
Quegel: A General-Purpose Query-Centric Framework for
Querying Big Graphs

Da Yan∗1, James Cheng∗2, M. Tamer Özsu†3, Fan Yang∗4,
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ABSTRACT
Pioneered by Google’s Pregel, many distributed systems have been
developed for large-scale graph analytics. These systems expose
the user-friendly “think like a vertex” programming interface to
users, and exhibit good horizontal scalability. However, these sys-
tems are designed for tasks where the majority of graph vertices
participate in computation, but are not suitable for processing light-
workload graph queries where only a small fraction of vertices need
to be accessed. The programming paradigm adopted by these sys-
tems can seriously under-utilize the resources in a cluster for graph
query processing. In this work, we develop a new open-source sys-
tem, called Quegel, for querying big graphs, which treats queries
as first-class citizens in the design of its computing model. Users
only need to specify the Pregel-like algorithm for a generic query,
and Quegel processes light-workload graph queries on demand us-
ing a novel superstep-sharing execution model to effectively utilize
the cluster resources. Quegel further provides a convenient inter-
face for constructing graph indexes, which significantly improve
query performance but are not supported by existing graph-parallel
systems. Our experiments verified that Quegel is highly efficient
in answering various types of graph queries and is up to orders of
magnitude faster than existing systems.

1. INTRODUCTION
Big graphs are common in real-life applications today, for exam-

ple, online social networks and mobile communication networks
have billions of users, and web graphs and Semantic webs can be
even bigger. Processing such big graphs typically require a spe-
cial infrastructure, and the most popular ones are Pregel [24] and
Pregel-like systems [1, 9, 10, 22, 29, 36]. In a Pregel-like system,
a programmer thinks like a vertex and only needs to specify the be-
havior of one vertex, and the system automatically schedules the
execution of the specified computing logic on all vertices. The sys-
tem also handles fault tolerance and scales out without extra effort

from programmers.
Existing Pregel-like systems, however, are designed for heavy-

weight graph computation (i.e., analytic workloads), where the ma-
jority part of a graph or the entire graph is accessed. For example,
Pregel’s PageRank algorithm [24] accesses the whole graph in each
iteration. However, many real-world applications involve various
types of graph querying, whose computation is light-weight in the
sense that only a small portion of the input graph needs to be ac-
cessed. For example, in our collaboration with researchers from
one of the world’s largest online shopping platforms, we have seen
huge demands for querying different aspects of big graphs for all
sorts of analysis to boost sales and improve customer experience.
In particular, they need to frequently examine the shortest-path dis-
tance between some users in a large network extracted from their
online shopping data. While Pregel’s single-source shortest-path
(SSSP) algorithm [24] can be applied here, much of the computa-
tion will be wasted because only those paths between the queried
users are of interest. Instead, it is much more efficient to apply
point-to-point shortest-path (PPSP) queries, which only traverse a
small part of the input graph. We also worked with a large tele-
com operator, and our experience is that graph queries (with light-
weight workloads) are integral parts of analyzing massive mobile
phone and SMS networks.

The importance of querying big graphs has also been recognized
in some recent work [18], where two kinds of systems are iden-
tified: (1) systems for offline graph analytics (such as Pregel and
GraphLab) and (2) systems for online graph querying, including
Horton [30], G-SPARQL [28] and Trinity [32]. However, Horton
and G-SPARQL are tailor-made only for specific types of queries.
Trinity supports graph query processing, but compared with Pregel,
its main advantage is that it keeps the input graph in main memories
so that the graph does not have to be re-loaded for each query. The
Trinity paper [32] also argues that indexing is too expensive for big
graphs and thus Trinity does not support indexing. In the VLDB
2015 conference, there is also a workshop “Big-O(Q): Big Graphs
Online Querying”, but the works presented there only study algo-
rithms for specific types of queries. So far, there lacks a general-
purpose framework that allows users to easily design distributed
algorithms for answering various types of queries on big graphs.

One may, of course, use existing vertex-centric systems to pro-
cess queries on big graphs, but these systems are not suitable for
processing light-weight graph queries. To illustrate, consider pro-
cessing PPSP queries on a 1.96-billion-edge Twitter graph used
in our experiments. To answer one query (s, t) by bidirectional
breadth-first search (BiBFS) in our cluster, Giraph takes over 100
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seconds, which is intolerable for a data analyst who wants to ex-
amine the distance between users in an online social network with
short response time. To process queries on demand using an ex-
isting vertex-centric system, a user has the following two options:
(1) to process queries one after another, which leads to a low through-
put since the communication workload of each query is usually too
light to fully utilize the network bandwidth and many synchroniza-
tion barriers are incurred; or (2) to write a program to explicitly
process a batch of queries in parallel, which is not easy for users
and may not fully utilize the network bandwidth towards the end of
the processing, since most queries may have finished their process-
ing and only a small number of queries are still being processed. It
is also not clear how to use graph indexing for query processing in
existing vertex-centric systems.

To address the limitations of existing systems in querying big
graphs, we developed a distributed system, called Quegel, for large-
scale graph querying. We implemented the Hub2-Labeling ap-
proach [15] in Quegel, and it can achieve interactive speeds for
PPSP querying on the same Twitter graph mentioned above. Quegel
treats queries as first-class citizens: users only need to write a
Pregel-like algorithm for processing a generic query, and the sys-
tem automatically schedules the processing of multiple incoming
queries on demand. As a result, Quegel has a wide application
scope, since any query that can be processed by a Pregel-style
vertex-centric algorithm can be answered by Quegel, and much
more efficiently. Under this query-centric design, Quegel adopts
a novel superstep-sharing execution model to effectively utilize the
cluster resources, and an efficient mechanism for managing ver-
tex states that significantly reduces memory consumption. Quegel
further provides a convenient interface for constructing indexes to
improve query performance. To our knowledge, Quegel is the first
general-purpose programming framework for querying big graphs
at interactive speeds on a distributed cluster. We have successfully
applied Quegel to process five important types of graph queries (to
be presented in Section 5), and Quegel achieves performance up to
orders of magnitude faster than existing systems.

The rest of this paper is organized as follows. We review related
work in Section 2. In Section 3, we highlight important concepts in
the design of Quegel, and key implementation issues. We introduce
the programming model of Quegel in Section 4, and describe some
graph querying problems as well as their Quegel algorithms in Sec-
tion 5. Finally, we evaluate the performance of Quegel in Section 6
and conclude the paper in Section 7.

2. RELATED WORK
We first review existing vertex-centric graph-parallel systems.

We consider an input graph G=(V,E) stored on Hadoop distributed
file system (HDFS), where each vertex v ∈ V is associated with its
adjacency list (i.e., v’s neighbors). If G is undirected, we denote
v’s neighbors by Γ(v), while if G is directed, we denote v’s in-
neighbors and out-neighbors by Γin(v) and Γout(v), respectively.
Each vertex v also has a value a(v) storing v’s vertex value. Graph
computation is run on a cluster of workers, where each worker is a
computing thread/process, and a machine may run multiple work-
ers.

Pregel [24]. Pregel adopts the bulk synchronous parallel (BSP)
model. It distributes vertices to workers in a cluster, where each
vertex is associated with its adjacency list. A Pregel program com-
putes in iterations, where each iteration is called a superstep. Pregel
requires users to specify a user-defined function (UDF) compute(.).
In each superstep, each active vertex v calls compute(msgs), where
msgs is the set of incoming messages sent from other vertices in the

previous superstep. In v.compute(msgs), v may process msgs and
update a(v), send new messages to other vertices, and vote to halt
(i.e., deactivate itself). A halted vertex is reactivated if it receives a
message in a subsequent superstep. The program terminates when
all vertices are deactivated and no new message is generated. Fi-
nally, the results (e.g., a(v)) are dumped to HDFS.

Pregel also allows users to implement an aggregator for global
communication. Each vertex can provide a value to an aggregator
in compute(.) in a superstep. The system aggregates those values
and makes the aggregated result available to all vertices in the next
superstep.

Distributed Vertex-Centric Systems. Many Pregel-like systems
have been developed, including Giraph [1], GPS [29], GraphX [10],
and Pregel+ [36]. New features are introduced by these systems,
for example, GPS proposed to mirror high-degree vertices on other
machines, and Pregel+ proposed the integration mirroring and mes-
sage combining as well as a request-respond mechanism, to reduce
communication workload. While these systems strictly follow the
synchronous data-pushing model of Pregel, GraphLab [22] adopts
an asynchronous data-pulling model, where each vertex actively
pulls data from its neighbors rather than passively receives mes-
sages. A subsequent version of GraphLab, called PowerGraph [9],
partitions the graph by edges rather than by vertices to achieve
more balanced workload. While the asynchronous model leads to
faster convergence for some tasks like random walk, [23] and [11]
reported that GraphLab’s asynchronous mode is generally slower
than synchronous execution mainly due to the expensive cost of
locking/unlocking.

Single-PC Vertex-Centric Systems. There are also other vertex-
centric systems, such as GraphChi [19] and X-Stream [27], de-
signed to run on a single PC by manipulating a big graph on disk.
However, these systems need to scan the whole graph on disk once
for each iteration of computation even if only a small fraction of
vertices need to perform computation, which is inefficient for light-
weight querying workloads.

Weaknesses of Existing Systems for Graph Querying. In our
experience of working with researchers in e-commerce companies
and telecom operators, we found that existing vertex-centric sys-
tems cannot support query processing efficiently nor do they pro-
vide a user-friendly programming interface to do so. If we write
a vertex-centric algorithm for a generic query, we have to run a
job for every incoming query. As a result, each superstep transmits
only the few messages of one light-weight query which cannot fully
utilize the network bandwidth. Moreover, there are a lot of syn-
chronization barriers, one for each superstep of each query, which
is costly. Moreover, some systems such as Giraph bind graph load-
ing with graph computation (i.e., processing a query in our context)
for each job, and the loading time can significantly degrade the per-
formance.

An alternative to the one-query-at-a-time approach is to hard
code a vertex-centric algorithm to process a batch of k queries,
where k can be an input argument. However, in the compute(.)
function, one has to differentiate the incoming messages and/or ag-
gregators of different queries and update k vertex values accord-
ingly. In addition, existing vertex-centric framework checks the
stop condition for the whole job, and users need to take care of ad-
ditional details such as when a vertex can be deactivated (e.g., when
it should be halted for all the k queries), which should originally
be handled by the system itself. More critically, the one-batch-at-
a-time approach does not solve the problem of low utilization of
network bandwidth, since in later stage when most queries finish
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their processing, only a small number of queries (or stragglers) are
still being processed and hence the number of messages generated
is too small to sufficiently utilize the network bandwidth.

The single-PC systems are clearly not suitable for light-weight
querying workloads since they need to scan the whole graph on
disk once for each iteration. Other existing graph databases such
as Neo4j [25] and HyperGraphDB [14] support basic graph oper-
ations and simple graph queries, but they are not designed to han-
dle big graphs. Our experiments also verified the inefficiency of
single-PC systems and graph databases in querying big graphs (see
Section 6). There are other systems, e.g., the block-centric system
Blogel [35] and a recent general-purpose system Husky [40], which
achieve remarkable performance on offline graph analytics, but are
not designed for graph querying.

The above discussion motivates the need of a general-purpose
graph processing system that treats queries as first citizens, which
provides a user-friendly interface so that users can write their pro-
gram easily for one generic query and the system processes queries
on demand efficiently. Our Quegel system, to be presented in the
following sections, fulfils this need.

3. THE QUEGEL SYSTEM
A Quegel program starts by loading the input graph G, i.e., dis-

tributing vertices into the main memory of different workers in a
cluster. If users enable indexing, a local index will be built from
the vertices of each worker. After G is loaded (and index is con-
structed), Quegel receives and processes incoming queries using
the computing logic specified by a vertex UDF compute(.) as in
Pregel. Users may type their queries from a client console, or sub-
mit a batch of queries with a file. After a query is evaluated, users
may specify Quegel to print the answer to the console, or to dump
the answer to HDFS if its size is large (e.g., the answer contains
many subgraphs).

3.1 Execution Model: Superstep-Sharing
To address the weaknesses of existing systems presented in Sec-

tion 2, we need to consider a new computation model. We first
present the hardness of querying a big graph in general, which in-
fluences the design of our model.

Hardness of Big Graph Querying and Our Design Objective.
We consider the processing of a large graph that is stored in dis-
tributed sites, so that the processing of each query requires network
communication. Since the message transmission of each superstep
incurs round-trip delay, it is difficult (if not unrealistic) for dis-
tributed vertex-centric computation (e.g., on k machines) to achieve
response time comparable to that of single-machine algorithms on
a smaller graph (e.g., k times smaller). Therefore, our goal is to an-
swer a query in interactive speed, e.g., in a second to at most a few
seconds depending on the complexity of processing a given query.
We remark that even in CANDS [39], a specialized distributed sys-
tem dedicated for shortest path querying on big graphs, a query can
take many seconds to answer, while as we shall see in Section 6, our
general-purpose Quegel system can process multiple PPSP queries
per second on a graph with billions of edges.

Moreover, due to the sheer size of a big graph, the total workload
of a batch of queries can be huge even if each query accesses just
a fraction of the graph. We remark that the workload of distributed
graph computation is significantly different from traditional database
applications. For example, to query the balance of a bank account,
the balance value can be quickly accessed from a centralized ac-
count table using a B+-tree index based on the account number,
and it is possible to achieve both high throughput and low latency.

However, in distributed graph computation, the complicated topol-
ogy of connections among vertices (which are not present among
bank accounts) results in higher-complexity algorithms and heav-
ier workloads. Specifically, due to the poor locality of graph data,
each query usually accesses vertices spreading through the whole
big graph in distributed sites, and vertices need to communicate
with each other through the network.

The above discussion shows that there is a latency-throughput
tradeoff where one can only expect either interactive speed or high
throughput but not both. As a result, our design objective focuses
on developing a model for the following two scenarios of querying
big graphs, both of which are common in real life applications.

Scenario (i): Interactive Querying, where a user interacts with
Quegel by submitting a query, checking the query results, refining
the query based on the results and re-submitting the refined query,
until the desired results are obtained. As an example, a data analyst
may use interactive PPSP queries to examine the distance between
two users of interest in a social network. Another example is given
by the XML keyword querying application (to be presented in Sec-
tion 5.2). In such applications, there are only one or several users
(e.g., a data scientist) analyzing a big graph by posing interactive
queries, but each query should be answered in a second or several
seconds. No existing vertex-centric system can achieve such query
latency on a big graph.

Scenario (ii): Batch Querying, where batches of queries are sub-
mitted to Quegel, and they need to be answered within a reason-
able amount of time. An example of batch querying is given by the
vertex-pair sampling application mentioned in Section 1 for esti-
mating graph metrics, where a large number of PPSP queries need
to be answered. Quegel achieves throughput 186 and 38.6 times
higher than Giraph and GraphLab for processing PPSP queries, and
thus allows the graph metrics to be estimated more accurately.

Superstep-Sharing Model. We propose a superstep-sharing exe-
cution model to meet the requirements of both interactive querying
and batch querying. Specifically, Quegel processes graph queries in
iterations called super-rounds. In a super-round, every query that
is currently being processed proceeds its computation by one su-
perstep; while from the perspective of an individual query, Quegel
processes it superstep by superstep as in Pregel. Intuitively, a super-
round in Quegel is like many queries sharing the same superstep.
For a query q whose computation takes nq supersteps, Quegel pro-
cesses it in (nq + 1) super-rounds, where the last super-round re-
ports or dumps the results of q.

Quegel allows users to specify a capacity parameter C, so that
in any super-round, there are at most C queries being processed.
New incoming queries are appended to a query queue, and at the
beginning of a super-round, Quegel fetches as many queries from
the queue as possible to start their processing, as long as the capac-
ity constraint C permits. During the computation of a super-round,
different workers run in parallel, while each worker processes (its
part of) the evaluation of the queries serially. And for each query
q, if q has not been evaluated, a worker serially calls compute(.) on
each of its vertices that are activated by q; while if q has already fin-
ished its evaluation, the worker reports or dumps the query results,
and releases the resources consumed by q.

For the processing of each query, the supersteps are numbered.
Different queries may have different superstep number in the same
super-round, for example, if the queries enter the system in dif-
ferent super-rounds. Messages (and aggregators) of all queries are
synchronized together at the end of a super-round, to be used by
the next super-round.
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Worker 1
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time sync sync sync

Individual Synchronization Superstep Sharing

Figure 1: Load balancing

For interactive querying where queries are posed and processed
in sequence, the superstep-sharing model processes each individ-
ual query with all the cluster resources just as in Pregel. However,
since Quegel decouples the costly graph loading and dumping from
query processing, and supports convenient construction and adop-
tion of graph indexes, the query latency is significantly reduced.

For batch querying, while the workload of each individual query
is light, superstep-sharing combines the workloads of up to C queries
as one batch in each super-round to achieve higher resource utiliza-
tion. Compared with answering each query independently as in
existing graph-parallel systems, Quegel’s superstep-sharing model
supports much more efficient query processing since only one mes-
sage (and/or aggregator) synchronization barrier is required in each
super-round instead of up to C synchronization barriers. We remark
that the synchronization cost is relatively significant compared with
the light workload of processing each single query. In addition,
by sending the messages of many queries in one batch, superstep-
sharing also better utilizes the network bandwidth.

Superstep-sharing also leads to more balanced workload. As an
illustration, Figure 1 shows the execution of two queries for one su-
perstep in a cluster of two workers. The first query (darker shading)
takes 2 time units on Worker 1 and 4 time units on Worker 2, while
the second query (lighter shading) takes 4 time units on Worker 1
and 2 time units on Worker 2. When the queries are processed indi-
vidually, the first query needs to be synchronized before the second
query starts to be processed. Thus, 8 time units are required in to-
tal. Using superstep-sharing, only one synchronization is needed at
the end of the super-round, thus requiring only 6 time units.

One issue that remains is how to set the capacity parameter C.
Obviously, the larger the number of queries being simultaneously
processed, the more fully is the network bandwidth utilized. But
the value of C should be limited by the available RAM space. The
input graph consumes O(|V |+ |E|) RAM space, while each query
q consumes O(|Vq|) space, where Vq denotes the set of vertices
accessed by q. Thus, O(|V |+ |E|+C|Vq|) should not exceed the
available RAM space, though in most case this is not a concern as
|Vq| � |V |. While setting C larger tends to improve the throughput,
the throughput converges when the network bandwidth is saturated.
In a cluster such as ours which is connected by Gigabit Ethernet, we
found that the throughput usually converges when C is increased to
8 (for the graph queries we tested), which indicates that Quegel has
already fully utilized the network bandwidth and shows the high
complexity of querying a big graph.

3.2 System Design
Quegel manages three kinds of data: (i) V-data, whose value

only depends on a vertex v, such as v’s adjacency list. (ii) VQ-
data, whose value depends on both a vertex v and a query q. For
example, the vertex value a(v) is query-dependent: in a PPSP query
q = (s, t), a(v) keeps the estimated value of the shortest distance
from s to v, denoted by d(s,v), whose value depends on the source
vertex s. As a(v) is w.r.t. a query q, we use aq(v) to denote “a(v)
w.r.t. q”. Other examples of VQ-data include the active/halted state
of a vertex v, and the incoming message buffer of v (i.e., input to

v.compute(.)). (iii) Q-data, whose value only depends on a query
q. For example, at any moment, each query q has a unique super-
step number. Other examples of Q-data include the query content
(e.g., (s, t) for a PPSP query), the outgoing message buffers, ag-
gregated values, and control information that decides whether the
computation should terminate.

Let Q = {q1, . . . ,qk} be the set of queries currently being pro-
cessed by Quegel, and let id(qi) be the query ID of each qi ∈ Q.

In Quegel, each worker maintains a hash table HTQ to keep the
Q-data of each query in Q. The Q-data of a query qi can be obtained
from HTQ by providing the query ID id(qi), and we denote it by
HTQ[qi]. When a new query q is fetched from the query queue to
start its processing at the beginning of a super-round, the Q-data
of q is inserted into HTQ of every worker; while after q reports or
dumps its results at superstep (nq +1), the Q-data of q is removed
from HTQ of every worker.

Each worker W also maintains an array of vertices, varray, each
element of which maintains the V-data and VQ-data of a vertex v
that is distributed to W . The VQ-data of a vertex v is organized
by a look-up table LUTv, where the VQ-data related to a query qi
can be obtained by providing the query ID id(qi), and we denote it
by LUTv[qi]. Since every vertex v needs to maintain a table LUTv,
we implement it using a space-efficient balanced binary search tree
rather than a hash table. The data kept by each table entry LUTv[q]
include the vertex value aq(v), the active/halted state of v (in q),
and the incoming message buffer of v (for q).

Unlike the one-batch-at-a-time approach of applying existing vertex-
centric systems, where each vertex v needs to maintain k vertex val-
ues no matter whether it is accessed by a query, we design Quegel
to be more space efficient. We require that a vertex v is allocated a
state for a query q only if q accesses v during its processing, which
is achieved by the following design. When vertex v is activated for
the first time during the processing of q, the VQ-data of q is ini-
tialized and inserted into LUTv. After a query q reports or dumps
its results at superstep (nq +1), the VQ-data of q (i.e., LUTv[q]) is
removed from LUTv of every vertex v in G.

Each worker also maintains a hash table HTV , such that the po-
sition of a vertex element v in varray can be obtained by provid-
ing the vertex ID of v. We denote the obtained vertex element by
HTV [v]. The table HTV is useful in two places: (1) when a message
targeted at vertex v is received, the system will obtain the incom-
ing message buffer of v from varray[pos] where pos is computed
as HTV [v], and then append the message to the buffer; (2) when an
initial vertex v is activated using its vertex ID at the beginning of
a query, the system will initialize the VQ-data of v for q, and in-
sert it into LUTv which is obtained from varray[pos] where pos is
computed as HTV [v]. We shall see how users can activate the (usu-
ally small) initial set of vertices in Quegel for processing without
scanning all vertices in Section 4.

An important feature of Quegel is that, it only requires a user
to specify the computing logic for a generic vertex and a generic
query; the processing of concrete queries is handled by Quegel
and is totally transparent to users. For this purpose, each worker
W maintains two global context objects: (i) query context Cquery,
which keeps the Q-data of the query that W is processing; and
(ii) vertex context Cvertex, which keeps the VQ-data of the cur-
rent vertex that W is processing for the current query. In a super-
round, when a worker starts to process each query qi, it first ob-
tains HTQ[qi] and assigns it to Cquery, so that when a user accesses
the Q-data of the current query in UDF compute(.) (e.g., to get
the superstep number or to append messages to outgoing message
buffers), the system will access Cquery directly without looking up
from HTQ. Moreover, during the processing of qi, and before the
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Superstep i Superstep (i + 1) Superstep (i + 2)

1 2 3 1 2 3 1 2 3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

…
Cquery

Cvertex

… compute(msgs)
1:    if (superstep() = 1) { a(v) ← 0;  send messages }
2:   else {    min ← min{msgs}
3:                if (min < a(v)) { a(v) ← min; send messages }
4:   }
5:   vote_to_halt()

Figure 2: Illustration of context objects

worker calls compute(.) on each vertex v, it first obtains LUTv[qi]
and assigns it to Cvertex, so that any access or update to the VQ-
data of v in compute(.) (e.g., obtaining aq(v) or letting v vote to
halt) directly operates on Cvertex without looking up from LUTv.

As an illustration, consider the example shown in Figure 2, where
there are 3 queries being evaluated and the computation proceeds
for 3 supersteps. Moreover, we assume that 4 vertices call com-
pute(.) in each superstep of each query. As an example, when
processing a superstep (i+2), Cquery is set to HTQ[q3] before eval-
uating v1 for q3; and when the evaluation arrives at v3, Cvertex is
set to LUTv3 [q3] before v3.compute(.) is called. Figure 2 also
shows a simplified code of compute(.) for shortest path compu-
tation, and inside v3.compute(.) for q3, a(v) is accessed once in
Line 1 and twice in Line 3, all of which use the value aq3(v) stored
in Cvertex = LUTv3 [q3] directly; while Line 1 accesses the superstep
number which is obtained from Cquery = HTQ[q3] directly.

One benefit of using the context objects Cvertex and Cquery is that,
due to the access pattern locality of superstep-sharing, repetitive
lookups of tables HTQ and LUTv are avoided. Another benefit is
that, users can write their program exactly like in Pregel (e.g., to
access a(v) and superstep number) and the processing of concrete
queries is transparent to users.

4. PROGRAMMING INTERFACE
The programming interface of Quegel incorporates many unique

features designed for querying workload. For example, the inter-
face allows users to construct distributed graph indexes at graph
loading. The interface also allows users to activate only an ini-
tial (usually small) set of vertices, denoted by V I

q , for processing
a query q without checking all vertices. Note that we cannot acti-
vate V I

q during graph loading because V I
q depends on each incoming

query q.
Quegel defines a set of base classes, each of which is associated

with some template arguments. To write an application program,
a user only needs to (1) subclass the base classes with the tem-
plate arguments properly specified, and to (2) implement the UDFs
according to the application logic. We now describe these base
classes.

Vertex Class. As in Pregel, the Vertex class has a UDF compute(.)
for users to specify the computing logic. In compute(.), a user may
call get query() to obtain the content of the current query qcur. A
user may also access other Q-data in compute(.), such as getting
qcur’s superstep number, sending messages (which appends mes-
sages to qcur’s outgoing message buffers), and getting qcur’s ag-
gregated value from the previous superstep. Quegel also allows a
vertex to call force terminate() to terminate the computation of qcur
at the end of the current superstep. All these operations access the
Q-data fields from Cquery directly.

The vertex class of Quegel is defined as Vertex<I,V Q,VV ,M,Q>,
which has five template arguments: (1) <I> specifies the type (e.g.,
int) of the ID of a vertex (which is V-data). (2) <V Q> specifies
the type of the query-dependent attribute of a vertex v, i.e., aq(v)

(which is VQ-data). (3) <VV> specifies the type of the query-
independent attribute of a vertex v, denoted by aV (v) (which is V-
data). We do not hard-code the adjacency list structure in order
to provide more flexibility. For example, a user may define aV (v)
to include two adjacency lists, one for in-neighbors and the other
for out-neighbors, which is useful for algorithms such as bidirec-
tional BFS. Other V-data can also be included in aV (v), such as
vertex labels used for search space pruning in some query process-
ing algorithms. (4) <M> specifies the type of the messages that
are exchanged between vertices. (5) <Q> specifies the type of the
content of a query. For example, for a PPSP query, <Q> is a pair of
vertex IDs indicating the source and target vertices. In compute(.),
a user may access aV (v) by calling value(), and access aq(v) by
calling qvalue().

Suppose that a set of k queries, Q, is being processed, then each
vertex conceptually has k query-dependent attributes aq(v), one for
each query q ∈ Q. Since a query normally only accesses a small
fraction of all the vertices, to be space-efficient, Quegel allocates
space to aq(v) as well as other VQ-data only at the time when the
vertex is first accessed during the processing of q. Accordingly,
Quegel provides a UDF init value(q) for users to specify how to
initialize aq(v) when v is first accessed by q. For example, for
a PPSP query q = (s, t), where aq(v) keeps the estimated value
of d(s,v), one may implement init value(s, t) as follows: if v = s,
aq(v)← 0; else, aq(v)← ∞. The state of v is always initialized
to be active by the system, since when the space of the state is
allocated, v is activated for the first time and should participate in
the processing of q in the current superstep. Function init value(q)
is the only UDF of the Vertex class in addition to compute(.).

Worker Class. The Vertex class presented above is mainly for users
to specify the graph computation logic. Quegel provides another
base class, Worker<Tvtx,Tidx>, for specifying the input/output for-
mat and for executing the computation of each worker. The tem-
plate argument <Tvtx> specifies the user-defined subclass of Ver-
tex. The template argument <Tidx> is optional, and if distributed
indexing (to be introduced shortly) is enabled, <Tidx> specifies the
user-defined index class.

The Worker class has a function run(param), which implements
the execution procedure of Quegel as described at the beginning
of Section 3. After users define their subclasses to implement the
computing logic, they call run(param) to start a Quegel job. Here,
param specifies job parameters such as the HDFS path of the input
graph G. During the execution, we allow each query to change
aV (v) of a vertex v, and when a user closes the Quegel program
from the console, he/she may specify Quegel to save the changed
graph (V-data only) to HDFS, before freeing the memory space
consumed by G.

The Worker class has four formatting UDFs, which are used
(1) to specify how to parse a line of the input file into a vertex
of G in main memory, (2) to specify how to parse a query string
(input by a user from the console or a file) into the query content of
type <Q>, (3) to specify how to write the information of a vertex
v (e.g., aq(v)) to HDFS after a query is answered, and (4) to spec-
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ify how to write the changed V-data of a vertex v to HDFS when a
Quegel job terminates. The last UDF is optional, and is only useful
if users enable the end-of-job graph dumping.

Quegel allows each worker to construct a local index from its
loaded vertices before query processing begins. We illustrate this
process by considering a vertex-labeled graph G where each vertex
v contains text ψ(v), and show how to construct an inverted index
on each worker W , so that given a keyword k, it returns a list of
vertices on W whose text contains k. This kind of index is useful
in XML keyword search [21, 45], subgraph pattern matching [7,
8], and graph keyword search [13, 26]. Specifically, recall that
each worker in Quegel maintains its vertices in an array varray.
If indexing is enabled, a UDF load2Idx(v, pos) will be called to
process each vertex v in varray immediately after graph loading,
where pos is v’s position in varray. To construct inverted indexes in
Quegel, a user may specify <Tidx> as a user-defined inverted index
class, and implement load2Idx(v, pos) to add pos to the inverted list
of each keyword k in ψ(v). There are also indices that cannot be
constructed simply from local vertices, and we shall see how to
handle such an application in Quegel in Section 5.1.

When a query is first scheduled for processing, each worker
calls a UDF init activate() to activate only the relevant vertices
specified by users. For example, in a PPSP query (s, t), only s
and t are activated initially; while for querying a vertex-labeled
graph, only those vertices whose text contain at least one key-
word in the query are activated. Inside init activate(), one may
call get vpos(vertexID) to get the position pos of a vertex in varray
(which actually looks up the hash table HTV of each worker), and
then call activate(pos) to activate the vertex. For example, to acti-
vate s in a PPSP query (s, t), a user may specify init activate() to
first call get vpos(s) to return s’s position poss. If s is on the current
worker, poss will be returned and one may then call activate(poss)
to activate s in init activate(). If s is not on the current worker,
get vpos(s) returns -1 and no action needs to be performed in init activate().
For querying a vertex-labeled graph, a user may specify init activate()
to first get the positions of the keyword-matched vertices from the
inverted index, and then activate them using activate(pos).

Other Base Classes. Quegel also provides other base classes such
as Combiner and Aggregator, for which users can subclass them to
specify the logic of message combiner [24] and aggregator [24].

5. APPLICATIONS
To demonstrate the generality of Quegel’s computing model for

querying big graphs, we have implemented distributed algorithms
for five important types of graph queries in Quegel, including (1) PPSP
queries, (2) XML keyword queries, (3) terrain shortest path queries,
(4) point-to-point (P2P) reachability queries, and (5) graph key-
word queries. Among them, (1), (3) and (4) only care about the
graph topology, while (2) and (5) also care about the text informa-
tion on vertices and edges. We now present the five applications
and their Quegel solutions.

5.1 PPSP Queries
We consider a PPSP query defined as follows. Given two ver-

tices s and t in an unweighted graph G = (V,E), find the minimum
number of hops from s to t in G, denoted by d(s, t). We focus on un-
weighted graphs since most large real graphs (e.g., social networks
and web graphs) are unweighted. Moreover, we are only interested
in reporting d(s, t), although our algorithms can be easily modified
to output the actual shortest path(s).

5.1.1 Algorithms without Indexing

Breadth-First Search (BFS). The simplest way of answering a
PPSP query q = (s, t) is to perform BFS from s, until the search
reaches t. In this algorithm, aq(v) is specified to be the current esti-
mation of d(s,v), and we use d(s,v) to denote aq(v) in our discus-
sion for simplicity. The UDF init activate() of user-defined Worker
subclass should activate s at the beginning of processing q. The
vertex UDF v.init value(s, t) should set d(s,v) to 0 if v = s, and to
∞ otherwise. Note that v calls init value(.) when v is first activated
during the processing of q, either by init activate() or because some
vertex sends v a message.

The vertex UDF v.compute(.) is implemented as follows. Let
stepq be the superstep number of q. If stepq = 1, then v must be s
since only s is activated by init activate(); s broadcasts messages to
its out-neighbors to activate them, and then votes to halt. If stepq >
1, one of the following is performed: (i) if d(s,v) = ∞, then v is
visited by the BFS for the first time; in this case, v sets d(s,v)←
stepq − 1, broadcasts messages to activate v’s out-neighbors and
votes to halt; if v = t, v also calls force terminate() to terminate
query processing as d(s, t) has been computed; (ii) if d(s,v) 6= ∞,
then v has been activated by q before, and hence v votes to halt
directly. Finally, only t reports aq(t) = d(s, t) on the console and
nothing is dumped to HDFS.

Bidirectional BFS (BiBFS). A more efficient algorithm is to per-
form forward BFS from s and backward BFS from t until a vertex v
is visited in both directions, and we say that v is bi-reached in this
case. Let C be the set of bi-reached vertices when BiBFS stops,
then d(s, t) is given by minv∈C{d(s,v)+d(v, t)}. We take the min-
imum since when BiBFS stops at iteration i, (d(s,v)+d(v, t)) for a
vertex v ∈C may be either (2i−1) or 2i.

The Quegel algorithm for BiBFS is similar to that for BFS, with
the following changes. The query-dependent vertex attribute aq(v)
now keeps a pair (d(s,v),d(v, t)). The vertex UDF v.init value(s, t)
sets d(s,v) to 0 if v = s, and to ∞ otherwise; and it sets d(v, t)
to 0 if v = t, and to ∞ otherwise. Both s and t are activated by
init activate() initially, and two types of messages are used in order
to perform forward BFS and backward BFS in parallel without in-
terfering with each other. In v.compute(.), if both d(s,v) 6= ∞ and
d(v, t) 6= ∞, v should call force terminate() since v is bi-reached.
Then, an aggregator is used to collect the distance (d(s,v)+d(v, t))
of each v∈C, and to obtain the smallest one as d(s, t) for reporting.

BiBFS may be inferior to BFS in the following situation. Sup-
pose that G is undirected, and s is in a small connected component
(CC) while t is in another giant CC. BFS will terminate quickly
after all vertices in the small CC are visited, while BiBFS contin-
ues computation until all vertices in the giant CC are also visited.
To solve this problem, we use aggregator to compute the numbers
of messages sent by the forward BFS and the backward BFS in
each superstep, respectively. If the number of messages sent in ei-
ther direction is 0, the aggregator calls force terminate() and reports
d(s, t) = ∞.

5.1.2 Hub2: An Algorithm with Indexing
Many big graphs exhibit skewed degree distribution, where some

vertices (e.g., celebrities in a social network) connect to a large
number of other vertices. We call such vertices as hubs. Dur-
ing BFS, visiting a hub results in visiting a large number of ver-
tices at the next step, rendering BFS or BiBFS inefficient. Hub2-
Labeling (abbr. Hub2) [15] was proposed to address this problem.
We present a distributed implementation of Hub2 in Quegel for an-
swering PPSP queries. We first consider undirected graphs and then
extend the method to directed graphs.

Hub2 picks k vertices with the highest degrees as the hubs. Let
us denote the set of hubs by H, Hub2 pre-computes the pairwise
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distance between any pair of hubs in H. Hub2 also associates
each vertex v /∈ H with a list of hubs, Hv ⊆ H, called core-hubs,
and pre-computes d(v,h) for each core-hub h ∈ Hv. Here, a hub
h ∈ H is a core-hub of v, iff no other hub exists on any shortest
path between v and h. Formally, each vertex v ∈V maintains a list
L(v) of hub-distance labels defined as follows: (i) if v ∈ H, L(v) =
{〈u,d(v,u)〉 | u ∈ H}; (ii) if v ∈ (V −H), L(v) = {〈u,d(v,u)〉 | u ∈
Hv}.

Given a PPSP query q = (s, t), an upperbound of d(s, t) can
be derived from the vertex labels. For ease of presentation, we
only present the algorithm for the case where neither s nor t is a
hub, while algorithms for the other cases can be similarly derived.
Specifically, d(s, t) is upperbounded by dub =minhs∈Hs,ht∈Ht{d(s,hs)+
d(hs,ht) + d(ht , t)}. Obviously, if there exists a shortest path P
from s to t that passes at least one hub (note that we allow hs = ht ),
then dub is exactly d(s, t). However, the shortest path P′ from s to t
may not contain any hub, and thus we still need to perform BiBFS
from s and t. Note that any edge (u,v) on P′ satisfies u,v 6∈ H,
and thus we need not continue BFS from any hub. In other words,
BiBFS is performed on the subgraph of G induced by (V −H),
which does not include high-degree hubs.

Algorithm for Querying. We now present the UDF compute(.),
which applies Hub2 to process PPSP queries. We first assume that
L(v) for each vertex v is already computed (we will see how to
compute L(v) shortly), and that v keeps the query-independent at-
tribute aV (v) = (Γ(v),L(v)). The algorithm for BiBFS is similar to
the one discussed before, with the following changes: (i) whenever
forward or backward BFS visits a hub h, h votes to halt directly;
and (ii) once a vertex v /∈ H is bi-reached, v calls force terminate()
to terminate the computation, and reports minv∈(C−H){d(s,v) +
d(v, t)}. Moreover, the BiBFS should terminate earlier if the su-
perstep number reaches i = (1 + b dub

2 c) (even if no vertex is bi-
reached), and d(s, t) = dub is reported. This is because, a non-
hub vertex v that is bi-reached at superstep i or later would report
d(s,v)+d(v, t)≥ (2i−1), which cannot be smaller than dub.

We obtain dub in the first two supersteps: in superstep 1, only
s and t have been activated by init activate(); s sends each core-
hub hs ∈Hs a message 〈d(s,hs)〉 (obtained from L(s)), while t pro-
vides L(t) to the aggregator. In superstep 2, each vertex hs ∈ Hs
receives message d(s,hs) from s, and obtains L(t) from the aggre-
gator. Then, hs evaluates minht∈Ht{d(s,hs)+ d(hs,ht)+ d(ht , t)},
where d(hs,ht) is obtained from L(hs) and d(ht , t) is obtained from
L(t), and provides the result to the aggregator. The aggregator takes
the minimum of the values provided by all hs ∈Hs, which gives dub.

Algorithm for Indexing. The above algorithm requires that each
vertex v stores L(v) in aV (v). We now consider how to pre-compute
L(v) in Quegel. This indexing procedure can be accomplished by
performing |H| BFS operations, each starting from a hub h∈H. In-
terestingly, if we regard each BFS operation from a hub h as a BFS
query 〈h〉 in Quegel, then the entire procedure can be formulated as
an independent Quegel job with the query set {〈h〉 | h ∈ H}.

We process a BFS query 〈h〉 in Quegel as follows. The query-
dependent attribute of a vertex v is defined as aq(v)= 〈d(h,v), preH(v)〉,
where preH(v) is a flag indicating whether any shortest path from
h to v passes through another hub h′ (h′ 6= h and h′ 6= v). Quegel
starts processing 〈h〉 by calling init activate() to activate h. The
UDF v.init value(〈h〉) is specified to set preH(v)← FALSE, and to
set d(s,v)← 0 if v = h or set d(s,v)← ∞ otherwise.

The UDF v.compute(.) is implemented as follows. In this algo-
rithm, a message sent by v indicates whether there exists a shortest
path from h to v that contains another hub h′ 6= h (here, h′ can be v);
if so, for any vertex u /∈H newly activated by that message, it holds

that h 6∈ Hu. Based on this idea, the algorithm is given as follows.
In superstep 1, h broadcasts message 〈FALSE〉 to its neighbors. In
superstep i (i > 1), if d(h,v) 6= ∞, then v is already visited by BFS,
and it votes to halt directly; otherwise, v is activated for the first
time, and it sets d(h,v)← stepq−1, and receives and processes in-
coming messages as follows. If v receives 〈TRUE〉 from a neighbor
w, then a shortest path from h to v via w passes through another
hub h′ (h′ 6= h and h′ 6= v), and thus v sets preH(v)← TRUE. Then,
if v ∈ H or preH(v) = TRUE, v broadcasts message 〈TRUE〉 to
each neighbor u; otherwise, v broadcasts message 〈FALSE〉 to all
its neighbors. Finally, v votes to halt.

To compute L(v) using the above algorithm, we specify the query-
independent attribute of a vertex v as aV (v) = (Γ(v),L(v)), where
L(v) is initially empty. After a query 〈h〉 is processed, we perform
the following operation in the query dumping UDF: (i) if v /∈ H, v
adds 〈h,d(h,v)〉 to L(v) only if preH(v) = FALSE; (ii) if v ∈ H, v
always adds 〈h,d(h,v)〉 to L(v).

After all the |H| queries are processed, L(v) is fully computed
for each v ∈ V . Then, each vertex v saves L(v) along with other
V-data to HDFS, which is to be loaded later by the Quegel program
for processing PPSP queries described previously.

Extension to Directed Graphs. If G is directed, we make the fol-
lowing changes. First, each vertex v now has in-degree |Γin(v)|
and out-degree |Γout(v)|, and thus we consider three different ways
of picking hubs, i.e., picking those vertices with the highest (i) in-
degree, or (ii) out-degree, or (iii) sum of in-degree and out-degree.
Second, each vertex v now maintains two core-hub sets: an entry-
hub set H in

v and an exit-hub set Hout
v . A hub h ∈ H is an entry-hub

(exit-hub) of v, iff no other hub h′ ( 6= h,v) exists on any shortest
path from v to h (from h to v). Accordingly, we obtain two lists of
hub-distance labels, Lin(v) and Lout(v). During indexing, we con-
struct Lin(v) (Lout(v)) by backward (forward) BFS, i.e., sending
messages to in-neighbors (out-neighbors). When answering PPSP
queries, we compute dub similarly but hs ∈Hs (and ht ∈Ht ) is now
replaced by hs ∈ H in

s (and ht ∈ Hout
t ).

5.2 XML Keyword Search
Section 5.1 illustrated how graph indexing itself can be formu-

lated as an individual Quegel program. We now present another
application of Quegel, i.e., keyword search on XML documents,
which makes use of the distributed indexing interface of Quegel de-
scribed in Section 4 directly. Compared with traditional algorithms
that rely on disk-based indexes [21, 45], our Quegel algorithms are
much easier to program, and they avoid the expensive cost of con-
structing any disk-based index. Although simple MapReduce solu-
tion has also been developed, it takes around 15 seconds to process
each keyword query on an XML document whose size is merely
200MB [41]. The low efficiency is because MapReduce is not de-
signed for querying workload. In contrast, our Quegel program
answers the same kind of keyword queries on much larger XML
documents in less than a second. Let us first review the query se-
mantics of XML keyword search, and then discuss XML keyword
query processing in Quegel, followed by applications of the query
in an online shopping platform.

5.2.1 Query Semantics
An XML document can be regarded as a rooted tree, where inter-

nal vertices are XML tags and leaf vertices are texts. To illustrate,
Figure 3 shows the tree structure of an XML document describing
the information of a research lab. We denote the set of words con-
tained in the tag or text of a vertex v by ψ(v), and if a keyword
k ∈ ψ(v), we call v as a matching vertex of k (or, v matches k).
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… …
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Figure 3: A fragment of an XML document

Given an XML document modeled by a tree T , an XML keyword
query q = {k1, k2, . . ., km} finds a set of trees, each of which is a
fragment of T , denoted by R, such that for each keyword ki ∈ q,
there exists a vertex v in R matching ki. We call each result tree R
as a matching tree of q.

Different semantics have been proposed to define what a mean-
ingful matching tree R could be. Most semantics require that the
root of R be the Lowest Common Ancestor (LCA) of m vertices
v1, . . ., vm, where each vertex vi matches a keyword ki ∈ q. For
example, given the XML tree in Figure 3 and a query q = {Tom,
Graph}, vertex 9 is the LCA of the matching vertices 11 and 13,
while vertex 1 is the LCA of the matching vertices 3 and 5.

We consider two popular semantics for the root of R: Small-
est LCA (SLCA) and Exclusive LCA (ELCA) [45]. For simplicity,
we use “LCA/SLCA/ELCA of q” to denote “LCA/SLCA/ELCA of
matching vertices v1, . . ., vm”. An SLCA of q is defined as an LCA
of q that is not an ancestor of any other LCA of q. For example,
in Figure 3, vertex 9 is the SLCA of q = {Tom, Graph}, while ver-
tex 1 is not since it is an ancestor of another LCA, i.e. vertex 9. Let
us denote the subtree of T rooted at vertex v by Tv, then a vertex v is
an ELCA of q if Tv contains at least one occurrence of all keywords
in q, after pruning any subtree Tu (where u is a child of v) which
already contains all keywords in q. Referring to Figure 3 again,
both vertices 1 and 9 are ELCAs of q = {Tom, Graph}. Vertex 1
is an ELCA since after pruning the subtree rooted at vertex 6, there
still exist vertices 3 and 5 matching the keywords in q. In contrast,
if q = {Peter, Graph}, then vertex 9 is an ELCA of q, while ver-
tex 1 is not an ELCA of q since after pruning the subtree rooted at
vertex 6, there is no vertex matching “Peter”.

Once the root, r, of a matching tree is determined, we may return
the whole subtree Tr as the result tree R. However, if r is at a top
level of the input XML tree, Tr can be large (e.g., the subtree rooted
at vertex 1) and may contain much irrelevant information. For an
SLCA r, MaxMatch [21] was proposed to prune irrelevant parts
from Tr to form R. Let K(v) be the set of keywords matched by the
vertices in Tv. If a vertex v1 has a sibling v2, where K(v1)⊂ K(v2),
then Tv1 is pruned. For example, let q= {Tom, Graph} and consider
the subtree rooted at vertex 1 in Figure 3. Since vertex 9 contains
{Tom, Graph} in its subtree while its sibling vertex 14 does not
contain any keyword in its subtree, the subtree rooted at vertex 14
is pruned.

5.2.2 Query Algorithms
We now present the Quegel algorithms for computing SLCA,

ELCA and MaxMatch. The Quegel program first loads the graph
that represents the XML document (the graph is obtained by pars-
ing the XML document with a SAX parser), where each vertex v
is associated with its parent pa(v) and its children Γc(v) (V-data).
Then, each worker constructs an inverted index from the loaded
vertices using the indexing interface described in Section 4.

To process a query q, the UDF init activate() activates only those

vertices v with ψ(v)∩ q 6= /0. The query-independent attribute of
each vertex v, aV (v), maintains pa(v), Γc(v), and ψ(v), and the
query-dependent attribute aq(v) maintains a bitmap bm(v), where
bit i (denoted by bm(v)[i]) equals 1 if keyword ki exists in subtree
Tv and 0 otherwise. The UDF v.init value(q) sets each bit bm(v)[i]
to 1 if ki ∈ ψ(v) and 0 otherwise. For simplicity, if all the bits of
bm(v) are 1, we call bm(v) as all-one. We now describe the query
processing logic of v.compute(.) for SLCA, ELCA and MaxMatch
semantics as follows.

Computing SLCA in Quegel. In superstep 1, all matching vertices
have been activated by init activate(), and each matching vertex v
sends bm(v) to its parent pa(v) and votes to halt. In superstep i
(i > 1), there are two cases in processing a vertex v. Case (a):
if some bit of bm(v) is 0, v computes the bitwise-OR of bm(v)
and those bitmaps received from its children, which is denoted by
bmOR. If bmOR 6= bm(v), then some new bit of bm(v) should be
set due to a newly matched keyword; thus, v sets bm(v) = bmOR,
and sends the updated bmv to its parent pa(v). In addition, if bmOR
is all-one, then (1) if v receives an all-one bitmap from a child, v
is labeled as a non-SLCA (the label is also maintained in aq(v));
(2) otherwise, v is labeled as an SLCA. Case (b): if bm(v) is all-
one, then v has been labeled either as an SLCA or as a non-SLCA
(because a descendant is an SLCA) in an earlier superstep. (1) If v
is labeled as a non-SLCA, v votes to halt directly; while (2) if v is
labeled as an SLCA, and v receives an all-one bitmap from a child,
then v labels itself as a non-SLCA. Finally, v votes to halt.

In the above algorithm, a vertex may send messages to its parent
multiple times. To make sure that each vertex sends at most one
message to its parent, we design another level-aligned algorithm
as follows. Specifically, we pre-compute the level of each vertex
v in the XML tree, denoted by `(v), by performing BFS from the
tree root (with a traditional Pregel job). Then, our Quegel program
loads the preprocessed data, where each vertex v also maintains
`(v) in aq(v). The UDF v.compute(.) is designed as follows. Ini-
tially, we use an aggregator to collect the maximum level of all the
matching vertices, denoted by `max. The aggregator maintains `max
and decrements it by one after each superstep. In a superstep, a
vertex v at level `max computes the bitwise-OR of bm(v) and all the
bitmaps received from its children at level (`max +1); the bitwise-
OR is then assigned to bm(v) and sent to v’s parent pa(v). More-
over, if an all-one bitmap is received, v labels itself as a non-SLCA
directly; otherwise, and if bm(v) becomes all-one, then v labels it-
self as an SLCA. Finally, v votes to halt. Note that those matching
vertices u with `(u)< `max remain active until they are processed.

Computing ELCA in Quegel. We use a level-aligned algorithm
to compute ELCAs as follows. In a superstep, an active vertex v
at level `max updates bm(v) and sends it to the parent pa(v) as in
SLCA computation. Meanwhile, v also computes another bitmap
bm∗OR (in addition to bmOR), which is the bitwise-OR of bm(v) (be-
fore its update) and all the non-all-one bitmaps received from its
children at level (`max+1). And v labels itself as an ELCA if bm∗OR
is all-one.

In our SLCA and ELCA algorithms, each vertex v also maintains
in aV (v) its start and end positions in the XML document, denoted
by start(v) and end(v), which are also obtained during the SAX
parsing. After a query is processed, each vertex that is labeled as
an SLCA or ELCA dumps [start(v),end(v)] to HDFS, so that users
can obtain Tv by reading the corresponding part of the XML docu-
ment.

Computing MaxMatch in Quegel. Our Quegel algorithm for com-
puting MaxMatch prunes irrelevant parts from the subtree rooted
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Figure 4: Terrain data model

at each SLCA, and all vertices in the result matching trees dump
themselves to HDFS after a query is processed, which can then be
sent to the client and assembled as trees for display.

The algorithm is also level-aligned, and consists of two phases.
In Phase 1, we run a variant of the level-aligned SLCA algorithm,
where each vertex v sends message 〈v,bm(v)〉 to pa(v). When a
vertex v receives a message 〈u,bm(u)〉 from a child u, it keeps
〈u,bm(u)〉 in aq(v). To avoid the algorithm from terminating after
Phase 1, we keep the SLCA vertices active (i.e., they do not vote to
halt) during the computation of Phase 1. Phase 1 ends when the su-
perstep that decrements `max to 0 finishes, and then the aggregator
sets the phase number as 2 to start Phase 2.

Phase 2 performs downward propagation from those SLCAs found
by Phase 1. In a superstep, each active vertex v labels itself to
indicate that v is in a matching tree R (the label is also kept in
aq(v)). Then, v sends messages to its children that are not dom-
inated by any of their siblings. Here, u1 is dominated by u2 if
K(u1)⊂ K(u2), and we check the condition using their bitmaps as
follows: bm(u1) 6= bm(u2) and (bm(u1) Bit-OR bm(u2)) = bm(u2).
In this way, dominated subtrees are pruned from R, and Quegel
dumps only the labeled vertices to HDFS.

Applications of XML Keyword Search. Though originally pro-
posed for querying a single XML document [21, 45], our algo-
rithms can also be used to query a large corpus of many XML
documents. We illustrate this by one application in e-commerce.
During online shopping, a customer may pose a keyword query (in
the form of an AJAX request) from a web browser to search for
interested products. The web server will obtain the matched prod-
ucts from the database, organize them as an XML document, and
send it back to the client side. The browser of the client will then
parse the XML document by a Javascript script to display the re-
sults. The server may log the various AJAX responses to disk, so
that data scientists and sellers may pose XML keyword queries on
the logged XML corpus to study customers’ search behaviors of
specific products, to help them make better business decisions.

5.3 Terrain Shortest Path Queries
Technological advance in remote sensing has made available high

resolution terrain data of the entire Earth surface. Terrain data are
usually represented in the Digital Elevation Model (DEM), which is
an elevation mesh of sampled ground positions at regularly spaced
interval. Since terrain data are usually collected at high resolution
(e.g., 10m sampling intervals), the data size is usually huge.

Many recent studies propose algorithms for processing various
spatial queries over terrain data, including P2P shortest path queries [20],
nearest neighbor (NN) queries [31, 17] and reverse NN queries [38,
17]. Applications of terrain queries include disaster response, out-
door activities, and military operations [38]. Existing works adopt
the Triangulated Irregular Network (TIN) terrain representation as
illustrated in Figure 4(a), which is derived from the DEM data.
Since the terrain surface is composed of triangular faces, exist-
ing works use Chen and Han’s algorithm [16], which is a poly-

hedron shortest path algorithm, to compute the terrain shortest path
between two terrain locations. This approach has very poor per-
formance and scalability, since the time complexity of Chen and
Han’s algorithm is quadratic to the number of triangular faces. For
example, even with surface simplification (with precision loss), the
algorithm of [20] can only process terrain shortest paths with length
of merely several hundred meters, and it takes hundreds to thou-
sands of seconds to compute one such shortest path. We propose
an efficient approximate solution with a much lower cost.

Let dN(u,v) be the network (which is TIN here) distance be-
tween two vertices (i.e., locations), u and v. Here, dN(u,v) upper-
bounds the actual terrain distance between u and v, since the TIN
shortest path is also a path on the terrain surface. However, the TIN
shortest path can be very different from the actual terrain shortest
path [31]. We further show that the difference cannot be effectively
reduced simply by increasing the sampling rate. Consider the mesh
fragment shown in Figure 4(b), and suppose that all vertices have
the same elevation. If only horizontal and vertical edges are consid-
ered, then no matter what the sampling interval is, dN(s, t) is lower
bounded by the Manhattan distance between s and t, even though
the terrain shortest path is given by a straight line between s and
t. Now consider a TIN where faces are diagonally triangulated, we
can show that dN(s, t) is lower bounded by δmax +(

√
2−1) ·δmin,

where δmax (and δmin) refers to the larger (and smaller) one of
|s.x− t.x| and |s.y− t.y|. Thus, a better solution is needed.

The above discussion motivates us to propose a new transfor-
mation from the terrain data to a network that gives more accurate
terrain shortest path distance, and we can use Quegel to achieve
efficient computation on the network. The idea is to add shortcut
edges as illustrated by the last grid cell in Figure 4(b). Specifically,
we split each edge of a cell by adding vertices such that the dis-
tance between two neighboring vertices is no more than ε as shown
in Figure 4(b). Then, in each cell, we add a straight line between
every pair of vertices that are not on the same horizontal or vertical
edge. We then compute the shortest path on the new network to
approximate the terrain shortest path. Since the cell shortcuts are
in different directions, the network shortest path can be close to the
actual terrain shortest path. Note that even TIN just interpolates
the elevation of an arbitrary location from the sampled elevation
data [20], as the actual elevation is not known. For example, in Fig-
ure 4(b), the elevation of v3 is linearly interpolated from samples
v1 and v2. Therefore, the shortest paths computed on TIN [20] and
our graph model both just approximates the actual shortest path.

Now the problem of computing P2P shortest path over the ter-
rain is transformed to the problem of computing the P2P shortest
path in the transformed network. Since terrain data can be of plan-
etary scale and the transformed network is even larger, we employ
Quegel for distributed shortest path querying in the transformed
network. The logic of the compute(.) function can simply be the
distributed single-source shortest-path (SSSP) algorithm of [24],
where each active vertex updates its current distance (from s) us-
ing that of its neighbors, and propagates the updated distance to its
neighbors to activate them for further distance computation, until
the process converges. We further devise a mechanism to terminate
the SSSP computation earlier (without traversing all the vertices)
when s and t are close to each other, which is described as follows.

Let dE(u,v) be the Euclidean distance between vertices u and v.
In any superstep, when a vertex v is currently active (i.e., v is at
the distance propagation wavefront), dN(s,v) is updated based on
dN(s,u) sent by the neighbors u of v from the previous superstep.
Meanwhile, we compute dE(s,v) using the coordinates of s and v.
Note that dE(s,v) lower-bounds dN(s,v). We use the aggregator to
compute the minimum value of dE(s,v), denoted by dmin

E , among

9



all vertices v at the distance propagation wavefront. If dN(s, t) <
dmin

E , vertex t calls force terminate() to end the computation. This
is because for any vertex w that will be at the distance propagation
wavefront in any following superstep, we have dN(s,w)> dmin

E for
the current dmin

E . However, we already have dN(s, t) < dmin
E , and

thus no dN(s,w) computed in any following superstep (including
dN(s, t)) can be smaller than the current dN(s, t).

In our actual implementation, to avoid a large number of super-
steps caused by large graph diameter, we use the idea of [35] which
first partitions the graph into subgraphs that group spatially close
vertices, and then propagates the distance updates from s in the
unit of subgraphs (instead of vertices). Experiments in Section 6
verify that our new method computes high-quality terrain shortest
paths very efficiently for any path length (in contrast to only several
hundred meters as in [20]).

5.4 P2P Reachability
In this section, we consider P2P reachability query (s, t), which

determines whether there exists a path from s to t in a directed
graph G = (V,E). The Quegel algorithms for BFS and BiBFS as
described in Section 5.1.1 are also applicable to this problem. We
now consider the Quegel solution that makes use of indexing.

A P2P reachability query on a direct graph G can be reduced
to one on a directed acyclic graph (DAG) G′. Each vertex of G′

represents a strongly connected component (SCC) of G, and each
edge represents the fact that one component can reach another. To
answer whether u can reach v in G, we simply look up their cor-
responding SCCs, Su and Sv, respectively, which are the nodes in
G′. Vertex u can reach v in G iff Su = Sv or Su can reach Sv in
G′. Note that the SCCs of G can be computed in Pregel using the
algorithm of [36], which associates each vertex v in G with its cor-
responding (SCC) vertex Sv in G′. This v-to-Sv mapping relation
can be pre-computed as an independent Pregel job, and stored on
HDFS to be loaded later by Quegel workers into their local index
field Worker::index. When a query (s, t) arrives, each worker may
look up Ss and St from the index and activate them (if they reside
in the worker) in init activate(). For ease of discussion, we assume
G is a DAG hereafter.

Existing work on P2P reachability indexing combines graph traver-
sal with vertex-label based pruning in order to be scalable, such
as [43, 34]. Due to the requirement of graph traversal, the graph
and the vertex labels have to reside in main memory, and for mas-
sive graphs, one has to resort to a distributed main-memory system.
In this section, we demonstrate how the index of [43] can be used
in Quegel. We assume that a depth-first search forest of G is given
(which is required by the no-label to be introduced shortly), so that
each vertex v knows its parent pa(v) in the forest, the pre-order
number pre(v) and the post-order number post(v). This can be
computed in memory, or using the IO-efficient algorithm of [42].

During the indexing phase, we compute three labels for each ver-
tex v using three cascaded Pregel jobs: (1) level `(v), (2) yes-label
yes(v) and (3) no-label no(v). These labels are then used in our
Quegel algorithm to prune vertices from further expanding during
bidirectional BFS from s and t.

Level Label. We first define `(v) and discuss its computation. Let
us call a vertex with zero in-degree as a root, then `(v) is defined as
the largest number of hops from a root to v. For example, consider
the DAG shown in Figure 5. Vertex 9 has level 3 although it is just
two hops away from root 10 (through path 10→ 11→ 9), since the
longest path from root 10 has three hops (e.g., path 10→ 7→ 8→
9).

According to the definition of the level label, if u can reach v,
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Figure 5: Illustration of yes-labels

then `(u)<`(v). Therefore, in our Quegel algorithm, if the forward
BFS from s activates a vertex v with `(v) ≥ `(t), v votes to halt
directly as it cannot reach t; similarly, if the backward BFS from
t activates a vertex v with `(s) ≥ `(v), v votes to halt directly as s
cannot reach v. Note that the vertex labels of s and t can be obtained
using aggregator at the beginning of a query (s, t), so that any vertex
v can get them from the aggregator in compute(.).

The Pregel algorithm for level computation is as follows. Ini-
tially, only roots r are active with `(r) = 0, while `(v) is initialized
as ∞ for all other vertices v. In superstep 1, each root r broad-
casts `(r) to its out-neighbors before voting to halt. In superstep i
(i > 1), each active vertex v gets the largest incoming message `(u)
(sent from in-neighbor u); here, we know that v’s level should be
at least `(u)+1, and thus we check if `(u)+1 > `(v). If so, v up-
dates `(v) = `(u)+ 1, and broadcasts `(v) to all its out-neighbors.
Finally, v votes to halt. Upon convergence, for each vertex v, `(v)
equals the level of v.

Yes-Label. We now define yes(v) and discuss its computation. Re-
call that the pre-order number pre(v) is available for each vertex v.
Let us define Out(v) to be the set of all vertices reachable from v
(including v itself), then yes(v) is defined as [pre(v),maxu∈Out(v) pre(u)].
As an illustration, consider the graph shown in Figure 5, where the
bold edges belong to the DFS forest, and the vertices are marked
with their pre-order numbers. Vertex 5 has yes-label [5,5] since the
largest vertex that it can reach is itself; while vertex 7 has yes-label
[7,9] as the largest vertex that it can reach has ID 9.

The yes-label has the following property: if yes(v)⊆ yes(u), then
u can reach v [43]. To illustrate, in Figure 5, we can conclude that
vertex 0 can reach vertex 2 since [2,2] ⊆ [0,4]. In fact, this prop-
erty holds as long as pre(v) is computed from a spanning forest of
G (including a DFS forest). Intuitively, yes(v) ⊆ yes(u) iff u is an
ancestor of v in the forest. Therefore, in our Quegel algorithm, if
the forward BFS from s activates a vertex v with yes(t)⊆ yes(v), v
calls force terminate() and indicates that s can reach t. This is be-
cause v is obviously reachable from s, and v can reach t according
to the yes-labels. Similarly, if the backward BFS from t activates
a vertex v with yes(v) ⊆ yes(s), v calls force terminate() and indi-
cates that s can reach t.

To compute the yes-labels, we only need to compute max(v) =
maxu∈Out(v) pre(u) for each vertex v as follows. Initially, for each
vertex v, max(v) is initialized as pre(v), and only those vertices
with zero out-degree are active; each active vertex v sends max(v)
to its in-neighbors in superstep 1 and votes to halt. In superstep i
(i > 1), each vertex v receives the incoming messages, and let the
largest one be max(u); if max(u)>max(v), v sets max(v) =max(u)
and broadcasts max(v) to its in-neighbors; finally, v votes to halt.

A weakness of this algorithm is that, a vertex v may update
max(v) and broadcast max(v) to its in-neighbors for more than
once. We design a more efficient level-aligned algorithm that makes
use of level `(v) to ensure that each vertex v only updates and
broadcasts max(v) once, which works as follows. Initially, only
those vertices with zero out-degree are active, and we use aggre-
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gator to collect their maximum level `max. Then, the aggregator
maintains `max and decrements it by one after each superstep; all
vertices v with `(v) > `max are already processed, while all ver-
tices u with `(u) = `max are being processed. In a superstep, a
vertex v receives messages, and let the largest one be max(u); if
max(u) > max(v), v sets max(v)← max(u). Then, each vertex v
with `(v) = `max broadcasts max(v) to its in-neighbors and votes to
halt.

No-Label. Finally, we define no(v) and discuss its computation.
For each vertex v, no(v) is defined as [minu∈Out(v) post(u), post(v)].
As an illustration, consider the graph shown in Figure 6, which is
the same one as in Figure 5 except that the vertices are marked
with their post-order numbers. Vertex 4 has no-label [0,4] since
the smallest vertex that it can reach has ID 0; while vertex 8 has
no-label [1,8] as the smallest vertex that it can reach has ID 1.

The no-label has the following property: if u can reach v, then
no(v)⊆ no(u) [43]. The property can be easily observed from Fig-
ure 6. We actually use its contrapositive: if no(v) 6⊆ no(u), then
u cannot reach v. To illustrate, in Figure 6, we can conclude that
vertex 11 cannot reach vertex 0 since [0,0] 6⊆ [1,11]. Therefore, in
our Quegel algorithm, if the forward BFS from s activates a ver-
tex v with no(t) 6⊆ no(v), v votes to halt directly as v cannot reach
t; similarly, if the backward BFS from t activates a vertex v with
no(v) 6⊆ no(s), v votes to halt directly as s cannot reach v.

The Pregel algorithm for no-label computation is symmetric to
that for yes-label computation, and is thus omitted.

5.5 Graph Keyword Search
In this section, we consider a simplified version of the graph key-

word search problem [13] which was recently studied by [26] on
MapReduce: given a keyword query Q = {k1,k2, . . . ,km} over a
graph G = (V,E) where each vertex v∈V has text ψ(v), a keyword
search finds a set of rooted trees in the form of (r, {〈v1,hop(r,v1)〉,
〈v2,hop(r,v2)〉), . . ., 〈vm,hop(r,vm)〉}), where r is the root vertex,
and vi is the closest vertex to r whose text ψ(vi) contains key-
word ki. Moreover, the maximum distance allowed from a root to
a matched vertex is constrained to be δmax. Note that a root vertex
r determines a unique answer, since we pick the matching vertex
closest to r for each keyword.

A simple vertex-centric algorithm for graph keyword search is
described as follows. Each vertex v maintains for each ki a field
〈vi,hop(v,vi)〉 indicating its closest matching vertex vi. Initially, if
ki ∈ψ(v), we set 〈vi,hop(v,vi)〉= 〈v,0〉; otherwise, we set 〈vi,hop(v,vi)〉=
〈?,∞〉. Only vertices whose text contains at least one keyword
are active. In superstep 1, each matching vertex v finds its fields
with vi 6= ? (i.e., ki ∈ ψ(v)), sends 〈vi,hop(v,vi)〉 to all its in-
neighbors, and votes to halt. In superstep i (i > 1), a vertex v
receives messages 〈ui,hop(u,ui)〉 from its out-neighbors u. Here,
message 〈ui,hop(u,ui)〉 indicates that vertex ui matches ki, and it
is hop(u,ui) hops from u (and u is one hop from v). Therefore,
let u∗ be the out-neighbor of v with the smallest hop(u,ui) and let
the matching vertex be u∗i , then if hop(u∗,u∗i )+ 1 < hop(v,vi), v
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updates 〈vi,hop(v,vi)〉= 〈ui,hop(u∗,u∗i )+1〉 and sends it to all its
in-neighbors, before voting to halt. If the computation proceeds
after δmax supersteps, all vertices vote to halt directly and the algo-
rithm stops; by then any vertex r whose vi 6= ? for all keywords ki
corresponds to a result.

A typical application of graph keyword search is over RDF data.
An RDF data consists of triples of the form (s, p,o) , where s, p and
o are called as subject, predicate and object, respectively. Concep-
tually, each triple can be regarded as a directed edge from vertex s
to vertex o with edge label p, and thus, the whole RDF data can be
regarded as a labeled graph. As an illustration, consider the RDF
graph shown in Figure 7, which contains triples like (Tom, super-
vises, Peter), and (Peter, age, “25”). Here, the text of some vertex
uniquely determines the vertex identity, such as the vertex labeled
“Peter”. The text of such a vertex is called a resource, which is
usually a URI. While for some vertex like “25”, the text is just a lit-
eral that indicates the value of its predicate, and the text of another
vertex can also be this literal.

To perform keyword search over an RDF graph, we first need
to convert the set of triples into an adjacency list representation.
For a literal vertex o in triple (s, p,o), we store it as an attribute of
resource vertex s with attribute p having value o. For each resource
vertex v, two lists are stored, Γin(v) that contains v’s in-neighbors
(which are resource vertices), and A(v) that contains v’s literal out-
neighbors. The lists can be easily obtained by MapReduce. For
example, to get the in-neighbor lists for all vertices, each mapper
splits a triple (s, p,o) (where o is a resource) into 〈o,(p,s)〉, and
each reducer merges all in-neighbors (s, p) of o into Γin(o). Here,
each neighbor s is associated with an edge label p.

The Quegel algorithm for RDF keyword search maintains an in-
verted index as described in Section 4 similar to that for XML key-
word search, and only the matching vertices are activated at the be-
ginning of a query. Unlike the vertex-centric algorithm mentioned
above, a neighbor u in Γin(v) or A(v) also contains an edge label
p(u) which may also match the keywords. Accordingly, we acti-
vate a vertex v when any of ψ(v), Γin(v) or A(v) covers a keyword.
Moreover, when v sends messages, we need to consider four cases
as Figure 8 illustrates.

We now describe the four cases. Consider a specific keyword
ki, (1) if ki ∈ ψ(v), v broadcasts 〈v,0〉 to all in-neighbors; or else,
(2) if for some literal (`, p(`)) ∈ A(v), ki ∈ ψ(`) or ki ∈ ψ(p(`)),
then v broadcasts 〈`,1〉 to all in-neighbors; or else, (3) if vi 6= ?, v
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Table 1: Datasets (M = million)

Dataset |V| |E| Max
Deg

Avg
Deg

Reach
Rate

Twitter 52.58 M 1963 M 0.78 M 37.34 78.1%
BTC 164.7 M 772.8 M 1.64 M 4.69 41.8 %
LiveJ 10.69 M 224.6 M 1.05 M 21.01 85.0 %

(a) Datasets For PPSP Queries
Dataset |V| Doc Size Graph Size
DBLP 81.85M 1.4 GB 4.9 GB

XMark 170.53 M 5.5 GB 14 GB
(b) Datasets For XML Keyword Queries

broadcasts 〈vi,hop(v,vi)〉 to all in-neighbors; or else, (4) for each
in-neighbor (u, p(u)) ∈ Γin(v), if ki ∈ ψ(p(u)), then v sends 〈v,0〉
to that in-neighbor u.

6. EXPERIMENTAL EVALUATION
We now evaluate the performance of Quegel. The experiments

were conducted on a cluster of 15 machines, each with 24 cores
(two Intel Xeon E5-2620 CPU) and 48GB RAM. The machines
are connected by Gigabit Ethernet. In Quegel, each worker corre-
sponds to one process that uses a core. We ran 8 workers per ma-
chine (i.e., 120 workers in total) for all the experiments of Quegel,
since running more workers per machine does not significantly im-
prove query performance due to the limited network bandwidth.
We used HDFS of Hadoop 1.2.1 on the cluster. The source code of
Quegel and all algorithms discussed in this paper can be found in:
http://www.cse.cuhk.edu.hk/quegel.

Table 1(a) shows the datasets used in our experiments on PPSP
queries: (i) Twitter [5]: Twitter who-follows-who network based
on a snapshot taken in 2009; (ii) BTC [3]: a semantic graph con-
verted from the Billion Triple Challenge 2009 RDF dataset; and
(iii) a small dataset LiveJ [4] that refers to a bipartite network of
LiveJournal users and their group memberships, which is used to
demonstrate the poor scalability of some existing systems. Twitter
is directed while BTC and LiveJ are undirected. Table 1(a) also
shows the maximum and average vertex degree of each graph, and
we can see that the degree distribution is highly skewed. We ran-
domly generate vertex pairs (s, t) on each dataset for running PPSP
query processing, and the percentage of queries where s can reach
t is shown in column “Reach Rate” of Table 1(a).

Comparison with Neo4j, GraphChi, and GraphX. We first com-
pared Quegel with a well-known graph database, Neo4j [25], a
single-machine graph processing system, GraphChi [19], and the
graph-parallel framework built on Spark (one of the most popular
big data systems now), GraphX [10]. Neo4j and GraphChi were
run on one of the machines in the cluster, while GraphX (shipped
in Spark 1.4.1) was run on all the machines, using all cores and
RAMs available.

The experimental results show that these three systems have poor
scalability for processing PPSP queries. They either ran out of
memory or are too time-consuming to process the two larger graphs,
Twitter and BTC, and we were only able to record the results for
them on the smallest dataset, LiveJ. Table 2 reports the performance
of these systems for answering 20 randomly-generated PPSP queries
(s, t) on LiveJ, where s cannot reach t in only three queries Q3, Q12,
and Q15.

Here, Quegel adopts the Hub2 algorithm described in Section 5.1
and serves as a baseline to demonstrate why the other systems are
not efficient. As preprocessing, it took 2912 seconds (end-to-end
indexing time including graph loading/dumping) to compute the

Table 3: Cumulative time on Twitter (20 PPSP queries)
BFS Bidirectional BFS

SystemGiraphGraphLabQuegel GiraphGraphLab Quegel
Load 789.8 s 97.37 s 30.48 s 2608 s 129.0 s 48.25 s
Query 414.3 s 318.2 s 184.2 s 148.4 s 259.5 s 54.86 s
Dump 57.54 s 16.37 s − 46.53 s 20.70 s −
Access 75.4% 24.8%

Table 4: Cumulative time on BTC (20 PPSP queries)
BFS Bidirectional BFS

SystemGiraphGraphLab Quegel Giraph GraphLab Quegel
Load 1278 s 109.2 s 16.10 s 1212 s 104.3 s 16.56 s
Query 546.3 s 187.3 s 8.36 s 447.7 s 882.1 s 11.20 s
Dump 215.6 s 25.34 s − 199.1 s 26.15 s −
Access 1.2 % 2.3 %

label set L(v) for every vertex v when 1000 hubs are selected. As
Table 2 shows, Quegel answers every query in around a second,
and is able to support interactive querying. Row “Access” indicates
the percentage of vertices accessed by Quegel, which is also small.

In contrast, Neo4j spent over 17 hours just to import LiveJ, and
the imported graph consumes 64GB disk space while the dataset is
only 1.1GB. In fact, Twitter could not be imported in several days
while all disk space was used up when importing BTC. We used
Neo4j’s “shortestPath” function to answer the 20 PPSP queries, and
as Table 2 shows, the querying time is highly unstable and can be
many hours if s cannot reach t because many vertices are visited.

The single-machine vertex-centric system GraphChi also cannot
scale to process big graphs with reasonable query performance. As
Table 2 shows, GraphChi took tens of seconds to answer a query on
the smallest graph LiveJ, which is too slow for interactive query-
ing. Moreover, BiBFS is not always faster than BFS since the
additional field maintained (i.e., d(v, t)) increases data size, and
BiBFS is much slower when s cannot reach t since the BFS from t
needs to reach all vertices in t’s connected component. Table 2 also
shows that GraphX is even slower than the single-machine system
GraphChi. Moreover, GraphX could not process BTC and Twitter
as it ran out of all RAM in our cluster. In fact, during the query pro-
cessing on the smallest dataset LiveJ, GraphX already used more
than half the RAM in each of our machines.

Comparison with Distributed Vertex-Centric Systems. We com-
pared Quegel with Giraph 1.0.0 and GraphLab 2.2 by running the
BFS and BiBFS algorithms of Section 5.1 for processing PPSP
queries on the two large graphs, Twitter and BTC. For each dataset,
we randomly generated 1000 queries (s, t) for performance test.
Since Giraph and GraphLab both use multi-threading, they have
access to all the 24 cores on each of the 15 machines.

Giraph has a high start-up overhead since it needs to load the
input graph G from HDFS for the evaluation of each query; while
GraphLab can keep G in main memory for repeated querying after
G is loaded. Thus, we only ran Giraph for the first 20 queries. Ta-
ble 3 reports the cumulative time taken by Giraph, GraphLab and
Quegel on Twitter for the first 20 queries. Note that the loading
time of Giraph is contributed by all the 20 queries, while that of
GraphLab and Quegel is the one-off loading time before query pro-
cessing begins. Also, we specify Quegel to report query results
on the console and hence there is no dumping time. For all ex-
periments of Quegel, we set the capacity parameter C = 8 unless
otherwise stated. We also show the average access rate of a query
(i.e., the percentage of vertices accessed) in the last row “Access”.
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Table 2: Non-scalable systems: an illustration by answering 20 queries on Livej in serial
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Neo4j Time (s) 285.5 467.4 28969 1.14 1.30 1.51 1.44 1.23 7.15 3.46 103 64577 1.18 67.9 32421 104 166 1.21 1.06 0.41

GraphChi BFS (s) 53.01 57.06 90.49 35.35 54.84 51.65 53.69 58.04 55.81 59.52 56.38 87.64 40.05 59.90 87.29 53.42 53.29 50.97 35.05 41.34
BiBFS (s) 49.38 56.30 101.9 19.25 48.93 38.87 54.45 50.74 48.59 53.04 59.29 100.9 21.26 51.77 101.6 52.30 56.28 41.48 18.58 19.13

GraphX BFS (s) 371.3 85.18 172.7 45.28 81.81 83.46 84.39 69.50 74.20 80.38 73.59 160.1 52.72 75.69 172.1 79.96 71.84 60.96 46.02 49.36
BiBFS (s) 105.2 97.03 76.84 95.92 89.56 100.7 104.6 112.5 111.5 110.1 112.3 156.6 63.79 98.45 82.63 96.82 114.8 77.07 89.15 152.7

Quegel Time (s) 1.76 1.81 1.71 1.39 1.46 1.47 1.24 0.90 0.78 0.90 0.91 1.74 1.65 1.54 1.43 1.41 1.17 1.05 0.42 0.24
Access 0.09%1.73% 12.50% 0.55%1.82% 10.22% 5.20%0.59%0.72%2.87%1.18% 31.54% 8.87%1.19%1.52%1.09%1.42%0.99%0.11%0.77%

Reach √ √ X √ √ √ √ √ √ √ √ X √ √ X √ √ √ √ √

Table 5: Cumulative time on Twitter (1k PPSP queries)

Top-100 Top-1k
Load 49.77 s 49.70 s
Index 3444 s 30342 s
Save 81.74 s 369.9 s

GraphLab Quegel
BFS Bi-BFS BFS Bi-BFS Top-100 Top-1k

Load 97.37 s 129.0 s 30.48 s 48.25 s 93.78 s 373.9 s
Query 13877 s 13094 s 12164 s 3191 s 1129 s 339.6 s
Access 75.6% 28.7% 75.6% 28.7% 8.6% 2.4%

(a) Indexing Time (b) Querying Time

Table 6: Cumulative time on BTC (1k PPSP queries)

Top-1k
Load 42.48 s
Index 973.4 s
Save 42.65 s

GraphLab Quegel
BFS Bi-BFS BFS Bi-BFS Top-1k

Load 108.9 s 104.3 s 16.10 s 16.56 s 34.81 s
Query 9504 s 40781 s 411.9 s 602.5 s 138.9 s
Access 1.2 % 2.3 % 1.2 % 2.3 % 0.026%

(a) Indexing Time (b) Querying Time

Table 3 shows that Quegel is significantly faster than Giraph and
GraphLab when bidirectional BFS is used to process the queries.
When BFS is used, Quegel is still considerably faster, but its com-
putational time is 3 times longer than bidirectional BFS. This can
be explained by the access rate of the queries, which actually demon-
strates the effectiveness of Quegel’s specialized design for querying
workload that accesses only a small portion of the graph. The re-
sult also reveals that the other systems are not suitable for graph
querying, as Giraph’s loading time is already longer than its actual
querying time, while GraphLab’s querying time is unsatisfactory
when the access rate is small.

We remark that the loading time of Quegel for BiBFS is usually
longer than that for BFS, since each vertex v needs to load Γin(v)
in addition to Γout(v). Note that Γin(v) can be obtained by letting
every vertex u broadcast 〈u〉 to every out-neighbor v ∈ Γout(u), and
then let every vertex v collect the IDs of its in-neighbors (i.e., u) to
form Γin(v) in the next superstep.

Table 4 reports the performance of Giraph, GraphLab and Quegel
on BTC. Since the access rate on BTC is much smaller than that on
Twitter, the performance gap between Quegel and the other sys-
tems is significantly larger than on Twitter. This demonstrates that
the design of Quegel is highly suitable for processing queries with
small access rate. Another interesting observation is that, BFS has
a smaller access rate than bidirectional BFS on BTC. This is be-
cause BTC consists of many connected components, and thus most
queries (s, t) are not reachable. For such a query, BFS terminates
once all vertices in the connected component of s are visited, while
bidirectional BFS also visits the vertices in t’s connected compo-
nent, leading to larger access rate.

Effect of Indexing. We next show that using graph indexing, Quegel’s
query performance can be further improved by a large margin. Here,
Quegel adopted the Hub2 the index. For Twitter, we chose hubs as
the top-k vertices with the highest in-degree, out-degree, and their
sum, and found that the results are similar. Thus, we only report
the results for hubs with highest in-degree. Table 5(a) shows the
indexing time for k = 100 and k = 1000, which shows that each
BFS from a hub takes about 30 seconds on average. Thus, k cannot
be too large in order to keep the preprocessing time reasonable.

Table 5(b) shows the total time of processing all the 1000 queries
using BFS and BiBFS in Quegel and GraphLab, and Quegel using
the Hub2 index with k = 100 and k = 1000. We remark that Giraph

Table 7: Effect of capacity and machine number
C TotalQuery C TotalQuery
1 538.5 s 16 189.1 s
2 210.7 s 32 190.1 s
4 192.1 s 64 188.4 s
8 187.3 s 128 187.1 s

# Macs TotalIndex TotalQuery
8 61,466 s 1004 s

10 45,360 s 703 s
12 43,007 s 405 s
14 35,412 s 396 s

(a) Effect of C  (|Q| = 512) (b) Effect of # Machines (|Q| = 1k)

is too expensive to process 1000 queries due to its high start-up
overhead, and is thus not included. Clearly, when index is applied
in Quegel, query performance is significantly improved, which can
be explained by the reduction in the access rate. The result demon-
strates the effectiveness of graph indexing. Although the loading
time increases with larger k since more core-hubs for each vertex
are loaded from HDFS, this cost is not critical since graph load-
ing is a one-off preprocessing operation and has no influence on
subsequent query performance. When k = 1000, Hub2 processes
1000 queries in 339.6 seconds, which is about 3 queries per second
(about 39 times better than GraphLab).

We also build the Hub2 index on BTC, by picking the top-1000
vertices with the highest degree. Table 6(a) shows the indexing
time, which is very fast since BTC consists of many connected com-
ponents and each BFS from a hub accesses only one component.
Table 6(b) shows the time of processing all the 1000 queries using
BFS and BiBFS by Quegel and GraphLab, as well as by Quegel
using the Hub2 index. We can see that the index significantly im-
proves the query performance, and Quegel can process over 7 PPSP
queries per second on BTC (68 times better than GraphLab).

Effect of Capacity Parameter. We next examine how the capac-
ity parameter C influences the throughput of query processing in
Quegel, by processing the first 512 queries with Hub2 (k = 1000)
on Twitter with different values of C. Table 7(a) reports the total
time of processing the 512 queries, where we can see that process-
ing queries one by one (i.e., C = 1) is significantly slower than
when a larger capacity is used. For example, when C = 8, the to-
tal query processing time is only 1/3 of that when C = 1, which
verifies the effectiveness of superstep-sharing. However, the query
throughput does not increase when we further increase C, since the
cluster resources are already fully utilized. Similar results have also
been observed on the other datasets.
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Table 8: Results on XML keyword search

Dataset Time SLCA ELCA MaxMatchNaïve L-Aligned

DBLP

Load 17.15 s 33.12 s 33.66 s 26.28 s
Index 18.09 s 34.73 s 35.31 s 27.03 s
Query 594 s 524 s 662 s 1403 s
Access 0.35% 0.38% 0.36% 0.5%

XMark

Load 44.27 s 58.34 s 68.56 s 89.61 s
Index 47.74 s 61.93 s 72.20 s 93.11 s
Query 1550 s 1930 s 1986 s 5994 s
Access 5.9% 5.9 % 5.9% 10.1%

Note that Quegel took 538.5 seconds to process 512 queries on
Twitter when C = 1, and thus the average time of processing a query
is still around 1 second, which is similar to the response time on the
small Livej dataset (see Table 2). This shows that the interactive
querying performance of Quegel scales well to graph size.

Horizontal Scalability. We now show how the performance of
Quegel scales with the number of machines by processing the 1000
PPSP queries with Hub2 (k = 1000) on Twitter with different clus-
ter size. Table 7(b) reports the total time of indexing and processing
the 1000 queries. The result shows that both the indexing time and
querying time continue to decrease as the number of machine in-
creases.

Performance on XML Keyword Search. We evaluate the perfor-
mance of processing XML keyword queries in Quegel on the DBLP
dataset [2], as well as a larger XMark benchmark dataset [6]. Ta-
ble 1(b) shows the data statistics, where |V | refers to the number of
vertices in the XML tree, “Doc Size” refers to the file size of the
raw XML document, and “Graph Size” refers to the file size of the
parsed graph representation. Note that it is not clear how to imple-
ment our algorithms in other graph-parallel systems; for example,
they do not provide a convenient way to construct and utilize in-
verted index. We generated 1000 keyword queries for each dataset,
by randomly picking a query from a query pool each time, and
repeating it for 1000 times. The query pools were obtained from
existing work [33, 44, 45, 46], each contains tens of well-selected
keyword queries.

Table 8 reports the performance of computing SLCA, ELCA and
MaxMatch on the datasets using the 1000 queries. The reported
metrics include the one-off graph loading and inverted index con-
struction time, the total time of processing the 1000 queries (in-
cluding result dumping), and the average access rate of a keyword
query. The results verify that Quegel obtains good performance.
For computing SLCAs, the average processing time of each query
is only 0.5–0.6 second on DBLP. The time is longer on XMark,
which is because XMark queries are less selective, and thus their
access rates are much higher than those of DBLP queries. Finally,
we can observe that the level-aligned version of SLCA algorithm
is more efficient than the simple one on DBLP, but it is slower on
XMark. This is because, vertices at the upper levels of DBLP’s
XML tree have high fan-outs, and thus the level-alignment tech-
nique significantly reduces the number of messages; while the ver-
tex fan-out in XMark is generally small, and the cost incurred by
the aggregator out-weighs the benefit of message reduction.

Experiments on terrain shortest-path queries. We evaluate the
performance of computing terrain shortest paths in Quegel using
two real terrain datasets from USGS1, Eagle Peak (Eagle) and Bear-

1http://data.geocomm.com/

Table 9: Terrain Datasets (M = million)
Dataset Mesh Scale |F| |V| |E|
Eagle 1012×1400 2.76 M 19.67 M 98.36 M
Bear 970×1404 2.63 M 14.93 M 57.04 M

Figure 9: Path illustration (best viewed in color)

head (Bear). The data statistics are shown in Table 9, and we ex-
plain those of Eagle below (similarly for Bear). The raw data of
Eagle is a 1012× 1400 elevation mesh of locations at 10m sam-
pling interval; the TIN constructed from the mesh has |F |= 2.76 M
faces, while the network G= (V,E) constructed using our approach
with ε = 2 meters has |V |= 19.67 M and |E|= 98.36 M. For each
dataset, we pick a source location s on the upper-left corner of the
mesh, and then pick 8 destination points along the diagonal direc-
tion that are 22, 23, . . ., 29 cells away from s, to form 8 queries Q1,
Q2, . . ., Q8.

As a baseline, we evaluate the queries by running Chen and
Han’s algorithm (CH) [16] on the constructed TINs. Table 10(a)
shows the computation time and shortest-path length for each query.
However, when s and t are far from each other (e.g. > 1 km), CH
ran out of memory, and the corresponding table entries are marked
with “–”. As Table 10(a) shows, when t is close to s, CH is very
efficient. But as the distance increases, the computation time of CH
increases sharply. For example, it takes 1599 seconds to evaluate
Q5 on Eagle Peak even though t is only within 1 km from s.

We also process these queries in Quegel on the networks con-
structed by our approach, and the results are reported in Table 10(b).
The results show that our Quegel algorithm scales to long paths.
For example, it takes less than 1 second to compute a path that is
less than 1km, and it takes only 7 seconds to compute a path over
9km. Moreover, when s and t are close to each other, our early
termination technique effectively reduces the portion of network
accessed.

As for the path quality, we compare a path P1 computed by CH
with the path P2 computed by Quegel for the same query. Com-
paring Table 10(a) with Table 10(b), we can see that the lengths
of P1 and P2 are very close to each other. However, since they are
computed from different terrain models (TIN v.s. our transformed
network), it is not sufficient to compare only the path length. We
show that the actual shapes of P1 and P2 are very similar as fol-
lows. Let P and P′ be two polylines, d(p,P) be the Euclidean dis-
tance from point p to its closest point on P, and define d(P,P′) =
maxp∈P d(p,P′). Then, the Hausdorff distance between P1 and P2
(which are 3D polylines) is given by HDist(P1,P2)=max{d(P1,P2),
d(P2,P1)} [12], which captures how similar the shapes of P1 and
P2 are. We compute HDist(P1,P2) for all the queries (where P1 is
available), which are shown in column “HDist” in Table 10(b). The
result is convincing; for example, for Q5 on Eagle, HDist(P1,P2) is
only 4 meters when the path lengths are around 966 meters.
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Table 10: Results on terrain shortest-path queries

Dataset Eagle Peak Bearhead
Load 62.14 s 32.84 s

Query

Time Step Access Len HDist Time Step Access Len HDist
Q1 0.70 s 4 4.3% 60.55 m 0.91 m 0.67 s 4 5.8% 58.62 m 1.20 m
Q2 0.84 s 4 4.3% 117.6 m 0.86 m 0.77 s 4 5.8% 115.6 m 1.39 m
Q3 0.93 s 4 4.3% 235.7 m 2.77 m 0.70 s 4 5.8% 231.2 m 2.69 m
Q4 0.75 s 4 4.3% 493.7 m 2.09 m 0.80 s 4 5.8% 475.1 m 3.05 m
Q5 0.70 s 4 4.3% 966.9 m 4.18 m 0.73 s 4 5.8% 932.7 m −
Q6 1.21 s 7 12.3% 2244 m − 1.15 s 7 13.8% 1846 m −
Q7 2.57 s 14 44.1% 4632 m − 2.05 s 13 42.4% 3680 m −
Q8 7.16 s 35 100% 9222 m − 4.12 s 24 99.5% 7457 m −

Dataset Eagle Peak Bearhead

Query

Time Len Time Len
Q1 < 1 ms 60.46 m < 1 ms 58.86 m
Q2 31 ms 117.5 m 63 ms 115.8 m
Q3 1.59 s 235.6 m 22.3 s 231.5 m
Q4 22.8 s 493.4 m 118.9 s 475.5 m
Q5 1599 s 966.2 m − −
Q6 − − − −
Q7 − − − −
Q8 − − − −

(a) Chen & Han’s Algorithm (b) ScalaGQ Algorithm for P2P Shortest Path

Table 11: Results on reachability queries

Dataset |V| |E| |VDAG| |EDAG|
Twitter 52.58 M 1963 M 12.41 M 13.86 M
WebUK 164.7 M 772.8 M 22.75 M 38.18 M

(a) Datasets for Reachability Queries

Twitter WebUK

Index

Level
Load 6.86 s 6.88 s

Compute 19.19 s 1704 s
Dump 0.53 s 1.11 s

No-Label
Load 6.91 s 8.21 s

Compute 2.80 s 117.8 s
Dump 1.04 s 2.57 s

Yes-Label
Load 6.23 s 8.62 s

Compute 3.64 s 120.41 s
Dump 1.04 s 2.09 s

Query
Load 6.77 s 10.60 s

Query 339.7 s 325.2 s
Access 0.78% 0.19%

(b) Performance of Reachability Queries

To visualize the path similarity, we plot P1 and P2 for query Q3
on Eagle in Figure 9, along with a fragment of the TIN. Since P1
and P2 are very similar, to show both paths clearly, we plot P1 as a
green line, while for P2, we only show the points on this polyline
using blue circles. As can be observed from Figure 9, the shapes
almost coincide with each other.

Experiments on P2P reachability. We now report the perfor-
mance of processing P2P reachability queries in Quegel. The datasets
used are shown in Table 11(a): (1) the Twitter dataset that was used
in the experiments on PPSP queries; and (2) WebUK2: a web graph
generated by combining twelve monthly snapshots of the .uk do-
main collected for the DELIS project. Table 11(a) shows the num-
ber of vertices and edges of not only the original graph G = (V,E),
but also of the converted DAG GDAG = (GDAG,EDAG).

Table 11(b) shows the indexing performance of computing level
labels, yes-labels and no-labels by a series of three Quegel graph-
analytics jobs (Quegel also provides another kind of Worker class
for programming Pregel-like tasks). We can see that computing
level labels is relatively expensive, but once the level labels are
available, the computation of yes-labels and no-labels is highly ef-
ficient. Jobs of WebUK take more time than those of Twitter, mainly

2http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05

Table 12: Results on RDF keyword search

Dataset |V| |E| File Size Graph Size
Freebase 11.24 M 101.2 M 16.6 GB 9.7 GB
DBPedia 22.45 M198.1 M 44.9 GB 28.0 GB

(a) Datasets for RDF Keyword Queries

(b) Performance of RDF Keyword Queries
Freebase DBPedia

# of Keywords 2 3 2 3
Load 33.36 s 80.45 s

Query 326.2 s 376.6 s 1674 s 2189 s
Access 3.4% 5.3% 13.4% 16.9%

due to more number of supersteps caused by the large diameter of
WebUK (web graphs exhibit spatial locality and tend to have large
diameter). For example, it takes Quegel 2793 supersteps to com-
pute the level labels on WebUK, while the same task takes only 23
supersteps on Twitter.

To evaluate the querying performance of Quegel for P2P reach-
ability queries, we randomly generate 1000 queries (s, t), and the
results are also shown in Table 11(b), including the one-off graph
loading time, the time of processing all the 1000 queries (results
are dumped to HDFS), and the average access rate. We can see
that it takes Quegel only 0.3 second on average to evaluate a P2P
reachability query on such large graphs, which is very efficient.

Experiments on graph keyword search. We now report the per-
formance of processing graph keyword queries in Quegel. We use
two RDF datasets from Billion Triples Challenge 20123: Freebase
and DBPedia, whose number of vertices (including resources and
literals) and edges are shown in Table 12(a) as well as the RDF file
size and the file size after converting to adjacency list representa-
tion.

We generate keyword queries on each dataset as follows. We
select 30 most frequent words into a set K30. Then, for each word
k∈K30, we activate every vertex v with k∈ψ(v) in Quegel, and run
multi-source BFS for 3 hops to activate all vertices within 3 hops.
We then collect the words contained in those vertices, and obtain
the 100 most frequent words in predicates, denoted by P100(k), and
the 100 most frequent words in non-predicates, denoted by N100(k).
We then form 600 two-keyword queries (k1,k2), where for each
k1 ∈ K30 we randomly select 20 words k2 ∈ N100(k1); and form
600 three-keyword queries (k1,k2,k3), where for each k1 ∈K30, we
randomly select 20 word pairs (k2,k3) with k2 ∈ P100(k1) and k3 ∈

3http://km.aifb.kit.edu/projects/btc-2012/
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N100(k1). We generate queries in this way, so that k1 has relatively
low selectivity while k2 and k3 are also relevant to k1.

Table 12(b) reports the performance of processing the graph key-
word queries, including the one-off graph loading time, the total
processing time of all 600 queries, and the average access rate. We
can see that it takes Quegel only 0.3 second on average to evaluate
a graph keyword query on Freebase and 1–2 seconds on average
on DBPedia, which is very efficient given the big data size. More-
over, the querying time and access rate are higher when there are 3
keywords in the query, which shows that the query cost generally
increases with the number of keywords in a query.

7. CONCLUSIONS
We developed a distributed system, Quegel, for general-purpose

querying of big graphs. To our knowledge, this is the first work that
studies how to apply Pregel’s user-friendly vertex-centric program-
ming interface to efficiently process queries in big graphs. This is
also the first general-purpose system that applies graph indexing to
speed up query processing in a distributed platform. We demon-
strated how Quegel is used to process five types of queries, i.e.,
PPSP queries, XML keyword queries, terrain shortest path queries,
point-to-point reachability queries, and graph keyword queries. We
also showed Quegel obtained good performance for processing these
queries.

For future work, we will continue to improve the performance
of Quegel by designing various optimization techniques, propos-
ing efficient graph indexes to be adopted in Quegel, and provid-
ing performance guarantees for answering different types of graph
queries [37].
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