
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
A web services choreography scenario for interoperating
bioinformatics applications
Remko de Knikker1, Youjun Guo1, Jin-long Li1, Albert KH Kwan2,
Kevin Y Yip2, David W Cheung2 and Kei-Hoi Cheung*1,3

Address: 1Center for Medical Informatics, Department of Anesthesiology, Yale University School of Medicine, PO Box 208009, New Haven, CT
06520, USA, 2Department of Computer Science and Information Systems, University of Hong Kong, Pokfulam Road, Hong Kong and
3Department of Genetics, Yale University School of Medicine, PO Box 208005, New Haven, CT 06520, USA

Email: Remko de Knikker - remkodeknikker@hotmail.com; Youjun Guo - youjun.guo@yale.edu; Jin-long Li - jin-long.li@yale.edu;
Albert KH Kwan - akhkwan@cecid.hku.hk; Kevin Y Yip - ylyip@csis.hku.hk; David W Cheung - dcheung@csis.hku.hk; Kei-
Hoi Cheung* - kei.cheung@yale.edu

* Corresponding author

Abstract
Background: Very often genome-wide data analysis requires the interoperation of multiple databases and
analytic tools. A large number of genome databases and bioinformatics applications are available through the web,
but it is difficult to automate interoperation because: 1) the platforms on which the applications run are
heterogeneous, 2) their web interface is not machine-friendly, 3) they use a non-standard format for data input
and output, 4) they do not exploit standards to define application interface and message exchange, and 5) existing
protocols for remote messaging are often not firewall-friendly. To overcome these issues, web services have
emerged as a standard XML-based model for message exchange between heterogeneous applications. Web
services engines have been developed to manage the configuration and execution of a web services workflow.

Results: To demonstrate the benefit of using web services over traditional web interfaces, we compare the two
implementations of HAPI, a gene expression analysis utility developed by the University of California San Diego
(UCSD) that allows visual characterization of groups or clusters of genes based on the biomedical literature. This
utility takes a set of microarray spot IDs as input and outputs a hierarchy of MeSH Keywords that correlates to
the input and is grouped by Medical Subject Heading (MeSH) category. While the HTML output is easy for humans
to visualize, it is difficult for computer applications to interpret semantically. To facilitate the capability of machine
processing, we have created a workflow of three web services that replicates the HAPI functionality. These web
services use document-style messages, which means that messages are encoded in an XML-based format. We
compared three approaches to the implementation of an XML-based workflow: a hard coded Java application,
Collaxa BPEL Server and Taverna Workbench. The Java program functions as a web services engine and
interoperates with these web services using a web services choreography language (BPEL4WS).

Conclusion: While it is relatively straightforward to implement and publish web services, the use of web services
choreography engines is still in its infancy. However, industry-wide support and push for web services standards
is quickly increasing the chance of success in using web services to unify heterogeneous bioinformatics
applications. Due to the immaturity of currently available web services engines, it is still most practical to
implement a simple, ad-hoc XML-based workflow by hard coding the workflow as a Java application. For advanced
web service users the Collaxa BPEL engine facilitates a configuration and management environment that can fully
handle XML-based workflow.

Published: 10 March 2004

BMC Bioinformatics 2004, 5:25

Received: 03 November 2003
Accepted: 10 March 2004

This article is available from: http://www.biomedcentral.com/1471-2105/5/25

© 2004 de Knikker et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in
all media for any purpose, provided this notice is preserved along with the article's original URL.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-5-25
http://www.biomedcentral.com/1471-2105/5/25
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/25
Background
The nature of genome-wide data analysis often requires
the use of multiple databases and programs in some coor-
dinated fashion. For example, microarray data analysis
typically involves a sequence of analysis steps, which may
include filtering, normalization, cluster analysis, access to
a variety of genome annotation sources, etc. To com-
pound the problem of interoperation, there are different
ways of analyzing the same dataset. For example, some
microarray analyses such as clustering are exploratory in
nature while others are more specific to nature of the bio-
logical problem at hand (e.g., genetic network modeling
[1]). Also, there are different ways to perform the same
type of analysis (e.g., there are different clustering
approaches such as hierarchical methods vs. non-hierar-
chical methods).

Despite the fact that a large number of genome databases
and bioinformatics applications have been made availa-
ble through the web, it is difficult to automate interoper-
ation because:

1) the platforms on which applications reside are
heterogeneous,

2) their web interface is human-friendly but not machine-
friendly,

3) they use a non-standard format for input and output
data,

4) they do not make use of standards to define the appli-
cation interface and message exchange,

5) existing protocols for remote messaging are often not
firewall-friendly.

Web services now offer a single uniform method for appli-
cation integration through the Internet. They provide a
model for accessing software systems over the web by
pointing to their web address (URI), while their public
interfaces and bindings are defined and described using
an XML standard format. The potential of web services in
bioinformatics database/tool unification has been recog-
nized [2]. Examples of bioinformatics web service projects
include: BioMoby is a project involving biological data
hosts, biological data service providers, and coders whose
aim is to explore various methodologies for biological
data representation, distribution, and discovery [3];
myGrid aims to design, develop and demonstrate higher
level functionalities over an existing Grid infrastructure
that support scientists in making use of complex distrib-
uted resources [4,5]; DDBJ has published a number of
biological tools as web services like Blast, ClustalW,
DDBJ, Fasta, and others [6]; Soaplab developed at EBI

provides a web service interface to a variety of analysis
applications [7]; Soap-HT-BLAST is a BLAST web service
implementation by the Bio Informatics Institute (BII) of
the Agency for Science, Technology and Research in Singa-
pore (A*STAR) [8]; and the IBM Life Sciences project
implemented web services for PubMed, GenBank, BLAST,
Phylogenic Tree and ClustalW [9].

Overview of the web service technology
Three standards have emerged that comprise the web serv-
ices model. The Basic Profile of the Web Services Interop-
erability model (WS-I) [10] describes the web services
model as follows:

1) the Web Service Description Language (WSDL) [11] is
an XML language that describes a web service in an
abstract manner by defining the web service interface and
the exchange of messages between the provider and
requester.

2) the Simple Object Access Protocol (SOAP) [12] is an
XML-based protocol for stateless message exchange. It is
not bound to any transport protocol, but is in general
built on top of HTTP, which makes it firewall friendly in
contrast to protocols used by CORBA for instance.

3) Universal Description, Discovery and Integration
(UDDI) [13] is a standard protocol designed to publish
details about an organization and the web services. It pro-
vides a description and definition of web services in a cen-
tral repository, which functions as yellow pages for web
services.

WSDL and SOAP are W3C standards, while UDDI is an
OASIS standard. For a client to use a web service it only
needs WSDL with SOAP being commonly used as the
default protocol. SOAP implementations like Axis by the
Apache Software Foundation, The Mind Electric's (TME)
GLUE or Systinet's WASP Server for Java provide an easy-
to-use method for publication and management of web
services. These tools in general manage message exchange,
register web services, generate WSDL files and implement
functions like automatic error handling.

Web Services Choreography
While interlinking between web services is relatively sim-
ple, in reality applications need to work together in order
to offer more advanced functionality. Thus to make full
use of the advantages that the web services model offers,
like advanced automation and application integration to
group a set of applications together, we need more than a
simple point-to-point connection. That is, we need a lan-
guage that allows us to create a more complex composi-
tion of interdependent web services that easily operate
together. This concept of interrelated web services that are
Page 2 of 11
(page number not for citation purposes)

BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/25
linked together in a functionally coherent and repeatable
process is called "Web Services Choreography".

There are more than a dozen languages that coordinate
messaging and transaction for web services available but
currently there are mainly two dominant open standards:

1) the Business Process Execution Language for Web Serv-
ices (BPEL4WS) [14] was co-written by IBM, MicroSoft
and BEA, and is (royalty-free) submitted as a standard to
OASIS. SUN Microsystems and Oracle recently joined the
WS-BPEL Technical Committee [15],

2) the Business Process Markup Language (BPML) [16] is
defined by BPML.org and extends the Web Services Cho-
reography Interface (WSCI) that was developed by SUN.

The W3C published in August 2003 a draft of its specifica-
tion for Web Services Choreography language (WS-
CHOR) [17]. BPEL4WS and BPML are the leading emerg-
ing standards. They are compatible languages and both
offer a rich set of workflow options. BPEL4WS seems
most promising at this moment to emerge as a widely sup-
ported standard for web services choreography since it has
the broad industry support from companies like IBM,
MicroSoft and BEA, while SUN recently also joined the
Technical Committee. In addition, BPEL4WS is well doc-
umented and tools like editors and choreography engines
are already available. Both BPEL4WS and BPML allow
complex scenarios of choreography like concurrent proc-
esses, synchronous and asynchronous messaging, roll
back mechanisms, data manipulation and error handling.
These features benefit certain classes of biomedical infor-
matics applications that involve sensitive data and the use
of parallel programming to speed the complex analyses of
large datasets.

Choreography engines
A choreography engine is the "smart center" of a web serv-
ices choreography, which executes and manages work-
flow, process automation, data mapping, error handling
and security. These engines significantly improve the
management of the web services workflow. Currently
there are a few web services choreography engines availa-
ble. IBM offers its Business Process Execution Language
for Web Services Java Run Time (BPWS4J), which imple-
ments a choreography as an RPC-style web service (for
Document vs. RPC style see next section). Another project
of interest is myGRID [3], which developed Taverna, a
tool that integrates Choreography into a graphical work-
bench, for creating, editing and browsing workflow. Tav-
erna uses a simple non-standard choreography language,
called XScufl, and is an ongoing collaborative project
between EBI, IT Innovation and the Human Genome
Mapping Project (HGMP) of the Medical Resource Center

(MRC). The Collaxa BPEL Server [18] implements the
choreography as a document-oriented web service, is easy-
to-manage with an advanced graphical interface (which
works for IE6 only) but is available under a commercial
license. The Mind Electric (TME) is to release Gaia, and
other engines are being developed at the moment. Most of
these engines support either BPML or BPEL4WS.

Document vs. Remote Procedure Call (RPC) styles
There are two ways of exchanging data between web serv-
ices: document-oriented vs. remote procedure call (RPC).
The document-style exchanges data as XML documents,
while the RPC-style web service describes the interface in
the format of a method-signature and takes input and out-
put in a programming language specific data type. A data
type-mapping interface (called a proxy in dot Net or a
Serializer in Apache Axis) is used to converse data between
a client and a web service.

While some vendors (e.g., Microsoft) adopt the docu-
ment-oriented method, others (e.g., IBM, Apache Axis and
SUN) use the RPC-oriented method. In practice, a mixture
of document-style and RPC-style web services will exist.
While it might be easier to wrap an RPC-style web service
interface around existing applications, newly developed
applications could be more inclined to use document-
style web services. Currently however, most tools that are
available initially have focused on RPC-style web services.

Results and discussion
In our web services choreography scenario [19], a user
obtained a set of microarray spot IDs (GenBank accession
numbers, Affymetrix chip probe set IDs, and Unigene
Cluster IDs) corresponding to the genes (both known and
unknown) being studied. The user then wants to create a
hierarchy of Unified Medical Language System (UMLS)
concepts formatted in XML and group the result per MeSH
root category.

Three web services have been created to execute this sce-
nario: one that maps a set of microarray spot IDs to their
corresponding GenBank IDs, and if available their corre-
sponding PubMed IDs and UMLS concept IDs (GetHAPI);
the second web service builds an XML formatted hierarchy
of UMLS concepts for a set of UMLS concept IDs
(GetUMLS), while a third web service generates an XML-
based report of UMLS concept ID occurrences per MeSH
root category from a hierarchy of UMLS concept IDs
(GetUMLSReport). A similar functionality as the choreog-
raphy of GetHAPI, GetUMLS and GetUMLSReport is pro-
vided by the High-density Array Pattern Interpreter
(HAPI) [20,21] developed at the University of California,
San Diego through a web-based (HTML) interface.
Page 3 of 11
(page number not for citation purposes)

BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/25
When using the traditional web interface of HAPI [21],
the user has to engage in a three-step process. In step 1, the
user provides a name for the result set and uploads a file
containing a list of spot IDs.

Figure 1 shows step 2 of HAPI in which the user needs to
select a column that contains the GenBank IDs and can
enter a name for the HTML summary page. In step 3 the
result file is being generated and the user has to click the
link to view the HTML summary page.

The result, shown in figure 2, is an HTML table containing
a hierarchy of keywords from literature associated with
the genes that were provided. The HTML table displays the
occurrences per category and the split up for each category
of the keywords hierarchy. To retrieve information from
GenCard, Entrez or PubMed the user can click links to
these databases per UMLS keyword.

While the traditional web approach provides the user with
an easy-to-use interface and easy-to-read (HTML) output,
it lacks a flexible programmatic interface, making auto-
matic tool linking and interoperation difficult. The WSDL
files of the choreography and of the web services used in
the choreography on the other hand describe the inter-
faces and message format that provide the equivalent
functionality of the HAPI application. This allows the cli-
ent program to access and interpret the output data pro-
grammatically. In addition the user can choose to access
additional web services in his choreography, like XEMBL
[22] to retrieve GenBank information for genes of interest,
based upon the outcome of the GetUMLSReport or
choose to access only part of the web services choreogra-
phy that comprises the HAPI functionality, for instance in
order to retrieve the complete hierarchy of UMLS concepts
associated with the submitted genes or to retrieve only the
PubMed IDs for the associated genes. The result is that the
remote functionality of the HAPI utility can easily be inte-
grated in a local workflow, data can be programmatically
processed and the individual modules can be utilized
more dynamically and flexibly.

Hard coding the implementation of a BPEL workflow
through a Java application allows for the easy implemen-
tation of a workflow and the full use of the power of the
Java programming language with the ease of altering the
workflow by simply configuring the BPEL file. Extending
the BPEL workflow can be achieved by adding the invoke
tag of the new web service to the BPEL sequence as long as
the workflow consists of synchronous web services and a
straightforward sequence of web services. Mapping of data
can be achieved by XSL transformations implemented in
Java. While it is fairly simple to implement a Java applica-
tion and execute the BPEL Workflow, implementing the

XML-based scenario in either Collaxa or Taverna is more
arduous.

Taverna provides a user-friendly interface and RPC-style
web services can quickly and easily be implemented in
Taverna without advanced knowledge of web service tech-
nologies. It simply involves adding the URL location of
the WSDL to the available services and adding the chosen
operation or method of the web service to the model. By
creating variables and data links the model is completed.
It is very easy to quickly add services to the model, and
reroute the workflow by altering the data links. To execute
the workflow, switch to the Workflow Input Panel and
press the run-button while the result can be viewed in the
result tab (Figure 3). But as Taverna is an ongoing, open
source effort not all Document-style WSDL implementa-
tions appeared to be supported at this moment, while
mapping output to input options are still limited, restrict-
ing the applicability at this moment.

Collaxa is committed to Document-style web services and
it has created a BPEL designer called bpelz and a browser-
based (IE6 only) workflow management console that
allows instance inspection amongst others (Figure 4). The
designer's interface may require still some hand coding of
the source files to make corrections, while most WSDL
files will need to be extended by a partnerLinkType defini-
tion. But Collaxa offers full support of BPEL with
advanced support for extensions to the model. Data
sources can be mapped using XPath and BPEL extension
for Java coding is supported.

Conclusions
Web services facilitate bioinformatics software interopera-
tion based on a standard XML-based protocol. While the
development of web service technologies is as much
ongoing as rapid. Many bioinformatics applications have
been published as web services and more initiatives are
being developed. With more web services for bioinformat-
ics becoming available, there will be an increasing need to
use metadata and ontologies to facilitate description,
tracking, classification, and constraining of web services
based upon UDDI or domain-specific standards as devel-
oped by BioMoby.

While it is relatively straightforward to implement and
publish web services, the interoperation of bioinformatics
web services through the use of choreography engines is in
the early stage. Documentation and examples for most
choreography engines are scarce. For example, IBM's cho-
reography engine BPWS4J can only be deployed as an RPC
style web service. MyGrid's Taverna offers an advanced
GUI and can process most WSDL files, but support for
document-oriented web services is still limited. Collaxa's
orchestration engine offers full BPEL4WS support, fully
Page 4 of 11
(page number not for citation purposes)

BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/25
HAPI, the High-density Array Pattern InterpreterFigure 1
HAPI, the High-density Array Pattern Interpreter. Step 2 of 3 when using HAPI utility's web-based (HTML) interface
provided by UCSD
Page 5 of 11
(page number not for citation purposes)

BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/25
HAPI, the High-density Array Pattern InterpreterFigure 2
HAPI, the High-density Array Pattern Interpreter. Summary page of HAPI utility provided by UCSD
Page 6 of 11
(page number not for citation purposes)

BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/25
Taverna, the Scufl WorkbenchFigure 3
Taverna, the Scufl Workbench Screenshot of Taverna implementation of RPC based workflow retrieving EMBL informa-
tion from DDBJ.
Page 7 of 11
(page number not for citation purposes)

BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/25
Collaxa BPEL ServerFigure 4
Collaxa BPEL Server Screenshot of Collaxa's bpelz design tool, building a choreography of GetHAPI and GetUMLS web
services
Page 8 of 11
(page number not for citation purposes)

BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/25
supports document-oriented web services and provides an
easy-to-use and advanced GUI, but it is only available
under a commercial license and its console runs only
under IE6. To sum up, there is a need for further develop-
ment of user-friendly choreography engines that support
choreography standards like BPEL4WS and both docu-
ment-style and RPC-style choreographies, as well as
broader manipulation of data. Of the two web service
engines, only Collaxa seemed to support our example
XML-based workflow, providing XPath and full BPEL sup-
port. Collaxa requires working knowledge of all web serv-
ices technologies, whereas Taverna is transparent to use.
For an RPC-based web service and some XMLbased work-
flow that does not require complex mapping, Taverna can
be used. In addition, it offers advanced support for addi-
tional services, which we were not able to fully explore,
and is more than Collaxa focused on the scientific com-
munity. While transparent engines fully supporting BPEL
might be available soon, for most simple workflow imple-
mentations it is currently still most convenient and flexi-
ble to use hard coded implementations. For more
advanced workflow Collaxa can be used while workflow
requiring specific services or RPC based workflow Taverna
is available.

Methods
Although it is possible to invoke a web service using any
other protocol, we use WSDL and SOAP. Since we already
know the location of the target web service and its
functionality, publication and discovery with UDDI is not
our focus here, although it is part of the WS-I Basic Profile.
We refer to web services projects such as BioMoby that
extensively use UDDI for more information.

In exchanging messages between web services, we use the
document-oriented method since it has the following
advantages.

1) It uses a language independent and self-describing data
format.

2) It allows for validation based on DTD or XML Schema.

3) It provides a better separation of data and functional
logic.

It allows us to exploit the various bioinformatics-related
XML standards (including BSML[23], BIOML [24,25],
MAGE-ML [26,27], etc) to further facilitate
interoperability.

Our web services choreography scenario involves the use
of BPEL4WS to define a workflow that consists of several
document-oriented web services. To execute the choreog-
raphy, we have created a client that functions as a chore-

ography engine that is implemented as a document-
oriented web service. For demonstration purposes the
choreography engine can be accessed through a web inter-
face that calls the client engine. The user configures a
BPEL file describing the web services choreography and a
WSDL file that describes the choreography engine's web
service interface and message format. The client executes
the preferred workflow of web services as described in
these two files. Figure 5 illustrates the central elements of
the choreography code that integrates the GetHAPI,
GetUMLS, and GetUMLSReport web services.

This web services choreography returns an XML document
that represents a report of UMLS concept occurrences per
category from the hierarchy of UMLS keywords that corre-
late to the submitted set of microarray spot IDs.

Authors' contributions
KC initiated and directed the research project. RdK per-
formed the technical research and documentation, and
the overall design and implementation of the project. YG
provided XSLT Transformations and assisted in imple-
mentation. JL assisted in the data analysis and database
optimization. AK, KY and DC collaborated with the YCMI
team on the web services interoperation. All authors read
and agreed with the final manuscript.
Page 9 of 11
(page number not for citation purposes)

BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/25
BPEL ChoreographyFigure 5
BPEL Choreography An extract from the BPEL file describing the choreography of GetHAPI and GetUMLS web services.
Page 10 of 11
(page number not for citation purposes)

BMC Bioinformatics 2004, 5 http://www.biomedcentral.com/1471-2105/5/25
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
This research is supported in part by NIH grant K25 HG02378 and by NSF
grant DBI-0135442. The authors are grateful to Dr. Dan Masys (at UCSD)
for allowing us to download the current HAPI dataset. We would like to
acknowledge Tom Oinn at the European Bioinformatics Institute and head
of the Taverna project, for his feedback with regard to Taverna.

References
1. van Someren EP, Wessels LF, Backer E, Reinders MJ: Genetic net-

work modeling. Pharmacogenomics 2002, 3(4):507-25.
2. Stein L: Creating a bioinformatics nation. Nature 2002,

417:119-20.
3. Wilkinson M, Links M: BioMoby: An open source biological web

services proposal. Brief Bioinform 2002, 3(4):331-341.
4. Stevens R, Robinson A, Goble C: myGrid: personalized bioinfor-

matics on the information grid. Bioinformatics 2003, 19(Suppl
1):I302-I304.

5. myGrid BioServices [http://www.mygrid.org.uk/myGrid/web/
components/BioServices/]

6. DNA DataBase of Japan (DDBJ) Web Services [http://
xml.ddbj.nig.ac.jp/wsdl/index.jsp]

7. European Bioinformatics Institute (EBI) Soaplab [http://
industry.ebi.ac.uk/soaplab/]

8. Wang J, Mu Q: Soap-HT-BLAST: high throughput BLAST
based on Web services. Bioinformatics 2003, 19(14):1863-4.

9. IBM alpha Works, Web Services for LifeSciences [http://
www.alphaworks.ibm.com/tech/ws4LS]

10. Basic Profile of the Web Services Interoperability model
[http://www.ws-i.org/Profiles/Basic/2003-05/BasicProfile-1.0-
WGAD.htm]

11. Web Service Description Language (WSDL) [http://
www.w3.org/TR/2003/WD-wsdl12-20030611/]

12. Simple Object Access Protocol(SOAP) [http://www.w3.org/
TR/SOAP/]

13. Universal Description, Discovery and Integration (UDDI)
[http://www.uddi.org/specification.html]

14. Business Process Execution Language for Web Services
(BPEL4WS) [http://www-106.ibm.com/developerworks/webserv
ices/library/ws-bpel/]

15. OASIS Web Services Business Process Execution Language
Technical Committee (WS-BPEL TC) [http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel]

16. Business Process Markup Language (BPML) [http://
www.bpmi.org/bpml.esp]

17. Web Service Choreography Working Group [http://
www.w3.org/2002/ws/chor/]

18. The Collaxa BPEL Server [http://www.collaxa.com]
19. Example URL [http://biryani.med.yale.edu:8081/axis/

index.jsp?which=6-4-3]
20. Masys D, Welsh J, Fink JL, Gribskov M, Klacansky I, Corbeil J: Use of

keyword hierarchies to interpret gene expression patterns.
Bioinformatics 2001, 17(4):319-26.

21. High-density Array Pattern Interpreter (HAPI) [http://
array.ucsd.edu/hapi]

22. The XEMBL Project [http://www.ebi.ac.uk/xembl/]
23. Bioinformatic Sequence Markup Language (BSML) [http://

www.bsml.org/]
24. Fenyo D: The Biopolymer Markup Language. Bioinformatics

1999, 15(4):339-40.
25. Genomic Solutions, The BIOpolymer Markup Language

(BIOML) [http://65.219.84.5/BioML.html]
26. Spellman PT, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S,

Bernhart D, Sherlock G, Ball C, Lepage M, Swiatek M, Marks WL,
Goncalves J, Markel S, Iordan D, Shojatalab M, Pizarro A, White J,
Hubley R, Deutsch E, Senger M, Aronow BJ, Robinson A, Bassett D,
Stoeckert Jr CJ, Brazma A: Design and implementation of
microarray gene expression markup language (MAGE-ML).
Genome Biol 2002, 3(9):RESEARCH0046. 2002 Aug 23

27. MicroArray and Gene Expression – MAGE Group, MAGE-
ML Working Group [http://www.mged.org/Workgroups/MAGE/
mage-ml.html]
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12164774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12164774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/417119a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg1041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg1041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12855473
http://www.mygrid.org.uk/myGrid/web/components/BioServices/
http://www.mygrid.org.uk/myGrid/web/components/BioServices/
http://xml.ddbj.nig.ac.jp/wsdl/index.jsp
http://xml.ddbj.nig.ac.jp/wsdl/index.jsp
http://industry.ebi.ac.uk/soaplab/
http://industry.ebi.ac.uk/soaplab/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/btg244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512365
http://www.alphaworks.ibm.com/tech/ws4LS
http://www.alphaworks.ibm.com/tech/ws4LS
http://www.ws-i.org/Profiles/Basic/2003-05/BasicProfile-1.0-WGAD.htm
http://www.ws-i.org/Profiles/Basic/2003-05/BasicProfile-1.0-WGAD.htm
http://www.w3.org/TR/2003/WD-wsdl12-20030611/
http://www.w3.org/TR/2003/WD-wsdl12-20030611/
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/
http://www.uddi.org/specification.html
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.bpmi.org/bpml.esp
http://www.bpmi.org/bpml.esp
http://www.w3.org/2002/ws/chor/
http://www.w3.org/2002/ws/chor/
http://www.collaxa.com
http://biryani.med.yale.edu:8081/axis/index.jsp?which=6-4-3
http://biryani.med.yale.edu:8081/axis/index.jsp?which=6-4-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/17.4.319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/17.4.319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301300
http://array.ucsd.edu/hapi
http://array.ucsd.edu/hapi
http://www.ebi.ac.uk/xembl/
http://www.bsml.org/
http://www.bsml.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/bioinformatics/15.4.339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10320402
http://65.219.84.5/BioML.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-9-research0046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2002-3-9-research0046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225585
http://www.mged.org/Workgroups/MAGE/mage-ml.html
http://www.mged.org/Workgroups/MAGE/mage-ml.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Overview of the web service technology
	Web Services Choreography
	Choreography engines
	Document vs. Remote Procedure Call (RPC) styles

	Results and discussion
	Conclusions
	Methods
	Authors' contributions
	Acknowledgements
	References

