
Input Validation for Semi-supervised Clustering

Kevin Y. Yip∗

Department of Computer Science
Yale University

New Haven, Connecticut, USA
yuklap.yip@yale.edu

Michael K. Ng
Department of Mathematics

Hong Kong Baptist University
Hong Kong

mng@math.hkbu.edu.hk

David W. Cheung
Department of Computer Science

University of Hong Kong
Hong Kong

dcheung@cs.hku.hk

Abstract

Semi-supervised clustering is practical in situations in
which there exists some domain knowledge that could help
the clustering process, but which is not suitable or not suf-
ficient for supervised learning. There have been a number
of studies on semi-supervised clustering, but almost all of
them assume the input knowledge is correct or largely cor-
rect. In this paper we show that even a small proportion
of incorrect input knowledge could make a semi-supervised
clustering algorithm perform worse than having no inputs.
This is a real concern since in real applications it is rea-
sonable to have problematic “knowledge inputs” that are
wrong or inappropriate for the clustering task. We pro-
pose a general methodology for detecting potentially in-
correct inputs and performing verifications. Based on the
methodology, we outline some methods for validating the
inputs of the semi-supervised clustering algorithm MPCK-
Means. Experimental results show that the input validation
step is both critical and effective as the clustering accuracy
of MPCK-Means was lowered by incorrect inputs, but the
lost accuracy was resumed when validation was performed.

1 Introduction

Most clustering methods are based on the assumption
that objects in the same cluster (resp. different clusters) are
close to (resp. far away from) each other according to a
certain distance measure. There are situations in which the
assumption does not hold. The first situation is that object
distances capture the cluster structures not in the original
space, but a transformed space. For example, in Figure 1a,
object B is closer to object A than to C. If B is to be merged
with another object to form a cluster, A should be a better
choice than C. However, it is possible that B and C actu-
ally belong to the same cluster according to some domain

∗This work was done during his visit to the University of Hong Kong.

A

B C

(a) The original
space.

A

B C

(b) The trans-
formed space.

Figure 1. Object distances may capture clus-
ter structures only in a transformed space.

A B C

D E

Figure 2. Ambiguous cluster boundaries.

knowledge, and the cluster structures are captured by ob-
ject distances only in a space transformed by weighting the
two dimensions appropriately (Figure 1b). This situation is
common for datasets of which the dimensions are not di-
rectly comparable, such as the weights and sizes of objects.

A related situation is the presence of ambiguous cluster
boundaries. Consider the two clusters in Figure 2. If the
objects are labeled, it is easy to learn the line x1 = 4 that
perfectly separates the two clusters. Yet if the objects are
unlabeled, it is virtually impossible for a clustering algo-
rithm to identify the correct cluster boundaries since there
is no obvious change of object density across the separating
line between the two clusters.

In these situations, the clustering algorithm could be as-
sisted by some domain knowledge. For example, if ob-



jects A and B in Figure 2 are known to be in different
clusters, it would be easier for a clustering algorithm to
determine the cluster boundaries correctly. Incorporating
domain knowledge in clustering has been termed the semi-
supervised clustering approach [4]. Although some domain
knowledge is being used, semi-supervised clustering is dif-
ferent from supervised learning (classification) in that the
knowledge could be insufficient for learning a classifier, not
covering all classes, or not in the form of examples [8]. In
semi-supervised clustering, the input knowledge is used to
alter some components of the clustering process, such as
the clusters initialization mechanism, the objective function
and the distance function.

Most of the proposed algorithms of date have assumed
that the inputs are correct or largely correct. None of them
actively validates the inputs before using them. We claim
that if the input knowledge was not too accurate, the use
of such “knowledge” could be harmful rather than benefi-
cial. In the example in Figure 2, if objects A and B were
incorrectly specified as in the same cluster, or if objects B
and C were incorrectly specified as in different clusters, the
resulting cluster boundaries would probably be incorrect.

How can the problematic knowledge inputs be detected?
Intuitively, an input is likely to be incorrect if it deviates
from the current model of the clustering algorithm. For ex-
ample, if two objects are specified to be in different clus-
ters, but the distance between them is very small, the input
is likely to be incorrect. However, such deviation could also
indicate that the current values of some tunable parameters
are inappropriate. In the above example, it could indicate
that the dimensions are not weighted appropriately. There-
fore, as long as the inputs can be made reasonable by chang-
ing the values of some parameters (e.g. dimension weights),
it is extremely difficult for a fully automatic procedure to
judge whether an input is correct or not.

Instead, we need a semi-automatic approach: an algo-
rithm automatically detects some potentially incorrect in-
puts, and let the user manually verify their correctness. This
is basically the approach that we are going to use, but there
are two issues to deal with. First, given that the inputs were
supplied by the user, unless some obvious mistakes can be
detected, it is not easy for the user to revoke them. We need
a way to help the user perform the verification objectively.
Second, since a human user cannot verify too many inputs
manually, the number of such verification requests should
be kept minimal. We need a way to determine a small sub-
set of requests that could identify most of the errors in the
inputs. We will discuss the details after describing some
related work in the next section.

2 Related work

Semi-supervised clustering methods can be categorized
according to the kinds of knowledge being input, when the

knowledge is input, and the way the knowledge is used to
affect the clustering process. A summary of the proposed
methods based on these categories can be found in [8].

A related problem is semi-supervised classification,
which aims at using unlabeled data to build more accurate
classifiers. See, for example [3, 6, 7] for details.

In unsupervised learning, the focus of validation has
been on the resulting clusters. This is done either by utiliz-
ing some class labels (external validation), or by comparing
some statistics against random clusters (internal validation).
The statistics being used can be the objective function spe-
cific to the clustering algorithm, or it can be a generic one
such as the U-statistic [5].

3 The general methodology

In this section we describe the general methodology for
validating the input knowledge of semi-supervised cluster-
ing. It involves two main steps: 1) detecting inputs that are
potentially incorrect and 2) posting verification requests and
updating the set of inputs.

3.1 Detection of potentially incorrect in-
puts

We use two ways to detect potentially incorrect inputs.
One is to look for inputs that deviate from the current model
of the clustering algorithm, the other is to look for inputs
that are inconsistent with each other.

Deviation: each clustering algorithm has its own as-
sumptions. If the assumptions were correct, an input would
be more likely to be incorrect should it deviate more from
the assumptions. In Figure 2, if we assume that nearby ob-
jects are likely to be in the same cluster, then the input “ob-
jects A and B are in different clusters” deviates from the
assumption more than the input “objects A and C are in
different clusters”. Each input can be given a certain likeli-
hood of being incorrect, so that inputs that are more likely
to be incorrect are given a higher priority of being verified.
Should the inputs be really correct, verifying them could
help tune the algorithm parameters.

Inconsistency: another way to detect potentially incor-
rect inputs is to look for inputs that are inconsistent. There
are two types of inconsistency. If it is impossible to satisfy
two inputs simultaneously, then they are obviously inconsis-
tent. For example, if two objects are specified to be in the
same cluster by one input, but in different clusters by an-
other, then the inputs are obviously inconsistent if clusters
are required to be disjoint. The other type of inconsistency
is potential inconsistency. Two inputs are potentially incon-
sistent if they cause some opposite effects to the clustering
process, such as when one proposes to increase the weight
of a dimension while the other proposes to decrease it.

2



3.2 Verification and update of inputs

After detecting the potentially incorrect inputs, we need
to verify them by some manual means. We use the input
knowledge to infer some new knowledge, or to derive some
similar knowledge, and ask the user to verify them. For ex-
ample, in Figure 2, if the user incorrectly specifies that ob-
jects B and C are in different clusters, then we could derive
the similar knowledge that objects D and E are also likely to
be in different clusters since D and E are very close to B and
C respectively. If the user rejects this similar knowledge,
then the original input would also be probably incorrect.

There are three possible responses to a verification re-
quest: the user confirms that the inferred/similar knowledge
is true, the user rejects it, or the user cannot make a deci-
sion. In the first two cases, we may confirm (resp. reject or
switch the link types of) the corresponding original inputs,
or to increase (resp. decrease) the weights of the inputs. In
the third case, one may post a new verification request. Yet
if no decisions can be made after a number of requests, the
inputs may be accepted or rejected with a reduced weight,
depending on how trustworthy are the inputs in general.

To minimize the number of verification requests, one
principle is to first verify those inputs that deviate more
from the algorithm assumptions. Another principle is not
to verify similar inputs many times, but to use the verifi-
cation results of a few inputs to validate a whole group of
similar inputs. The similarity between different inputs could
be measured by their effects to the clustering process. For
example, if the inputs are used to determine the relative im-
portance of the data dimensions, then two inputs are more
similar if they give similar weights to the dimensions.

4 MPCK-Means: an application

In this section we apply the general methodology to
a particular semi-supervised clustering algorithm, MPCK-
Means [1, 2]. MPCK-Means is based on k-means. It ac-
cepts two types of inputs: must-links and cannot-links, each
specifying two objects as belonging to the same cluster and
different clusters respectively. We denote each input by
({o1, o2}, t), where o1 and o2 are the involved objects and
t = 1 for must-link and t = 0 for cannot-link. The inputs
are used in three ways:

1) Initializing the clusters: MPCK-Means infers new
must-links from the input ones, and uses the centers of the
largest must-link sets (the must-link “neighborhoods”) as
the initial cluster centroids.

2) Learning the distance function: MPCK-Means uses a
weight matrix A to parameterize the Euclidean distance of
k-means as follows:

‖o1 − o2‖A =
√

(o1 − o2)T A(o1 − o2), (1)

where o1 and o2 are two points (objects or centroids) in the
Euclidean space. During object assignment, the distance
between an object and a centroid is measured by this pa-
rameterized function. The matrix A is updated each time
after the centroid of each cluster is re-estimated so that the
objective function is minimized.

3) Modifying the objective function: MPCK-Means
modifies the objective function by adding the term
− log(det(A)) so that minimizing the function is equivalent
to maximizing the data log-likelihood, and penalty terms for
constraint violations. Due to the penalty terms, each object
is assigned to the cluster that minimizes the increase of the
objective score rather than to the closest cluster.

4.1 Detection of potentially incorrect in-
puts

Deviation: for each input ({o1, o2}, t), the distance
‖o1 − o2‖A is used as a measure of its potential incorrect-
ness. Must-link (resp. cannot-link) inputs with a larger
(resp. smaller) distance are given a higher priority of be-
ing validated.

Inconsistency: obvious inconsistent inputs are detected
by checking if an object pair is inferred as both a must-
link and a cannot-link. Potentially inconsistent inputs are
detected by looking for inputs that have opposite effects to
matrix A should they be violated. According to the update
formula for A in [2], when A is restricted to be diagonal,
we define the potential effect (PE) of an input ({o1, o2}, t)
to matrix A as follows:

PE({o1,o2},t) =

{

(diag(xxT ) + Iδ)−1 if t = 1
(diag(yyT − xxT ) + Iδ)−1 if t = 0

x = o1 − o2

y = omax − omin,

where diag() is a function that takes a square matrix as in-
put, and returns a diagonal matrix by setting all off-diagonal
entries of the input matrix to zero, omax and omin are the
two virtual objects that have the largest and smallest pro-
jected values alone each dimension, and δ is a small con-
stant for avoiding singularity. Intuitively, the PE for a
must-link (resp. cannot-link) gives heavier weights to the
dimensions along which the two objects are close (resp. far
apart), so that if PE is used as A, the input would become
more reasonable in the transformed space.

With PE defined, the similarity between two inputs i1
and i2 is defined as follows:

sim(i1, i2) = 1− γ‖
PE(i1)

‖PEi1‖
−

PE(i2)

‖PEi2‖
‖, (2)

where ‖x‖ is a norm (e.g. Frobenius norm) of x and γ is
a normalization factor used to restrict sim to [0, 1]. Two
identical PEs have a similarity of 1, while two PEs that
have uncorrelated elements have a small similarity.

3



4.2 Verification and update of inputs

We initialize the weight of every input to 1. Then we
increase it if it is shown to be reliable by some verification
results, or decrease it if it is shown to be not reliable.

Given an input i1 that is identified to be deviated from the
clustering model, we create a new input i2 that is similar to
i1 but is not in the original set of inputs. We post i2 as a
verification request. Based on the response, we update the
weight of i1, wi1 , as follows:

wi1 ← wi1(1 + r α sim(i1, i2)), (3)

where r = 1, -1 and 0 if the user confirms i2, rejects i2, and
cannot decide the correctness of i2 respectively, and α is the
learning rate.

For obviously inconsistent inputs, it can be shown that
each instance of inconsistency is represented by a minimal
conflict loop, with the general form < o1, o2, ..., on >,
in which there is a must-link between oi and oi+1 for
i = 1..n−1, a cannot-link between o1 and on, and no other
must-links or cannot-links between any two of the objects.
To verify the inputs in a loop, we post i1 = ({o1, obn/2c}, 1)
as a verification request. A positive response suggests that
either the cannot-link ({o1, on}, 0) or one of the must-links
between oi and oi+1, where i ≥ bn/2c, is incorrect. A
negative response suggests that one of the other must-links
is incorrect. In either case, we update the weights of the
inputs in the incorrect half according to Equation 3.

For a pair of potentially inconsistent inputs i1 and i2,
we look for an object pair that can form an input i3 that is
similar to i1 or i2. Then we post i3 as a verification request,
and use Equation 3 to update the weights.

4.3 Determining the inputs to be vali-
dated

Suppose we are allowed to post a fixed number of verifi-
cation requests. The requests are divided into three equal
parts, one for inputs that deviate from the algorithm as-
sumptions, one for obviously inconsistent inputs, and one
for potentially inconsistent inputs.

For obviously inconsistent inputs, we randomly pick one
minimal conflict loop of one of the neighborhoods, post a
verification request, and update the weights of the incorrect
half of the loop. Then we repeat the process for another
loop until the verification quota has been used up.

For inputs that deviate from the algorithm assumptions,
we form one queue of all must-links sorted in descending
order of the distances between the two objects, and one
queue of all cannot-links sorted in ascending order. The
ordering ensures that inputs that are more likely to be incor-
rect are placed earlier in the queue. The input at the head
of the must-link queue is then popped out, and a verifica-
tion request is posted for it. All inputs in the queue with a

similarity to the query higher than a threshold will have the
weights updated according to Equation 3. These inputs will
then be sent to the end of the queue. The next input to be
verified will then be the head of the other queue.

Potentially inconsistent inputs are verified in a similar
fashion by forming a queue of all input pairs in ascending
order of their sim values.

5 Experiments

5.1 Basic setting

We performed experiments on a synthetic dataset to
show the importance of input validation, and the effective-
ness of the validation methods. Results on real datasets will
be reported in a future extended version of this paper.

We tried various amounts of inputs and error rates. For
each combination, we generated ten sets of inputs. We ran
ten rounds of MPCK-Means on each set using different as-
signment orders without using input validation, and another
ten rounds for each of the two hypothetical scenarios with
input validation (discussed below). The reported result for
a set of inputs is the average of the ten rounds.

In the first scenario, we are allowed to post a small
amount of requests, and the responses are always consis-
tent with the actual class labels. This scenario models the
situation in which the requests are handled by some do-
main experts, whose responses are accurate according to
some domain knowledge, but are unable to answer too many
questions. In the second scenario, the number of requests is
tripled, but the responses have an error rate equal to that of
the original inputs. This scenario models the situation in
which the original inputs and the responses are produced by
the same entity, such as a machine that can automatically
answer many questions but with a certain error rate.

We followed [2] to use the F-measure to calculate the
accuracy of a clustering result, which is defined as 2PR

P+R ,
where P and R are the standard precision and recall mea-
sures respectively. In all calculations, object pairs involved
in any original inputs are not counted.

5.2 Dataset

We generated a synthetic dataset with five Gaussian
clouds in a two-dimensional space (Figure 3a). The dataset
is easy to cluster, as confirmed by the high accuracy of the
unsupervised k-means algorithm (results not shown). We
then performed a transformation by scaling up the x2 axis
(Figure 3b), and ran MPCK-Means on it without input val-
idation. The results (Figure 4a) show that the dataset has
some nice properties for this study. First, the accuracy at
zero input is low, and when correct inputs are supplied, the
accuracy increases with the number of inputs, which show
the effectiveness of the semi-supervised approach. Second,
when incorrect inputs are supplied, the accuracy decreases

4



(a) The original
space.

(b) The transformed
space.

Figure 3. The synthetic dataset.

a. Without input validation.

b. With input validation (small number of requests, error-free responses).

c. With input validation (large number of requests, error-containing responses).

Figure 4. Clustering results.

as the error rate and the number of inputs increase, which
suggests the potential value of input validation.

5.3 Results

Figures 4b and 4c show the results in the two scenarios.
When the number of requests is small and the responses are
correct (Figure 4b), most of the input errors are fixed by
the validation procedure, so that the clustering accuracy in-
creases with the number of inputs regardless of the input
error rate. A similar trend is observed when the number of
requests is large and the responses contain errors (Figure 4c)
except when the input error rate is very high (75%). But
even in that case, the clustering accuracy is not worse than
having no inputs. Both sets of results suggest that input val-
idation is important, and the validation methods are effec-
tive. From Figure 4c, it can be seen that the effects of error-

containing validations is comparable to those of error-free
validations when the input error rate is not too high. This
suggests that input validation can be performed in both sce-
narios. It is good to have some highly accurate responses,
but if the availability is limited, having some less accurate
responses could still improve the clustering accuracy.

6 Conclusion

In general, the experimental results suggest that input
validation is important to semi-supervised learning. The ac-
tual performance gain is dependent on the accuracy of both
the knowledge inputs and the query responses. If the input
knowledge has a low error rate, it suffices to use a non-
perfect validator as long as the error rate of the responses
is not too high. This is desirable when a perfect or near-
perfect validator is expensive to obtain. On the other hand,
if the input knowledge may have a high error rate, it is better
to have a highly accurate validator.

Acknowledgements

The second and third authors have received support from
the CERG grant no: HKU 7117/05E of Hong Kong Re-
search Grant Council.

References

[1] S. Basu, M. Bilenko, and R. J. Mooney. Comparing and uni-
fying search-based and similarity-based approaches to semi-
supervised clustering. In ICML Workshop on the Continum
from Labeled to Unlabeled Data in Machine Learning and
Data Mining, 2003.

[2] M. Bilenko, S. Basu, and R. J. Mooney. Integrating con-
straints and metric learning in semi-supervised clustering. In
Proceedings of the Twenty-First International Conference on
Machine Learning, 2004.

[3] A. Blum and T. Mitchell. Combining labeled and unlabeled
data with co-training. In Eleventh Annual Conference on
Learning Theory (COLT), 1998.

[4] A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-
supervised clustering using genetic algorithms. In Artificial
Neural Networks In Engineering, 1999.

[5] Z. Huang, D. W. Cheung, and M. K. Ng. An empirical study
on the visual cluster validation method with fastmap. In Pro-
ceedings of the Ninth International Conference on Database
Systems for Advanced Applications, 2001.

[6] J. Ratsaby and S. S. Venkatesh. Learning from a mixture of
labeled and unlabeled examples with parametric side infor-
mation. In Eighth Annual Conference on Learning Theory
(COLT), 1995.

[7] M. Szummer and T. Jaakkola. Partially labeled classification
with Markov random walks. In 2001 Neural Information Pro-
cessing Systems (NIPS) Conference, 2001.

[8] K. Y. Yip, D. W. Cheung, and M. K. Ng. On discovery of ex-
tremely low-dimensional clusters using semi-supervised pro-
jected clustering. In 21st International Conference on Data
Engineering (ICDE’05), pages 329–340, 2005.

5


