ X are oracle-connected if there exists a chain of objects such that x is
the first object of the chain, x′ is the last object, and every two consecutive objects in the
chain are directly oracle-connected. If we define binary operators odc and oc that take two
objects as inputs and return true if and only if the two objects are directly oracle-connected
and oracle-connected respectively, then both operators are symmetric, and oc is transitive. We
now discuss the necessary and sufficient conditions in terms of oracle-connectedness.

Lemma 8 Let C = 2X be the concept class that contains all subsets of the set X of objects,
and c ∈ C is a target concept. The relationship graph of c can be learnt from PR calls alone if
and only if all objects in X are oracle-connected after the calls.

Proof. The condition is sufficient because for any two objects x, x′ ∈ X, suppose they are
connected through the chain x, x1, x2, ..., xn, x′, then the relationship between x and x1 and
between x1 and x2 imply the relationship between x and x2. Then the relationship between x
and xi(i = 3..n) can be inferred, and finally the relationship between x and x′.

The condition is necessary because if two objects x1, x2 ∈ X are not oracle-connected, the
relationship between the two objects is not directly supplied by the oracle calls. Also, after all
possible inference of relationships, there exists no object x3 such that both the relationships
between x1 and x3 and between x2 and x3 are known. Therefore none of the inference rules
can infer the relationship between x1 and x3, and thus the version space contains more than
one relationship graph.

Corollary 2 Let C = 2X be the concept class that contains all subsets of the set X of objects,
and c ∈ C be a target concept. Suppose the examples returned by PR calls are drawn randomly
and independently from a distribution over all pairs of distinct objects in X, then the relationship
graph of c can be learnt from PR calls alone if and only if there does not exist a set U ⊂ X
such that ∀x1 ∈ U,∀x2 ∈ X −U,Pr(x1, x2) = 0, where Pr(x1, x2) is the probability for the pair
(x1, x2) to be drawn as the example of a PR call.

We now present a more general result for arbitrary concept classes.

Lemma 9 Let C be a concept class defined over a set X of objects, and ci, cj be two concepts
in C. Let P be the set of all object pairs (x, x′) such that ARci(x, x′) 6= ARcj (x, x′). The two
concepts can be distinguished by PR calls alone if and only if there exists a pair in P with
non-zero probability.

Proof. The condition is sufficient because if there is a non-zero probability of drawing any
object in P , then the two concepts can be distinguished when the pair is drawn.

The condition is necessary because if all pairs in P have zero probability, then they will
never be drawn. At the same time, they cannot be inferred by other pairs being drawn because
in order to infer different relationships for the same pair of objects, the two concepts must
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disagree on the relationship between at least one of the pairs used by the inference, which must
also be in P and thus have zero probability of being drawn.

Therefore we have the following theorem.

Theorem 5 Let C be a concept class defined over a set X of objects. For any two concepts
ci, cj, let Pi,j be the set of all object pairs (x, x′) such that ARci(x, x′) 6= ARcj (x, x′). Then
the relationship graph of ci can be learnt from PR calls alone if and only if ∀js.t.ci 6= X −
cj ,∃(x, x′) ∈ Pi,js.t.Pr(x, x′) > 0. Therefore, the relationship graphs of all concepts in C can
be learnt from PR calls alone if and only if ∀i, js.t.ci 6= X − cj ,∃(x, x′) ∈ Pi,js.t.Pr(x, x′) > 0.

The analogous theorem for learning from PM calls is that all concepts in a concept class can
be learnt if and only if for every pair of concepts, there exists at least one object the membership
of which the two concepts disagree on has a non-zero probability of being drawn. Since every
two concepts differ by O(|X|) memberships, but O(|X|2) relationships, the constraints on the
probability distribution of PR examples are much weaker than the constraints on that of PM
examples.

Notice that Theorem 5 can be extended to algorithms that involve AR, if the AR oracle is
allowed to answer “I don’t know” to some queries. Each relationship that the AR oracle cannot
answer is analogous to a relationship that the PR oracle will never return (i.e., one with zero
probability of being drawn). Therefore if such relationships partition the relationship graph
into two or more disjoint partitions, E can never be learnt completely. On the other hand, if
E can be learnt, then the fact that AR cannot answer some queries has minimal impact to the
learning algorithm presented in Section 3. The total number of oracle calls is only |X| − 1 plus
the number of times that AR answers “I don’t know”.

We now switch to the problem of learning an approximation of E that is sufficiently good
according to a certain measure.

First, we consider the PAC setting in which the goal is to learn a concept that with a high
probability, is approximately correct. More precisely, suppose the real concept is c and the
learnt concept is c′, we want the following inequality to hold with probability at least 1 − δ:
Pr(AMc(x) 6= AMc′(x)) ≤ ε, where x is an object drawn randomly according to a distribution
over X, and δ and ε are two quality parameters.

Blumer et al. [9] proved general lower and upper bounds for PAC learning based on the
VC-dimension of a concept class. Let d be the VC-dimension of the concept class C, they
proved that

• For 0 < ε < 1, any concept in C can be learnt from max(4
ε log 2

δ , 8d
ε log 13

ε ) or more PM
calls.

• For 0 < ε < 1
2 , no concepts in C can be learnt from max(1−ε

ε ln 1
δ , d(1− 2(ε(1− δ) + δ)))

or fewer PM calls.

Let m = min(maxc∈C |c|, maxc∈C |X − c|), then using these results, and the bounds we
obtained in Theorem 4, we can give the bounds for learning concepts in C using PR calls:

• For 0 < ε < 1, any concept in C can be learnt from max(4
ε log 2

δ , 16m
ε log 13

ε ) or more PR
calls.
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• For 0 < ε < 1
2 , no concepts in C can be learnt from max(1−ε

ε ln 1
δ , (d−1)(1−2(ε(1−δ)+δ)))

or fewer PR calls.

Another way to deal with the problem of approximate learning is to maximize the expected
total net reward of oracle calls, which is based on the cost and reward of oracle calls. We will
consider this approach in the next section.

7 Mixed learning

We now consider learning E using all three relationship oracles, AR, ER and PR. We will
base our discussion on the cost and reward of oracle calls. We assume that each type of oracle
call is associated with a constant positive cost. The costs for making an AR, ER and PR call
are denoted as λA, λE and λP respectively. The response of each oracle call is given a reward
value based on the amount of new information it carries. Suppose an oracle call returns the
relationship between a pair of objects (x, x′), we propose three different reward functions, Υ1,
Υ2 and Υ3:

• Υ1(x, x′) = 1 if the relationship between x and x′ was not already known from the rela-
tionships contained in or inferred from the responses of previous oracle calls, Υ1(x, x′) = 0
otherwise.

• Υ2(x, x′) equals the number of new relationships being known due to the relationship
between x and x′, assuming all known relationships are contained in or inferred from
responses of oracle calls.

• Υ3(x, x′) equals the number of relationship graphs in the version space being pruned by
the relationship between x and x′.

The first two reward functions are for general analyses, in which we make no assumptions of
the concept class C. Υ1 is more suitable when the ultimate goal is to learn the target concept
c, while Υ2 is more suitable when the goal is to learn as many of the relationships of the object
pairs as possible. Υ3 applies to situations in which we have some prior knowledge (bias) about
the concept class, which can infer relationships without explicit oracle calls. For example,
suppose we have got the relationships between objects x1 and x2, and between x1 and x3. If
we have no prior knowledge about C, no matter what the actual relationships are, we get only
one additional inferred relationship, the one between x2 and x3. However, if we know that C is
the set of all (|X|−1)-subsets of X, then if both relationships are cannot-links, we immediately
know that c = X − {x1}. But if both relationships are must-links, we can only prune away
three concepts from C. This example shows that when we have some prior knowledge about
C, Υ3 could be a more suitable reward measure than Υ1 and Υ2.

It can be seen that for any given learning process, there is a maximum total reward of all
oracle calls, which is equal to |X| − 1, 1

2 |X|(|X| − 1) and |{f(c) : c ∈ C}| − 1 for Υ1, Υ2 and
Υ3 respectively, where f is the function that maps a concept to the set of must-links defined in
Section 5. At any time, if an ER call returns true, the reward of the call equals the maximum
total reward minus the total reward of all the oracle calls being made so far.

We now setup a probabilistic framework for analyzing the cost and reward of oracle calls. We
will assume X to be finite. The responses of PR calls are drawn randomly and independently
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from a certain distribution. We denote the probability for PR to return the relationship between
the pair (x1, x2) as Pr(PR = (x1, x2)). Similarly, the counter examples of ER calls are drawn
randomly and independently from a certain distribution given the guess c′. The probability
for ER to return the relationship between the pair (x1, x2) as counter example is denoted as
Pr(ER = (x1, x2)|c′). We assume the learner has a prior probability distribution over the set
of all possible concepts of C, where the prior probability for concept c is denoted as Pr(c).

We first study PR. Suppose at a certain time, we receive the relationship between a pair
(x, x′) of objects through a PR call. Suppose there are k sets of distinct oracle-connected objects
S1, S2, ..., Sk, then the probability that Υ1(x, x′) = 1 is p = 1−

∑k
i=1

∑
y,y′∈Si

Pr(PR = (y, y′)),
which is also the expected value of Υ1(x, x′).

For Υ2(x, x′), there are four cases:

• If both x and x′ are in the same object set, Υ2(x, x′) = 0. The probability is
∑k

i=1

∑
y,y′∈Si

Pr(PR =
(y, y′)).

• If both x and x′ are not in any of the k object sets, Υ2(x, x′) = 1. Let S̃ = X − ∪k
i=1Si,

then the probability is
∑

y,y′∈S̃ Pr(PR = (y, y′)).

• If x is in the i-th object set, but x′ is not in any of the object sets, then Υ2(x, x′) = |Si|.
Reusing the definition of S̃ in the previous case, the probability is

∑
y∈Si

∑
y′∈S̃ Pr(PR =

(y, y′)).

• If x is in the i-th object set, and x′ is in the j-th object set (i 6= j), then Υ2(x, x′) = |Si||Sj |.
The probability is

∑
y∈Si

∑
y′∈Sj

Pr(PR = (y, y′)).

The value of Υ3(x, x′) depends on both the oracle-connected objects and the relationship
graphs in the current version space. Suppose the concept being guessed is c′, there are two
cases:

• If both x and x′ are in the i-th oracle-connected object set, then Υ3(x, x′) = 0. The
probability is

∑k
i=1

∑
y,y′∈Si

Pr(ER = (y, y′)|c′).

• Otherwise, the relationship is a new piece of information, and the value of Υ3(x, x′) is
equal to the number of concepts that assigns the opposite relationship to the object pair.
We can treat each relationship graph in the version space as a higher order object, and two
relationship graphs are must-linked if they assign the same relationship to the object pair
(x, x′). Otherwise, they are cannot-linked. Using the vertex merging procedure again, the
higher order relationship graph of the version space has two vertices, each representing
a set of relationship graphs of the original concepts. If all the relationship graphs in the
version space assigns the same relationship to the object pair (x, x′), one of the vertices
is empty. Recall the notation Pi,j as the set of all object pairs the relationships of which
the concepts ci and cj disagree on, and denote Ct as the current version space, then the
probability for Υ3(x, x′) = 0 is

∑
ci,cj∈Ct

∑
y,y′∈X:(¬∃ls.t.y∈Sl∧y′∈Sl)∧((y,y′)/∈Pi,j) Pr(ER =

(y, y′)|c′), where y and y′ are two objects in X such that 1) are not in the same oracle-
connected object set (i.e., the relationship between them is a new piece of information);
and 2) the concepts c1 and c2 agree on the relationship between them. The probabilities
for other values of Υ3(x, x′) can be determined by looking at the exact content of the
relationship graphs in Ct, or lower and upper bounds can be computed based on the sets
Sl’s and Pi,j ’s.
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For AR, the reward of each call depends on the response as in the case of PR, but the
probability for receiving each response depends on the nature of the learning algorithm, which
can be deterministic. For ER, the reward of each call can be analyzed in almost the same way
as in PR, but we also need to consider the probability for an ER call to return true. The
probability for that is Pr(c′|Gt) = αPr(c′)Pr(Gt|c′), where Gt is the part of the relationship
graph learnt so far, and α is the normalization factor of Bayesian inference.

The net reward of a learning process is the total reward of all the oracle calls minus the
total cost. The goal of mixed learning is to design the sequence of oracle calls such that the
expected net reward is maximized.

Unless we want to explore the probability distribution of the responses of PR calls, for
purposes like estimating the testing distribution, it is usually easier to learn using AR calls
than PR calls because in the former case we have control of what relationship to ask for but
in the latter case we do not. Therefore we will assume that the cost of an AR call is higher
than that of a PR call. This makes sense in many practical situations. For example, when we
try to study the interactions between different proteins, a PR call could correspond to looking
up the literature to identify a known interaction, while an AR call could be a real laboratory
experiment, which is much more costly.

Similarly, if the expected reward of an ER call is always smaller than that of an AR call,
there is no reason to make ER calls if they have higher cost than an equal number of AR calls.
Unlike what we have just said for AR and PR, in reality it does happen that the cost of an
ER call is much higher than an AR call. In fact, when a real ER oracle is not available, one
way to simulate a stochastic ER is to use a number of AR calls [3]. Therefore unless there is
a good probability that we can make ER calls that return true, it is generally more preferable
to use AR calls than ER calls.

We now study several algorithms for learning the edges E in the relationship graph of the
target concept using AR and PR calls only. The first one is a simple greedy algorithm that
at each time step, it always makes the oracle call with the maximum expected net reward.
This algorithm is not optimal, as illustrated by the following example. Suppose we want to
learn the relationship between a pair of objects. The probability for a PR call to return the
relationship is p, and its reward is υ. We have two choices: either to make an AR call to get
the relationship, or make PR calls until we receive the relationship. It can be easily verified
that all call sequences that involve both AR and PR must have a total net reward not more
than one of these two choices. The net reward of using the AR call is υ − λA, while the
expected net reward of a PR call is pυ − λP . Therefore the algorithm would choose to make
the AR call if pυ − λP < υ − λA. However, the total expected net reward of using PR calls is
υ −

∑∞
i=1(1 − p)i−1piλP = υ − λP

p = 1
p(pυ − λP ) . Therefore the call sequence would be not

optimal if 1
p(pυ − λP ) > υ − λA. For instance, when λA = 5, λP = 2, υ = 8 and p = 0.5, both

inequalities are satisfied and thus the algorithm is not optimal.
On the other extreme, we could always obtain an optimal solution by performing an exhaus-

tive search of a state space. In this approach, each state corresponds to one of the subsets of E.
Each state can reach a set of states by performing an action: an AR call or a PR call. If an AR
call is made, the transition is deterministic. If a PR call is made, the transition is probabilistic.
Each transition is associated with a reward value according to the reward function being used.
The expected utility of an action is equal to the expected utility of the state being transited to,
plus the expected reward of the transition, minus the cost of the action. The expected utility
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of a state is equal to the maximum of the expected utility of all the actions that can be taken
in that state, or zero if all actions have negative utility. At any state, the action to be taken is
the one with the highest utility.

The above setting is a special form of Markov decision process. There is a finite number of
states with a partial order between them based on the number of edges in E already learnt. A
state can only move to another state with the number of edges learnt not less than the current
state. The learning stops when the final state is reached, which corresponds to the state with
all edges in E learnt. At each time step, the learning algorithm can choose to have the next
transition being deterministic or probabilistic, both with a fixed cost, but the former one has a
fixed reward while the reward for the latter one is probabilistic.

Since we are considering a finite X, the number of states is finite. This means it is possible
to setup a finite system of equations for estimating the utility values, for example by using
iterative methods. Unfortunately, this is computationally intractable due to the enormous size
of the state space. In practice, one may want to adopt an intermediate approach between the
two extremes. For example, one possible heuristic is to consider all possible AR calls and bλA

λP
c

consecutive PR calls, and take the action with the highest expected net reward.

8 Learning in a multi-concept environment

In this section we extend the learning problem to a multi-concept environment. We assume
there is a set of concepts c = {c1, c2, ..., ck}, where k is a known integer. We first consider
disjoint concepts, in which each object belongs to one and only one concept. There is a must-
link between two objects if they are in the same concept. Otherwise, there is a cannot-link
between them.

For simplicity, we will assume that all k concepts are non-empty. The relationship graph of
c contains k cliques, and its complement is a k-partite graph, with every vertex connecting to
all vertices in other parts.

Among the three inference rules, the transitivity of must-links (Property 3) and the propa-
gation of cannot-links (Property 4) still hold, but the elimination of cannot-links (Property 5)
does not hold anymore. This rule can be generalized to hold for an arbitrary number of concepts
as follows:

Property 12 Elimination of cannot-links (for k concepts):
For any objects x1, x2, ..., xk+1 ∈ X, if 1) for all distinct i, j ∈ {1, 2, ..., k} there is a cannot link
between xi and xj, and 2) for all i ∈ {2, ..., k} there is a cannot-link between xi and xk+1, then
there is a must-link between x1 and xk+1.

In other words, if we know that x1, x2, ..., xk all belong to different concepts, and xk+1

belongs to a concept different from the ones to which x2, x3, ..., xk belong, then xk+1 must
belong to the concept to which x1 belongs.

This generalization has a serious consequence to the general learning algorithm that we
discussed. The basic impact is that it is now possible to receive more than O(|X|) distinct
relationships from oracles without being able to infer even one new relationship. Consider the
following example. Suppose |X| = n(k − 1), where n is a positive integer. We partition X into
k − 1 groups, each with n objects. Suppose we receive from oracle calls a cannot-link for each

inter-group object pairs. In total there are |X|n(k−2)
2 = |X|2(1− 2

k
)

2 of them. Among all the |X|
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objects, we cannot find any set of k objects such that we have received a relationship between
every pair of objects within the set. This can be seen in two steps. First, since all relationships
are between objects of different groups, the k objects must all come from different groups in
order to have all pairs with a relationship received. But there are only k − 1 groups, so it is
impossible to pick k objects all from different groups.

Now, since the inference rule in Property 12 requires a group of k fully connected objects,
it cannot be applied to the example scenario. In addition, both of the other two inference rules
require at least one must-link, but we have not received any must-links in the example, so they

also cannot be applied. In other words, even we have received |X|2(1− 2
k
)

2 relationships from
oracle calls, we still cannot make any inference at all.

The number |X|2(1− 2
k
)

2 is a lower bound of the number of distinct oracle calls required before
we can make the first inference in the worst case, i.e., when we do not have control of what
oracle calls to make. There is a big gap of the exact value of the number when k = 2 and
k = 3. When k = 2, this number is equal to 0. And in fact, we know that if any two object
pairs among a set of three objects have their relationships specified, we can infer the third one.
That means after receiving |X|

2 = O(|X|) relationships, we must be able to make an inference.
However, when k > 2, the formula is of order Θ(|X|2). Therefore, if we do not control the
sequence of oracle calls, in the worst case it takes Ω(|X|2) calls to completely learn the set of
edges E of the relationship graph of the target concept, even we receive some new information
in each call. Comparing to the |X| − 1 calls guarantee when k = 2, the increase in the number
of oracle calls is substantial.

Fortunately, by controlling the call sequence, it is possible to learn E using O(|X|) AR calls.
One possible way is as follows: we choose an object, and use AR to query the relationship
between it and every other object. The object and all objects must-linked to it form a concept.
Then we choose another object, and use AR to query the relationship between it and every
object not in the first concept. We repeat the process until we have formed k − 1 concepts.
The remaining objects then belong to the last concept. The worst case appears when the
relationships received in the first k−2 scans are all cannot-links. In that case, the total number
of oracle calls needed is (|X| − 1) + (|X| − 2) + ... + (|X| − k + 1) = (k − 1)(|X| − k

2 ). When
|X| � k, this number is close to |X − 1|(k − 1), which seems not too desirable since it is the
number of oracle calls required for learning k − 1 concepts separately using the individual AR
oracles of the concepts.

Unfortunately, it is impossible to use a smaller number of oracle calls in the worst case.
To completely construct E, we need to receive and/or infer at least |X| − k different must-
links in total. If all received relationships are cannot-links, each must-link must be inferred by
Property 12. Each such inference involves a set of k objects all cannot-linked to each other,
plus an object that is cannot-linked to k − 1 of them. These k + 1 objects can be viewed as
a set of objects with all but one pair of objects not cannot-linked together. The must-link
being inferred is exactly between these two objects. If we view the objects in X as vertices
and cannot-links as edges, we want to solve the following graph problem: in a graph with |X|
vertices, what is the minimum number of edges required to create |X| − k “defective cliques”
of size k + 1, each with exactly one missing edge, and no two of them share the same missing
edge?

We now prove that this number is exactly (k − 1)(|X| − k
2 ). Suppose there is a graph

that contains at least |X| − k defective cliques each with exactly one missing edge and no
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two of them share the same missing edge. We pick any two of them. Suppose they involve
objects {x1, x2, ..., xk+1} and {x′1, x′2, ..., x′k+1} respectively, where the missing edge in the first
defective clique is (x1, x2), and the one in the second defective clique is (x′1, x

′
2). Then first we

know that at least one of the objects in (x′1, x
′
2) must be different from both objects in (x1, x2),

for otherwise the two defective cliques would have the same missing edge. Also, we know that
there must not exist integers i, j(1 ≤ i ≤ k+1, 3 ≤ j ≤ k+1) such that (xi, xj) = (x′1, x

′
2), since

this edge would be missing in the first defective clique but present in the second one, which is
impossible. Therefore, at least one of x′1, x

′
2 is not in {x1, x2, ..., xk+1}. This means the second

defective clique contains at least k − 1 edges that are absent in the first defective clique.
Then we pick a third defective clique. Using the same argument again, at least one of the

two objects involved in the missing edge must not be involved in both the first and the second
defective cliques. Therefore this third defective clique again must contain at least k − 1 edges
that are absent in the first two defective cliques. By repeating the process to examine |X| − k

defective cliques, we notice that the graph must contain at least k(k+1)
2 −1 edges that define the

first defective clique, and at least k−1 new edges for each of the other |X|−k−1 defective cliques.
Summing up, the graph must contain at least k(k+1)

2 −1+(k−1)(|X|−k−1) = (k−1)(|X|− k
2 ).

Based on the result, we can now state the following theorem.

Theorem 6 In order to completely learn the relationship graph of k disjoint non-empty con-
cepts defined over a set X of objects using AR, ER and PR calls only, in the worst case at least
(k− 1)(|X| − k

2 ) oracle calls are needed. This lower bound is tight because there exists an algo-
rithm that uses AR calls only, which learns the relationship graph using exactly (k−1)(|X|− k

2 )
calls in the worst case.

As in the two-concept case, after learning E, we know the exact concepts if we have an
example of k − 1 of the concepts, which can be obtained by making k − 1 AM calls.

If we use AM directly to learn k disjoint concepts, obviously we need to make at most |X|
calls. This means the information carried by a membership is approximately equal to k − 1
times the information carried by a relationship.

For passive learning, in order to learn the relationship graph of k disjoint concepts com-
pletely, we need to be able to receive and/or infer all must-links. The sufficient and necessary
conditions are the same: if we treat the objects as vertices and must-links as edges, we need to
be able to receive and/or infer must-links so that all the objects in each concept are connected.

We now switch to the case when the concepts are not disjoint, i.e., each object may belong
to zero, one or more concepts in c. For an object x ∈ X, we will use c(x) to denote the
set of concepts that x belongs to, among the k concepts under consideration. The relationship
between two objects is thus no longer the relationship between the two concepts that they belong
to, but the two sets of concepts that they belong to. For example, based on the oracles that
supply language-level information defined by Angluin [3], we can define various kinds of active
oracles that supply instance-level information in a non-disjoint multi-concept environment, each
of which being a binary function that takes two objects as inputs, and returns a truth value:

• Identity5: AR=(x1, x2) ⇔ c(x1) = c(x2).
5In [3], the term “equivalence” is used instead of “identity”. We prefer the latter in order not to get confused

with the ER oracle.
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• Subset: AR⊆(x1, x2) ⇔ c(x1) ⊆ c(x2).

• Superset: AR⊇(x1, x2) ⇔ c(x1) ⊇ c(x2).

• Disjointness: AR∅(x1, x2) ⇔ c(x1) ∩ c(x2) = ∅.

• Exhaustiveness: ARc(x1, x2) ⇔ c(x1) ∪ c(x2) = c.

We can define passive oracles similarly, but we will focus on the active oracles. The symbols
used in the oracle definitions will also be used to define relationships. For example, ((x1, x2),=)
means AR=(x1, x2) is true. Notice that since the subset operator is not commutative, (x1, x2)
here means an ordered pair, and the first object is always used as the first argument of oracle
calls.

There are some inference rules for the relationships:

1. ((x1, x2), ?) ⇒ ((x2, x1), ?), where ? ∈ {=, ∅, c}.

2. ((x1, x2),⊆) ⇔ ((x2, x1),⊇).

3. ((x1, x2),=) ∧ ((x2, x3), ?) ⇒ ((x1, x3), ?), where ? ∈ {=,⊆,⊇, ∅, c}.

4. ¬((x1, x2),=) ∧ ((x1, x2), ?) ⇒ ¬((x2, x1), ?), where ? ∈ {⊆,⊇}.

5. ((x1, x2), ?) ∧ ((x2, x1), ?) ⇒ ((x1, x2),=), where ? ∈ {⊆,⊇}.

6. ((x1, x2),⊆) ∧ ((x2, x3), ?) ⇒ ((x1, x3), ?), where ? ∈ {⊆, ∅}.

7. ((x1, x2),⊇) ∧ ((x2, x3), ?) ⇒ ((x1, x3), ?), where ? ∈ {⊇, c}.

We first study each oracle individually, to see what can be learnt if we use only one kind of
oracle calls. Using AR= calls only, we can partition the objects into disjoint groups, such that
all objects within a group belong to exactly the same subset of concepts in c. We can perform
some analysis by setting up a link between disjoint and non-disjoint concepts. If we take each
of the 2k subsets of c as a higher-order concept, then each object belongs to exactly one higher-
order concept, i.e., the higher-order concepts are disjoint. The AR= oracle in the non-disjoint
environment becomes exactly the AR oracle of the disjoint higher-order concepts. Then by
Theorem 6, we know that if all the higher-order concepts are non-empty, the groups can be
learnt by using (2k−1)(|X|−2k−1) oracle calls. This is also the minimum number of oracle calls
required in the worst case. If some of the higher-order concepts are empty, then the groups can
be learnt by making AR= calls between every pair of objects, which requires |X|(|X|−1)

2 oracle
calls. The scanning algorithm described previously for learning disjoint concepts guarantees
that the actual number of oracle calls is the minimum of the two.

For AR⊆, we can learn something more. First, because each AR= can be simulated by
two AR⊆ calls using Rule 5, we can also learn the object groups that can be learnt by using
AR= calls. In addition, we can also learn a partial order of the groups, based on the subset
relationships between the different subsets of concepts represented by the groups. If there are 2k

different groups, then we know the complete subset relationships between the different groups.
This means, for example, we know how many concepts each object in X belongs to. On the
other hand, if there are fewer than 2k groups, suppose we view the partial order as a lattice
with each group as a node and groups representing larger subsets of concepts on the top, then
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the lower bound of the number of concepts of a group is equal to the number of edges in the
longest path that goes down the lattice from the group, and the upper bound is equal to k
minus the number of edges in the longest path that goes up the lattice from the group. AR⊇

can achieve exactly the same thing.
For AR∅, again we can obtain some information about the number of concepts each object

belongs to. First, all objects that do not belong to any concept can be detected, because they
are the only objects x that the call AR∅(x, x) returns true. Then for the remaining objects, we
put them into groups such that 1) for every two objects x1, x2 in the same group, AR∅(x1, x2)
is false; and 2) for every two objects x1, x2 in the same group and an object x′ in a different
group, AR∅(x1, x

′) = AR∅(x2, x
′). The objects that do not belong to any concept are also

put into a group. If there are exactly 2k groups, then each group corresponds to exactly one
distinct subset of c. It is impossible to know exactly which subsets the groups represent, but
it is possible to determine the size of the subsets represented by each group. For a subset of
size n, there are exactly 2k−n subsets of c that are disjoint from it. Therefore if the objects of
a group form disjointness-links with objects of 2k−n different groups, then the group represents
a subset of n different concepts in c. The subset information between different groups can also
be determined. For a group that represents a subset c′ of size n, we look for all groups that
represent a subset c′′ of size n+1. c′ is a subset of c′′ if and only if whenever c′′ is disjoint from
a subset of concepts, c′ is also disjoint from it. Therefore, if all 2k groups are formed, we can
use AR∅ calls to learn the same information we described that can be learnt form AR⊆ calls.

On the other hand, if there are fewer than 2k groups, then objects in the same group may
belong to different subsets of concepts. In this case, the number of disjoint groups can be used
to obtain an upper bound of the number of concepts each object of a group must belong to. If
an object forms disjointness-links with the objects of n other groups, then it must belong to
at most k − dlog2 ne different concepts. In addition, we also obtain some extra information.
Suppose there is a group in which there is an object xi with c(xi) = ci and there is an object xj

with c(xj) = cj, where ci and cj are two different subsets of concepts. The symmetric difference
between them is the set (ci− cj)∪ (cj− ci). Then any object in X that belongs to a concept in
the symmetric difference must also belong to at least one concept in ci ∪ cj, for otherwise the
object can be used to distinguish ci from cj, and thus xi and xj would have been put into two
different groups. Therefore if later we identify ci and cj completely, we can come up with a list
of subsets of concepts that is different from c(x),∀x ∈ X.

The case for ARc is similar to that of AR∅. We can identify all objects that belong to all
the concepts in c, because they are the only objects x that the call ARc(x, x) returns true.
Then we can form groups in a similar fashion. If there are 2k groups, we can deduce the subset
information between different groups completely. Otherwise, we can determine the minimum
number of concepts each object belongs to, and obtain some rules that specify which subsets
are not equal to any c(x),∀x ∈ X.

Now, having studied each of the five oracles individually, let us consider the following
learning problem. Suppose we also have access to the AR oracles of the k individual concepts,
but the cost of making one call to these oracles is much higher than making one call to the
five oracles above. We would like to learn the relationship graphs of the k concepts using the
smallest number of calls to the k AR oracles.

We first determine the baseline. If we learn the k relationship graphs using the individual
AR oracles only, we need to make |X| − 1 calls to each oracle, giving a total of k(|X| − 1) calls.

We will briefly study a two-step algorithm. In the first step, we use the five types of oracles
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to learn the object groups and the subset information between them. We will again use a
lattice to represent the information. The lattice can be learnt by first using min((2k − 1)(|X| −
2k−1), |X|(|X|−1)

2 ) AR= calls to learn the groups. Suppose there are g groups, then the subset
information between them can be learnt by using g(g−1)

2 AR⊆ calls. In total, the lattice can be
learnt by using at most |X|(|X| − 1) calls.

Then in the second step, we use the lattice and calls to the individual AR oracles to learn
the k relationship graphs. We first consider a simple case, in which the lattice contains all 2k

nodes. In this case, we do not need to make any calls to the individual AR oracles at all. We
simply arbitrarily assign the k concepts to the k nodes that represent one single concept. Then
from the lattice structure, the concepts represented by each node are completely determined.
The k relationship graphs can then be exactly deduced, subject to permutation of the concepts.
Notice that due to symmetry, we could also use the k nodes each of which represents k − 1
concepts as reference.

There is an interesting remark for this case. Since there is at least one object that does not
belong to any concept, we can use this object as a reference to exactly determine which concept
each of the k nodes represents. We first use at most k − 1 AR calls to deduce the concept
the first node represents, then use at most k − 2 calls to deduce the concept the second node
represents, and so on. The total number of AR calls required to completely determine the k
concepts (not only their relationship graphs) is at most (k − 1) + (k − 2) + ... + 1 = k(k−1)

2 .
Next, we consider lattices with fewer than 2k nodes. In this case, the number of concepts

represented by a node and the number of concepts represented by a child of this node may be
larger than one. We will first use the lattice structure as well as AR∅ and ARc calls to determine
the upper and lower bounds of the number of concepts represented by each node. We will also
know exactly which node pairs represent concepts that are disjoint and exhaustive. Then we
use the individual AR oracles to learn the k relationship graphs as follows: for each node in
the lattice, we pick an object as its representative. Then we pick a longest path that goes
up the lattice, and extract their representatives {x1, x2, ..., xn}, such that for every i < n, the
number of concepts that xi+1 belongs to is at least one more than the number of concepts that
xi belongs to. Then we post AR calls to learn the relationship between all pairs of consecutive
objects (xi, xi+1) in the path with respect to each concept. First we consider x1 and x2. We
repeatedly makes the call ARcj (x1, x2), for j = 1, 2, .... Since the set of concepts that x1 belongs
to is a subset of the set of concepts that x2 belongs to, at least one of the ARcj calls should
return false, and for each ARcj call that returns false, we know that x1 /∈ cj , and xi ∈ cj , for
all i > 1. Also, suppose the lower and upper bound information shows that x1 belongs to at
least n1 concepts and x2 belongs to at most n2 concepts, then we know that there must be at
most n2 − n1 calls that return false. Once we get that number, all the remaining calls between
x1 and x2 must all return true, and so we do not actually need to make the calls.

After getting all k relationships between x1 and x2 with respect to the k concepts, we update
the lower bounds of the number of concepts each xi belongs to, for all i > 2, so that each xi+1

belongs to at least one more concept than xi. After the updates, we work on the relationships
between x2 and x3. The strategy is basically the same as in the case of x1 and x2, but now
for all cj ∈ c with ARcj (x1, x2) returning false, we know that x2 and x3 both belong to this
concept, and thus the must-link is already inferred and there is no need to call ARcj (x2, x3).

When all the objects in the path are processed, we update the lower bounds and upper
bounds of the number of concepts of all other nodes in the lattice based on the new lower and
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upper bounds of the nodes involved in the path. We also propagate the known memberships
to other nodes as follows: suppose xi is one of the objects in the chain, and it represents
node i. Then for each ancestor node of node i, the set of concepts that it represents must
contain all concepts that xi was found to belong to. Similarly, all descendent nodes of node
i must not represent any concept that xi was found not to belong to, all nodes disjoint from
node i must not contain any concept that xi was found to belong to, and all nodes having an
exhaustive-relationship with node i must contain all concepts that xi was found not to belong
to.

After performing all the inference, if there are still some objects whose relationships with
the first path of objects are unknown with respect to some concepts, we pick another path and
make AR calls between them as well as between one of the objects in this path and one of
the objects in the first path if necessary to fill in the missing relationships. This is repeated
until every representative object is oracle-connected to every other representative object with
respect to each concept.

The exact number of calls to the individual AR oracles depends on the structure of the
lattice as well as the disjointness and exhaustiveness information. In the worst case, where
each group contains only one object and all groups do not have any subset, disjointness or
exhaustiveness relationships, it takes k(|X| − 1) calls to the individual AR oracles. In general,
the more information we receive from the five oracles, the fewer individual AR calls we need to
make.

9 Learning from noisy oracles

In this section we study the problem of learning form noisy oracles, i.e., oracles that can make
errors. We will focus on one single type of errors, namely returning an incorrect relationship
between a pair of objects. We will consider only the disjoint two-concept environment, i.e., each
object is either in the target concept or not. We assume that for each relationship received from
an oracle (an answer from AR, a response from PR, or a counter example from ER), there
is a fixed probability ε that it is incorrect. We will augment the notation of a relationship by
adding as the third element the posterior probability that it is correct given the relationships
obtained from the oracle calls being made so far (the “observed relationships”). For example, the
relationship ((x1, x2), r) with posterior probability p being correct is denoted as ((x1, x2), r, p).

For each object pair (x1, x2), there are two possible relationships ((x1, x2), 1, p) and ((x1, x2),−1, q)
where p and q are some probabilities. At any time, we require that p + q = 1.

To determine the posterior probabilities, we need a prior distribution over the set of all
possible relationship graphs. We require the prior to assign zero probability to all inconsistent
relationship graphs, i.e., all relationship graphs that violate the “odd number of must-links” rule
among any three objects. The prior distribution can be derived from a prior distribution over the
set of all membership assignments. If we can assume independence between the memberships
of different objects, then the latter distribution can in turn be derived from the individual
probabilities for each object to be in the target concept, Pr(xi ∈ c). Notice that it is always
invalid to assume independence between the real relationships of different object pairs, due to
the “odd number of must-links” property. Later we will study a restricted form of independence
assumption of the real relationships.

For any two objects xi and xj , we will use the symbol rij to denote the relationship between
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them received form an oracle, and the symbol r∗ij to denote the (unknown) real relationship
between them.

We first talk about a single relationship. Suppose we obtain a relationship ((x1, x2), r12)
from an oracle. The posterior probability that the real relationship is r∗12 is as follows:

Pr(r∗12|r12) =
Pr(r12|r∗12)Pr(r∗12)

Pr(r12)
= αPr(r12|r∗12)Pr(r∗12),

where Pr(r12|r∗12) = ε
1−r12r∗12

2 (1− ε)
1+r12r∗12

2 , and α is the normalization factor 1
Pr(r12) . We will

keep using α as the normalization factor of Bayesian inference, and it can take different values
in different equations.

One advantage of using this probabilistic approach is that we can easily handle contradic-
tory relationships and relationships that have been returned from oracle calls multiple times.
Suppose we have received ((x1, x2), r12) i times and ((x1, x2),−r12) j times, then the posterior
probability that the real relationship is r∗12 is as follows:

Pr(r∗12|observed relationships) =
Pr(observed relationships|r∗12)Pr(r∗12)

Pr(observed relationships)
= α(Pr(r12|r∗12))i(1− Pr(r12|r∗12))jPr(r∗12)

The second equation follows from the first one because the event r12 is conditionally inde-
pendent of all other observed relationships given r∗12. This is due to the constant error rate of
the oracles.

Now we consider a slightly more complicated situation, in which we have made 3 oracle calls
and received 3 relationships, which are exactly the 3 relationships between the objects x1, x2

and x3. We want to know the posterior probability Pr(r∗12, r
∗
13, r

∗
23|r12, r13, r23), where r12, r13

and r23 are the observed relationships. This can be calculated as follows:

Pr(r∗12, r
∗
13, r

∗
23|r12, r13, r23) =

Pr(r12, r13, r23|r∗12, r∗13, r∗23)Pr(r∗12, r
∗
13, r

∗
23)

Pr(r12, r13, r23)
= αPr(r12|r∗12)Pr(r13|r∗13)Pr(r23|r∗23)Pr(r∗12, r

∗
13, r

∗
23) (1)

The posterior probabilities Pr(r∗ij |r12, r13, r23) for 1 ≤ i < j ≤ 3 can then be obtained as a
marginal probability by summing up the joint probabilities. For example,

Pr(r∗12|r12, r13, r23) =
∑

r∗13∈{1,−1}

∑
r∗23∈{1,−1}

Pr(r∗12, r
∗
13, r

∗
23|r12, r13, r23) (2)

To illustrate, let us consider a simple example. Suppose the distribution over all membership
assignments is uniform, i.e., each of the 8 possible assignments have equal probability of 1

8 . The
distribution over all relationship graphs can then be derived as in Table 1.

From the table, it can be seen that the prior distribution of relationship graphs is a uniform
distribution over all consistent relationship graphs, each with a probability of 1

4 . In fact, this
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Table 1: Distribution of relationship graphs based on a uniform prior of the membership as-
signments.

x1 x2 x3 r∗12 r∗13 r∗23 Prob.
0 0 0 1 1 1 1

8

0 0 1 1 -1 -1 1
8

0 1 0 -1 1 -1 1
8

0 1 1 -1 -1 1 1
8

1 0 0 -1 -1 1 1
8

1 0 1 -1 1 -1 1
8

1 1 0 1 -1 -1 1
8

1 1 1 1 1 1 1
8

phenomenon is generally true for any number of objects, since for any two objects, exactly half
of the 2|X| possible concepts contain both of them or neither of them, and exactly half contain
exactly one of them.

Based on this prior, we can calculate the posterior according to the observed data using
Equation 1 and Equation 2. The results are shown in Table 2.

Table 2: Posterior distribution of relationships based on a uniform prior of the membership
assignments.

r12 r13 r23 Pr(r∗12 = 1|r12, r13, r23) Pr(r∗13 = 1|r12, r13, r23) Pr(r∗23 = 1|r12, r13, r23)
1 1 1 ε2+(1−ε)2

3ε2+(1−ε)2
ε2+(1−ε)2

3ε2+(1−ε)2
ε2+(1−ε)2

3ε2+(1−ε)2

1 1 -1 2(1−ε)2

ε2+3(1−ε)2
2(1−ε)2

ε2+3(1−ε)2
ε2+(1−ε)2

ε2+3(1−ε)2

1 -1 1 2(1−ε)2

ε2+3(1−ε)2
ε2+(1−ε)2

ε2+3(1−ε)2
2(1−ε)2

ε2+3(1−ε)2

1 -1 -1 ε2+(1−ε)2

3ε2+(1−ε)2
2ε2

3ε2+(1−ε)2
2ε2

3ε2+(1−ε)2

-1 1 1 ε2+(1−ε)2

ε2+3(1−ε)2
2(1−ε)2

ε2+3(1−ε)2
2(1−ε)2

ε2+3(1−ε)2

-1 1 -1 2ε2

3ε2+(1−ε)2
ε2+(1−ε)2

3ε2+(1−ε)2
2ε2

3ε2+(1−ε)2

-1 -1 1 2ε2

3ε2+(1−ε)2
2ε2

3ε2+(1−ε)2
ε2+(1−ε)2

3ε2+(1−ε)2

-1 -1 -1 ε2+(1−ε)2

ε2+3(1−ε)2
ε2+(1−ε)2

ε2+3(1−ε)2
ε2+(1−ε)2

ε2+3(1−ε)2

Using exactly the same approach, in theory we can derive the posterior probabilities of all
relationships. Let R be the set of relationships received directly from oracle calls (here we
assume no relationships have been received multiple times, otherwise the following equations
can be modified easily according to our previous discussion on contradictory and repeated
relationships), R∗ be the set of real relationships of the object pairs in R, and R′∗ be the set of
real relationships of all other pairs. Then we have

Pr(R∗, R′∗|R) =
Pr(R|R∗, R′∗)Pr(R∗, R′∗)

Pr(R)

= αPr(R∗, R′∗)
∏

rij∈R,r∗ij∈R∗
Pr(rij |r∗ij) (3)
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where in Equation 3, we use the indices i and j to relate the object pairs in R and R∗.
The posterior probability of any relationship r∗ij ∈ R∗∪R′∗ can then be obtained by summing

up the joint probabilities. Let R′′∗ = R∗ ∪ R′∗ − r∗ij and n = |R′′∗|. For convenience, assume
R′′∗ is an ordered set, then

Pr(r∗ij |R) =
∑

R′′∗∈{1,−1}n

Pr(r∗ij , R
′′∗|R) (4)

Since all the terms in Equation 3 are known, the posterior probabilities of all relationships
in R∗ and R′∗ can be computed without making any independence assumption of the real
relationships.

In practice, however, the above calculations are computationally intractable due to the
exponential number of additions in Equation 4.

We will study some ways to reduce the computational cost, from general ones that do not
require any assumptions, to specific ones that rely on some special assumptions. We first notice
that the product term

∏
rij∈R,r∗ij∈R∗ Pr(rij |r∗ij) in Equation 3 depends only on the relationships

in R and R∗. Therefore when R∗ is kept constant, all probabilities Pr(R∗, R′∗|R) differ only
by the prior term Pr(R∗, R′∗). Further, since there are only two possible values for Pr(rij |r∗ij)
depending on whether rij = r∗ij , the product term can take only |R|+ 1 different values, which
can be precomputed. These two observations suggest an incremental approach that could save
a lot of multiplications. To calculate Pr(r∗ij |R), we keep |R| + 1 accumulators, one for each
possible value of the product term. Instead of computing each Pr(r∗ij , R

′′∗|R) separately before
summing them up, we add the prior Pr(r∗ij , R

′′∗) to the corresponding accumulator. After
accumulating all the priors, Pr(r∗ij |R) is equal to the sum of the values in the accumulators
multiplied by the corresponding value of the product terms.

Next, notice that it is not needed to use Equation 3 and Equation 4 directly to calculate the
posterior probability of every relationship. Suppose we have computed the joint probabilities
Pr(r∗12, r

∗
23|R), then we can infer Pr(r∗13|R). For example,

Pr(r∗13 = 1|R) =
∑

r∗12∈{1,−1}

∑
r∗23∈{1,−1}

Pr(r∗12, r
∗
23, r

∗
13 = 1|R)

= Pr(r∗12 = 1, r∗23 = 1, r∗13 = 1|R) + Pr(r∗12 = −1, r∗23 = −1, r∗13 = 1|R)
= Pr(r∗13 = 1|r∗12 = 1, r∗23 = 1, R)Pr(r∗12 = 1, r∗23 = 1|R) +

Pr(r∗13 = 1|r∗12 = −1, r∗23 = −1, R)Pr(r∗12 = −1, r∗23 = −1|R)
= Pr(r∗12 = 1, r∗23 = 1|R) + Pr(r∗12 = −1, r∗23 = −1|R)

Pushing the idea further, it is observed that although there are 2O(|X|2) terms in the sum-
mation in Equation 4, only 2O(

|X|
2

) of them are non-zero, since all the others correspond to
inconsistent relationship graphs.

Third, it is observed that when computing the probabilities Pr(r∗ij |R) for two different
pairs of i, j, a lot of intermediate sums are shared by both calculations, which can be reused.
Extending the idea, if we need to compute all the posterior probabilities Pr(r∗ij |R), we can
do all the computations in a single run as follows. We pick a joint probability Pr(R∗, R′∗|R).
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We know that half of the computations require this value, and the other half does not, so
we keep two accumulators one with the value and one with zero. Then we pick another joint
probability. Again, only half of the computations require this value, so we make one copy of
the two original accumulators, and add the probability only to the copy. We repeat this process
until we have picked all the joint probabilities. By that time, we will have computed all the
posterior probabilities Pr(r∗ij |R).

All the above methods reduce the overall computational time significantly, but the time
complexity is still exponential because the computation takes time proportional to the number
of joint probabilities. Also, some of the methods require exponential space.

In order to make the calculations computationally tractable, we will make an assumption
of the real relationships. Suppose we are given two sets of real relationships R∗

1 and R∗
2, both

with a non-zero joint prior probability. Denote S∗
1 and S∗

2 as the sets of object pairs involved
in the relationships in the two sets respectively. We assume that R∗

1 and R∗
2 are independent

of each other if there does not exist a cycle of distinct objects such that 1) every edge involved
is in either S∗

1 or S∗
2 ; 2) S∗

1 contains at least one of the edges and 3) S∗
2 contains at least one of

the edges.
Let us consider some examples. Based on the assumption,

• {r∗12} is independent of {r∗23} because there exist no cycles that satisfy requirement 1.

• {r∗12} may not be independent of {r∗23, r∗13} because the cycle (x1, x2, x3) satisfies all three
requirements. From this example, we can see that the assumption does not violate the
“odd number of must-links” rule.

• {r∗12, r∗34} may not be independent of {r∗14, r∗23} because the cycle (x1, x2, x3, x4) satisfies
all three requirements.

• {r∗12} is independent of {r∗23, r
∗
24, r

∗
34} because there does not exist a cycle that satisfies all

three requirements.

We call this assumption the restricted independence assumption of relationships. The as-
sumption can be interpreted as follows: two sets of relationships are independent if the “odd
number of must-links” rule does not create any dependence between them. We first explain why
we want to make this assumption, and then discuss a necessary condition for this assumption
to hold.

First, we notice that the assumption implies that the joint posterior probability of a set of
real relationships R′∗ given a set R of observed relationships is equal to its prior if R∗ and R′∗

are independent, where R∗ is the set of real relationships for the object pairs in R:

Pr(R′∗|R) =
∑

R∗∈{1,−1}|R∗|

Pr(R′∗, R∗|R)

=
∑

R∗∈{1,−1}|R∗|

Pr(R|R′∗, R∗)Pr(R′∗, R∗)
Pr(R)

=
∑

R∗∈{1,−1}|R∗|

Pr(R|R∗)Pr(R′∗, R∗)
Pr(R)
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=
∑

R∗∈{1,−1}|R∗|

Pr(R|R∗)Pr(R′∗|R∗)Pr(R∗)
Pr(R)

=
∑

R∗∈{1,−1}|R∗|

Pr(R∗|R)Pr(R′∗)

= Pr(R′∗)

Notice the use of the assumption in the last step of the derivation. The result suggests
that after receiving a set R of relationships from oracle calls, the posterior probabilities of all
relationships r∗ij that do not form any cycle of distinct objects with the relationships in R do
not need to be computed - they remain the same as their priors. So, for example, after receiving
the relationship rij from the first oracle call, only Pr(r∗ij) needs to be updated, and which can
be computed without using Equation 4. As compared to the exponential number of additions
required to do the updates before we made the assumption, the reduction of computations is
dramatic.

Now, suppose we want to compute the posterior probability of a relationship r∗ij , which
forms at least one cycle of distinct objects with some relationships in R. We want to partition
R into two subsets Rij and R̃ij such that there does not exist any cycle of distinct objects that
involves both the edges in Rij∪{r∗ij} and the edges in R̃ij and no other edges. This partitioning
can reduce the computational cost, because

Pr(r∗ij , R
∗
ij |R) = Pr(r∗ij , R

∗
ij |Rij , R̃ij)

= αPr(Rij |r∗ij , R∗
ij , R̃ij)Pr(r∗ij , R

∗
ij |R̃ij)

= αPr(Rij |r∗ij , R∗
ij)Pr(r∗ij , R

∗
ij)

= αPr(Rij , r
∗
ij , R

∗
ij)

= α′Pr(r∗ij , R
∗
ij |Rij) (5)

This means if we can partition R into a number of subsets, so that each subset is indepen-
dent of the others based on the restricted independence assumption, then we can compute the
posterior of each subset separately. The smaller are the subsets, the fewer variables are involved
in each subset, and the more efficient are the computations of the posterior probabilities.

Given a real relationship r∗ij and a set of observed relationships R, we can find the minimal
set Rij that satisfies the above requirements by the following method. We ignore the relation-
ship types, and treat R a collection of edges. Together with the edge (xi, xj), it becomes an
undirected graph. We initialize Rij as an empty set, and add all the relationships in R between
xi and xj to it. Starting from xi, we perform a breadth-first search. If a path reaches xj , we
take all the edges along the path, and add to Rij all relationships in R whose object pair is an
edge of the path. If a path reaches an object that has no unvisited edges, or an object that is
already on the path, we stop extending the path. Then R̃ij is defined as R−Rij .

We claim that after the search, Rij∪{r∗ij} and R̃∗
ij satisfy the requirements of the assumption,

so that they are independent. Also, Rij is minimal, i.e., we cannot remove any relationship
from it so that the requirements are still satisfied. The second part is trivial because each
relationship in Rij has its object pair participating in at least one cycle of distinct objects that
involve (xi, xj) (we will call this kind of cycles an r∗ij-cycle). So if we remove any relationship
from Rij , the cycles that this relationship participate would violate the requirements.
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The first part can be proved by contradiction. Suppose there is a cycle of distinct objects
that violates the requirements. This means the cycle must contain one or more edges that
participates in an r∗ij-cycle. If the cycle that causes the requirements violation involves r∗ij
or its complement, all the members in the cycle should be in Rij , which is a contradiction.
Otherwise, suppose some of the edges in the cycle participate in an r∗ij-cycle. Starting from
xi, we follow the r∗ij-cycle in the direction away from xj , until we reach the first object that
is also in the cycle that causes the requirements violation. Suppose the object is x′i. We do
the same thing, but this time we start from xj , and follow the r∗ij-cycle in the direction away
form xi. Suppose the object that we get is x′j . Now, the cycle that causes the requirements
violation must have a path from xi and xj that involves at least one edge whose object pair has
no relationships in Rij . Such edges should have been detected by the breadth-first search, and
their relationships should be in Rij , which is a contradiction.

We have discussed ways to determine which posterior probabilities need to be updated,
and what variables need to be involved in the updates. Now we want to analyze the overall
computational cost required if we want every posterior probability to be different from its prior.
This means all posterior probabilities are supported by some observed relationships.

If we use the algorithm that involves AR and ER calls presented in Section 3, then if the
oracles do not make errors, we can learn the whole relationship graph by receiving |X| − 1
relationships from oracle calls. If we treat the received relationships as edges, then the |X| − 1
relationships connect all |X| objects. This means if we pick any pair of objects xi, xj , either we
have received a relationship between them from the oracle calls, or the edge (xi, xj) can form
a cycle with the edges of the received relationships. In other words, every relationship has its
posterior updated by some observed relationships.

There is one way to minimize the total computational cost. If we make the AR calls
for (x1, x2), (x1, x3), ..., (x1, x|X|), then each object pair either has a relationship received
from an oracle call, or it participates in only one cycle, and the cycle involves only three
variables. For example, the edge pair (x4, x9) participates only in the cycle (x1, x4, x9). There-
fore we can use Equation 5 to compute the joint posterior probabilities Pr(r∗14, r

∗
19, r

∗
49|R) =

Pr(r∗14, r
∗
19, r

∗
49|r14, r19) in constant time. The total time complexity of computing all posterior

probabilities is thus O(|X|2). Again, this shows that the restricted independence assumption
of real relationships reduces the time complexity dramatically form exponential to polynomial.

We now return to an important question: what are the necessary conditions for the restricted
independence assumption to hold? It turns out that a necessary condition for the assumption
to hold is that the prior distribution of all consistent relationship graphs is uniform:

Lemma 10 The restricted independence assumption of the real relationships holds only if the
prior distribution over all consistent relationship graphs is uniform.

Proof. Let us consider Table 1. Instead of having the constant probability of 1
8 for all eight

rows, suppose the prior probability for the event in row i to occur is pi, for 1 ≤ i ≤ 8. If the
restricted independence assumption holds,

Pr(r∗12 = 1|r∗23 = 1) = Pr(r∗12 = 1)

⇒ p1 + p8

p1 + p4 + p5 + p8
=

p1 + p2 + p7 + p8

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8

⇒ (p1 + p8)(p3 + p6) = (p4 + p5)(p2 + p7)
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Similarly,

Pr(r∗13 = 1|r∗23 = 1) = Pr(r∗13 = 1)

⇒ p1 + p8

p1 + p4 + p5 + p8
=

p1 + p3 + p6 + p8

p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8

⇒ (p1 + p8)(p2 + p7) = (p4 + p5)(p3 + p6)

Combining the two equations, we get p3 + p6 = p2 + p7 and p1 + p8 = p4 + p5. Repeating
with the given condition being r∗13 = 1 instead of r∗23 = 1, we get p4 + p5 = p2 + p7 and
p1 + p8 = p3 + p6. Therefore, p1 + p8 = p2 + p7 = p3 + p6 = p4 + p5. This means all four
consistent relationship assignments have the same probability of 1

4 .

The assumption is therefore a very strong one that usually does not hold in reality. It is
thus an interesting future work to study some weaker assumptions that also guarantees that
the posterior probabilities can be computed in polynomial time.

Finally, we briefly talk about the use of the learnt posterior probabilities. If we simply want
to learn E, the edges in the relationship graph of the target concept, then we can directly use
the probabilities to answer the relationships between pairs of objects probabilistically. If instead
we want to learn the target concept c, then we can compare different membership assignments
and look for the one that maximizes the posterior probability of the resulting relationship
graph. Notice that in general the result may not be unique. For example, if ε < 0.5, and we
have observed a cannot-link between all three pairs of objects in x1, x2, x3, then each object
pair has a higher posterior probability for cannot-link than must-link, and all three consistent
relationship assignments that assign two cannot-links and one must-link to the three pairs have
the same maximum posterior probability.

Alternatively, if we have the real membership of one or more objects, one may estimate the
concept with the maximum posterior probability by using a Markov random walk approach,
similar to the one proposed by Szummer and Jaakkola [15]. The basic idea is to diffuse the
memberships probabilistically, where the probability for an object to diffuse its label to another
object is based on the posterior probability of the must-link between the two objects, and the
probability for an object to diffuse the negation of its label to another object is based on the
posterior probability of the cannot-link between the two objects.

10 Discussion and future work

This study is intended to serve as a first attempt to understand learning from instance-level
relationships in a theoretical setting. There are many problems remain unsolved, which could
be interesting topics for future studies.

Most of the discussions in this article were focused on the general case where we know
nothing about the concept class to which the target concept belongs. As shown in Example 1,
when we have some knowledge about the concept class, we may actually obtain some results very
different from the general case. For example, we might be able to learn the target concept using
a much smaller number of oracle calls. One way to utilize the knowledge about concept classes is
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to represent it as instance-level relationships, and use a general algorithm initialized with these
relationships to learn the target concept. However, this approach might be computationally
inefficient, and some knowledge may not be able to be represented as instance-level relationships.
Another way is to represent the knowledge as new inference rules for deriving memberships and
instance-level relationships.

We discussed an algorithm for learning a set of non-disjoint concepts, but we did not give
a thorough analysis of the algorithm, nor did we discuss whether it is possible to have better
algorithms that use fewer oracle calls. In fact, the algorithm uses a large number of calls to
the five special oracles, which may induce a high cost in reality. It is interesting to study the
necessary and sufficient conditions for the complete set of relationship graphs to be learnable by
using the five kinds of oracles only. Another question is whether we need to learn the complete
lattice and obtain all the disjointness and exhaustiveness information between the different
nodes in order to minimize the number of calls to the individual AR oracles of the k target
concepts. In real situations it is also possible to have only a fixed set of relationships of the
form that the five oracles return. In such situations, the goal would be to learn the relationship
graphs using a minimum of AR calls, subject to the constraints imposed by the fixed set of
relationships.

Real oracles are likely to be noisy, so it is important to design good algorithms that learn
from noisy oracles. As discussed in Section 9, there is a tradeoff between the validity of the
assumption and the computational efficiency. A reasonable assumption that can facilitate
efficient computation of the posterior probabilities is called for. Also, when discussing noisy
oracles, we assumed that oracle calls are independent of each other, so that there is a fixed
probability for an oracle to make an error. It might be more reasonable to adopt some other
models. For example, if an oracle makes an error on a relationship that involves an object, the
probability for it to make errors on other relationships that involve the same object may be
relatively higher. For instance, if we ask for the relationship between the same pair of objects
twice, it is very likely that if an oracle makes an error in the first time, it would also make
an error in the second time. Therefore we may need some other models that do not assume
independence between different oracle calls. This would also suggest that we should compute
posterior probabilities based on observed relationships that involve different objects (rather
than all based on the same object x1 as suggested in Section 9), to reduce the risk that the
relationships are all erroneous due to the dependency between them.

In most of the analyses, we considered the worst-case scenarios. It seems also useful to
study the average cases. For example, the scanning algorithm for learning multiple disjoint
concepts is not better than learning each concept individually in the worst case, but on average
it is likely to perform much better because it could potentially eliminate many oracle calls that
cannot not bring any new information. By considering average cases, there may be learning
algorithms that are better than the ones proposed in this article.

Finally, besides must-links, cannot-links, and the five types of relationships defined for
multiple non-disjoint concepts, it is also interesting to explore other types of relationships as
well as other kinds of information that could be used in learning.

36



11 Summary and conclusion

In this article, we have studied various problems of learning from instance-level constraints. We
have focused the study on two types of instance-level constraints: must-links that state that two
objects are both in a target concept or are both not in the concept, and cannot-links that state
that exactly one object of a pair is in the target concept. We have assumed that relationships
can be obtained from some oracles, either active ones that can answer relationships between
a specific pair of objects or whether the specified concept is exactly the target concept or its
complement, or the passive one that returns the relationships of random object pairs.

We have discussed that a lot of research efforts on machine learning have been made on
learning from labeled examples, and that actually there are other types of information that
can be utilized, such as instance-level relationships. We have suggested example applications
of learning from instance-level constraints in bioinformatics.

We have discussed a general learning method that learns a target concept completely using
an arbitrary sequence of AR, ER and PR oracles. We have shown that if each oracle call
returns some new information, this algorithm requires exactly |X| − 1 oracle calls, and runs in
linear time and space, where X is the set of objects over which the target concept c defines.
We have also discussed ways to make AR and ER calls, such that each call is guaranteed to
return some new information.

On the topic of active learning, we have shown how AR and AM oracles can simulate each
other, as well as how ER and EM oracles can simulate each other, with the help of some AR
calls when ER is simulating EM . Based on the simulations, we have shown that each learning
algorithm that makes use of AM and EM can be simulated by using the same order of AR
and ER calls.

We have introduced the relationship concept class of a concept class, which treats object
pairs as higher-order objects, and the relationship graph (the graph (X, E) where E is the set
of all must-linked object pairs) as a higher-order concept. We have proved the tight lower and
upper bounds of the VC-dimension of a relationship concept class in terms of the VC-dimension
of the corresponding concept class and the sizes of the largest and smallest concepts in it.

For passive learning, we have given the necessary and sufficient conditions for a target
concept to be completely learnt by using PR calls. Also, using the lower and upper bounds of
the VC-dimension of a relationship class, we have shown how some previous results on PAC-
learning can be applied to learning from instance-level constraints.

We have also discussed mixed learning that involves both active and passive oracles. We
have based our discussions on several reward functions, and have discussed how the best actions
can be determined theoretically, as well as some practical issues.

Since there are situations that we want to learn multiple concepts at the same time, we
have studied learning in a multi-concept environment. For k non-empty disjoint concepts, we
have described an algorithm that learns the relationship graphs of the concepts completely
using (k − 1)(|X| − k

2 ) oracle calls. We have proved that this is the minimum number of
oracle calls required in the worst case, which suggests that in the worst case there is no real
benefit to learn the disjoint concepts all at the same time than learning them one by one, if
the number of concepts is much smaller than the number of objects. For the non-disjoint case,
we have suggested five different types of oracles that provide different kinds of information
about the relationships between the two sets of concepts that two objects belong to. We have
discussed how the oracles can be used to partition objects into groups such that all objects in
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a group all belong to exactly the same set of concepts, and to learn the subset, disjointness
and exhaustiveness information between the different groups. We have also discussed how such
information can be used to reduce the number of, or even completely avoid making, calls to the
individual AR oracles of the concepts.

Finally, we have discussed issues in learning from noisy oracles. We have assumed that each
oracle has a fixed error rate of returning an incorrect relationship between a pair of objects.
We have setup a Bayesian probabilistic framework for inputting prior probabilities of the rela-
tionships between pairs of objects and computing posterior probabilities after observing some
relationships from oracles. We have shown that in the general case, computing the posterior
probabilities requires an exponential number of summations. We have suggested a restricted
independence assumption of the real relationships, and have shown that it reduces the time
complexity to quadratic. However, we have also shown that a necessary requirement for the
assumption to hold is a uniform prior over all consistent relationship graphs, which makes the
assumption too strong to be valid in real situations.

To conclude, we have shown that instance-level relationships are useful in learning. They
can be potentially utilized to reduce the total learning cost, and improve the accuracy of the
learnt concept when there is a limited supply of labeled examples. It is hoped that the current
study would simulate more ideas on semi-supervised learning in general.
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