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Function Estimation

Parametric function estimation (e.g. regression, classification)
Data: x = {x1, x2, . . .}, y = {y1, y2, . . .}
Model: yi = f (xi |w) + N (0, σ2)

Prior over parameters

p(w)

Posterior over parameters

p(w |x, y) =
p(w)p(y|x, w)

p(y|x)

Prediction with posteriors

p(y�|x�, x, y) =

�
p(y�|x�, w)p(w |x, y) dw
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Function Estimation

Bayesian nonparametric function estimation with Gaussian processes
Data: x = {x1, x2, . . .}, y = {y1, y2, . . .}
Model: yi = f (xi) + N (0, σ2)

Prior over functions

f ∼ GP(µ,Σ)

Posterior over functions

p(f |x, y) =
p(f )p(y|x, f )

p(y|x)

Prediction with posteriors

p(y�|x�, x, y) =

�
p(y�|x�, f )p(f |x, y) df
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Function Estimation

Figure from Carl’s lecture.
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Density Estimation

Parametric density estimation (e.g. Gaussian, mixture models)
Data: x = {x1, x2, . . .}
Model: xi |w ∼ F (·|w)

Prior over parameters

p(w)

Posterior over parameters

p(w |x) =
p(w)p(x|w)

p(x)

Prediction with posteriors

p(x�|x) =

�
p(x�|w)p(w |x) dw
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Density Estimation

Bayesian nonparametric density estimation with Dirichlet processes
Data: x = {x1, x2, . . .}
Model: xi ∼ F

Prior over distributions

F ∼ DP(α, H)

Posterior over distributions

p(F |x) =
p(F )p(x|F )

p(x)

Prediction with posteriors

p(x�|x) =

�
p(x�|F )p(F |x) dF =

�
F
�(x�)p(F |x) dF

Not quite correct; see later.
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Density Estimation

Prior:

!!" !!# !" # " !# !"
#

#$!

#$%

#$&

#$'

#$"

#$(

#$)

Red: mean density. Blue: median density. Grey: 5-95 quantile.
Others: draws.
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Density Estimation

Posterior:
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Red: mean density. Blue: median density. Grey: 5-95 quantile.
Black: data. Others: draws.
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Semiparametric Modelling

Linear regression model for inferring effectiveness of new medical
treatments.

yij = β�xij + b
�
i zij + �ij

yij is outcome of j th trial on i th subject.
xij , zij are predictors (treatment, dosage, age, health...).
β are fixed-effects coefficients.
bi are random-effects subject-specific coefficients.
�ij are noise terms.

Care about inferring β. If xij is treatment, we want to determine
p(β > 0|x, y).
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Semiparametric Modelling

yij = β�xij + b
�
i zij + �ij

Usually we assume Gaussian noise �ij ∼ N (0, σ2). Is this a sensible
prior? Over-dispersion, skewness,...

May be better to model noise nonparametrically,

�ij ∼ F

F ∼ DP

Also possible to model subject-specific random effects
nonparametrically,

bi ∼ G

G ∼ DP
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Model Selection/Averaging

Data: x = {x1, x2, . . .}
Models: p(θk |Mk ), p(x|θk , Mk )

Marginal likelihood

p(x|Mk ) =

�
p(x|θk , Mk )p(θk |Mk ) dθk

Model selection

M = argmax
Mk

p(x|Mk )

Model averaging

p(x�|x) =
�

Mk

p(x�|Mk )p(Mk |x) =
�

Mk

p(x�|Mk )
p(x|Mk )p(Mk )

p(x)

But: is this computationally feasible?
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Model Selection/Averaging

Marginal likelihood is usually extremely hard to compute.

p(x|Mk ) =

�
p(x|θk , Mk )p(θk |Mk ) dθk

Model selection/averaging is to prevent underfitting and overfitting.

But reasonable and proper Bayesian methods should not overfit
[Rasmussen and Ghahramani 2001].

Use a really large model M∞ instead, and let the data speak for
themselves.
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Model Selection/Averaging
Clustering

How many clusters are there?

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 16 / 90
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Model Selection/Averaging
Topic Modelling

How many topics are there?

[Blei et al. 2004, Teh et al. 2006]
Yee Whye Teh (Gatsby) DP August 2007 / MLSS 18 / 90
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Model Selection/Averaging
Grammar Induction

How many grammar symbols are there?

Figure from Liang. [Liang et al. 2007b, Finkel et al. 2007]
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Model Selection/Averaging
Visual Scene Analysis

How many objects, parts, features?

Figure from Sudderth. [Sudderth et al. 2007]
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Finite Mixture Models

A finite mixture model is defined as follows:

θ∗k ∼ H

π ∼ Dirichlet(α/K , . . . ,α/K )

zi |π ∼ Discrete(π)

xi |θ∗zi
∼ F (·|θ∗zi

)

Model selection/averaging over:

Hyperparameters in H.
Dirichlet parameter α.
Number of components K .

Determining K hardest.

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K
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Infinite Mixture Models

Imagine that K � 0 is really large.

If parameters θ∗
k

and mixing proportions π
integrated out, the number of latent variables left
does not grow with K —no overfitting.

At most n components will be associated with
data, aka “active”.

Usually, the number of active components is
much less than n.

This gives an infinite mixture model.

Demo: dpm_demo2d

Issue 1: can we take this limit K →∞?

Issue 2: what is the corresponding limiting

model?

[Rasmussen 2000]

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K
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Gaussian Processes
What are they?

A Gaussian process (GP) is a distribution over functions

f : X �→ R

Denote f ∼ GP if f is a GP-distributed random function.

For any finite set of input points x1, . . . , xn, we require (f (x1), . . . , f (xn)) to
be a multivariate Gaussian.
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Gaussian Processes
What are they?

The GP is parametrized by its mean m(x) and covariance c(x , y)
functions:




f (x1)

...
f (xn)



 ∼ N








m(x1)

...
m(xn)



 ,




c(x1, x1) . . . c(x1, xn)

...
. . .

...
c(xn, x1) . . . c(xn, xn)









The above are finite dimensional marginal distributions of the GP.

A salient property of these marginal distributions is that they are
consistent: integrating out variables preserves the parametric form of the
marginal distributions above.
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Gaussian Processes
Visualizing Gaussian Processes.

A sequence of input points x1, x2, x3, . . . dense in X.

Draw

f (x1)

f (x2) | f (x1)

f (x3) | f (x1), f (x2)

...

Each conditional distribution is Gaussian since (f (x1), . . . , f (xn)) is
Gaussian.

Demo: GPgenerate
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Dirichlet Processes
Start with Dirichlet distributions.

A Dirichlet distribution is a distribution over the K -dimensional probability
simplex:

∆K =
�
(π1, . . . ,πK ) : πk ≥ 0,

�
k
πk = 1

�

We say (π1, . . . ,πK ) is Dirichlet distributed,

(π1, . . . ,πK ) ∼ Dirichlet(α1, . . . ,αK )

with parameters (α1, . . . ,αK ), if

p(π1, . . . ,πK ) =
Γ(

�
k
αk )�

k
Γ(αk )

n�

k=1

παk−1
k
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Dirichlet Processes
Examples of Dirichlet distributions.
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Dirichlet Processes
Agglomerative property of Dirichlet distributions.

Combining entries of probability vectors preserves Dirichlet property, for
example:

(π1, . . . ,πK ) ∼ Dirichlet(α1, . . . ,αK )

⇒ (π1 + π2, π3, . . . ,πK ) ∼ Dirichlet(α1 + α2, α3, . . . ,αK )

Generally, if (I1, . . . , Ij) is a partition of (1, . . . , n):



�

i∈I1

πi , . . . ,
�

i∈Ij

πi



 ∼ Dirichlet




�

i∈I1

αi , . . . ,
�

i∈Ij

αi
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Dirichlet Processes
Decimative property of Dirichlet distributions.

The converse of the agglomerative property is also true, for example if:

(π1, . . . ,πK ) ∼ Dirichlet(α1, . . . ,αK )

(τ1, τ2) ∼ Dirichlet(α1β1, α1β2)

with β1 + β2 = 1,

⇒ (π1τ1, π1τ2, π2, . . . ,πK ) ∼ Dirichlet(α1β1, α2β2, α2, . . . ,αK )
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Dirichlet Processes
Visualizing Dirichlet Processes

A Dirichlet process (DP) is an “infinitely decimated” Dirichlet distribution:

1 ∼ Dirichlet(α)

(π1, π2) ∼ Dirichlet(α/2, α/2) π1 + π2 = 1
(π11, π12, π21, π22) ∼ Dirichlet(α/4, α/4, α/4, α/4) πi1 + πi2 = πi

...

Each decimation step involves drawing from a Beta distribution (a
Dirichlet with 2 components) and multiplying into the relevant entry.

Demo: DPgenerate
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Dirichlet Processes
A Proper but Non-Constructive Definition

A probability measure is a function from subsets of a space X to [0, 1]
satisfying certain properties.

A Dirichlet Process (DP) is a distribution over probability measures.

Denote G ∼ DP if G is a DP-distributed random probability measure.

For any finite set of partitions A1∪̇ . . . ∪̇AK = X, we require
(G(A1), . . . , G(AK )) to be Dirichlet distributed.

6

A

A1

A A
A

A

2

3

4

5
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Dirichlet Processes
Parameters of the Dirichlet Process

A DP has two parameters:

Base distribution H, which is like the mean of the DP.
Strength parameter α, which is like an inverse-variance of the DP.

We write:

G ∼ DP(α, H)

if for any partition (A1, . . . , AK ) of X:

(G(A1), . . . , G(AK )) ∼ Dirichlet(αH(A1), . . . ,αH(AK ))

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 33 / 90
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Dirichlet Processes
Parameters of the Dirichlet Process

A DP has two parameters:

Base distribution H, which is like the mean of the DP.
Strength parameter α, which is like an inverse-variance of the DP.

We write:

G ∼ DP(α, H)

The first two cumulants of the DP:

Expectation: E[G(A)] = H(A)

Variance: V[G(A)] =
H(A)(1− H(A))

α + 1

where A is any measurable subset of X.
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Dirichlet Processes
Existence of Dirichlet Processes

A probability measure is a function from subsets of a space X to [0, 1]
satisfying certain properties.

A DP is a distribution over probability measures such that marginals on
finite partitions are Dirichlet distributed.

How do we know that such an object exists?!?

Kolmogorov Consistency Theorem: [Ferguson 1973].

de Finetti’s Theorem: Blackwell-MacQueen urn scheme, Chinese
restaurant process, [Blackwell and MacQueen 1973, Aldous 1985].

Stick-breaking Construction: [Sethuraman 1994].

Gamma Process: [Ferguson 1973].

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 34 / 90
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Dirichlet Processes
Representations of Dirichlet Processes

Suppose G ∼ DP(α, H). G is a (random) probability measure over X.
We can treat it as a distribution over X. Let

θ1, . . . , θn ∼ G

be a random variable with distribution G.

We saw in the demo that draws from a Dirichlet process seem to be
discrete distributions. If so, then:

G =
∞�

k=1

πkδθ∗
k

and there is positive probability that θi ’s can take on the same value θ∗
k

for some k , i.e. the θi ’s cluster together.

In this section we are concerned with representations of Dirichlet
processes based upon both the clustering property and the sum of point
masses.
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Posterior Dirichlet Processes
Sampling from a Dirichlet Process

Suppose G is Dirichlet process distributed:

G ∼ DP(α, H)

G is a (random) probability measure over X. We can treat it as a
distribution over X. Let

θ ∼ G

be a random variable with distribution G.

We are interested in:

p(θ) =

�
p(θ|G)p(G) dG

p(G|θ) =
p(θ|G)p(G)

p(θ)
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Posterior Dirichlet Processes
Conjugacy between Dirichlet Distribution and Multinomial

Consider:

(π1, . . . ,πK ) ∼ Dirichlet(α1, . . . ,αK )

z|(π1, . . . ,πK ) ∼ Discrete(π1, . . . ,πK )

z is a multinomial variate, taking on value i ∈ {1, . . . , n} with probability
πi .

Then:

z ∼ Discrete
�

α1P
i
αi

, . . . , αKP
i
αi

�

(π1, . . . ,πK )|z ∼ Dirichlet(α1 + δ1(z), . . . ,αK + δK (z))

where δi(z) = 1 if z takes on value i , 0 otherwise.

Converse also true.
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Posterior Dirichlet Processes

Fix a partition (A1, . . . , AK ) of X. Then

(G(A1), . . . , G(AK )) ∼ Dirichlet(αH(A1), . . . ,αH(AK ))

P(θ ∈ Ai |G) = G(Ai)

Using Dirichlet-multinomial conjugacy,

P(θ ∈ Ai) = H(Ai)

(G(A1), . . . , G(AK ))|θ ∼ Dirichlet(αH(A1)+δθ(A1), . . . ,αH(AK )+δθ(AK ))

The above is true for every finite partition of X. In particular, taking a
really fine partition,

p(θ)dθ = H(dθ)

Also, the posterior G|θ is also a Dirichlet process:

G|θ ∼ DP
�

α + 1,
αH + δθ

α + 1

�
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really fine partition,

p(θ)dθ = H(dθ)

Also, the posterior G|θ is also a Dirichlet process:

G|θ ∼ DP
�

α + 1,
αH + δθ

α + 1

�
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Posterior Dirichlet Processes

G ∼ DP(α, H)

θ|G ∼ G
⇐⇒

θ ∼ H

G|θ ∼ DP
�
α + 1, αH+δθ

α+1

�
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Blackwell-MacQueen Urn Scheme

First sample:
θ1|G ∼ G G ∼ DP(α, H)

⇐⇒ θ1 ∼ H G|θ1 ∼ DP(α + 1,
αH+δθ1

α+1 )

Second sample:
θ2|θ1, G ∼ G G|θ1 ∼ DP(α + 1,

αH+δθ1
α+1 )

⇐⇒ θ2|θ1 ∼
αH+δθ1

α+1 G|θ1, θ2 ∼ DP(α + 2,
αH+δθ1 +δθ2

α+2 )

nth sample
θn|θ1:n−1, G ∼ G G|θ1:n−1 ∼ DP(α + n − 1,

αH+
P

n−1
i=1 δθ

i

α+n−1 )

⇐⇒ θn|θ1:n−1 ∼
αH+

P
n−1
i=1 δθ

i

α+n−1 G|θ1:n ∼ DP(α + n,
αH+

P
n

i=1 δθ
i

α+n
)
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Blackwell-MacQueen Urn Scheme

Blackwell-MacQueen urn scheme produces a sequence θ1, θ2, . . . with
the following conditionals:

θn|θ1:n−1 ∼
αH +

�n−1
i=1 δθi

α + n − 1

Picking balls of different colors from an urn:

Start with no balls in the urn.
with probability ∝ α, draw θn ∼ H, and add a ball of that color into
the urn.
With probability ∝ n − 1, pick a ball at random from the urn, record
θn to be its color, return the ball into the urn and place a second ball
of same color into urn.

Blackwell-MacQueen urn scheme is like a “representer” for the DP—a
finite projection of an infinite object.
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Exchangeability and de Finetti’s Theorem

Starting with a DP, we constructed Blackwell-MacQueen urn scheme.

The reverse is possible using de Finetti’s Theorem.

Since θi are iid ∼ G, their joint distribution is invariant to permutations,
thus θ1, θ2, . . . are exchangeable.

Thus a distribution over measures must exist making them iid.

This is the DP.
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Chinese Restaurant Process

Draw θ1, . . . , θn from a Blackwell-MacQueen urn scheme.

They take on K < n distinct values, say θ∗1 , . . . , θ∗
K

.

This defines a partition of 1, . . . , n into K clusters, such that if i is in
cluster k , then θi = θ∗

k
.

Random draws θ1, . . . , θn from a Blackwell-MacQueen urn scheme
induces a random partition of 1, . . . , n.

The induced distribution over partitions is a Chinese restaurant process
(CRP).
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Chinese Restaurant Process

Generating from the CRP:

First customer sits at the first table.
Customer n sits at:

Table k with probability nk

α+n−1 where nk is the number of customers
at table k .
A new table K + 1 with probability α

α+n−1 .
Customers⇔ integers, tables⇔ clusters.

The CRP exhibits the clustering property of the DP.
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Chinese Restaurant Process

To get back from the CRP to Blackwell-MacQueen urn scheme, simply
draw

θ∗k ∼ H

for k = 1, . . . , K , then for i = 1, . . . , n set

θi = θ∗zi

where zi is the table that customer i sat at.

The CRP teases apart the clustering property of the DP, from the base
distribution.
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Stick-breaking Construction

Returning to the posterior process:

G ∼ DP(α, H)

θ|G ∼ G
⇔

θ ∼ H

G|θ ∼ DP(α + 1, αH+δθ
α+1 )

Consider a partition (θ, X\θ) of X. We have:

(G(θ), G(X\θ)) ∼ Dirichlet((α + 1)αH+δθ
α+1 (θ), (α + 1)αH+δθ

α+1 (X\θ))
= Dirichlet(1, α)

G has a point mass located at θ:

G = βδθ + (1− β)G� with β ∼ Beta(1, α)

and G� is the (renormalized) probability measure with the point mass
removed.

What is G�?
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Stick-breaking Construction

Currently, we have:

G ∼ DP(α, H)

θ ∼ G
⇒

G ∼ DP(α + 1, αH+δθ
α+1 )

G = βδθ + (1− β)G�

θ ∼ H

β ∼ Beta(1, α)

Consider a further partition (θ, A1, . . . , AK ) of X:

(G(θ), G(A1), . . . , G(AK ))

=(β, (1− β)G�(A1), . . . , (1− β)G�(AK ))

The agglomerative/decimative property of Dirichlet implies:

(G�(A1), . . . , G
�(AK )) ∼ Dirichlet(αH(A1), . . . ,αH(AK ))

G
� ∼ DP(α, H)
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Stick-breaking Construction

We have:

G ∼ DP(α, H)

G = β1δθ∗1
+ (1− β1)G1

G = β1δθ∗1
+ (1− β1)(β2δθ∗2

+ (1− β2)G2)

...

G =
∞�

k=1

πkδθ∗
k

where

πk = βk

�k−1
i=1 (1− βi) βk ∼ Beta(1, α) θ∗k ∼ H

This is the stick-breaking construction.

Demo: SBgenerate
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Stick-breaking Construction

Starting with a DP, we showed that draws from the DP looks like a sum
of point masses, with masses drawn from a stick-breaking construction.

The steps are limited by assumptions of regularity on X and smoothness
on H.

[Sethuraman 1994] started with the stick-breaking construction, and
showed that draws are indeed DP distributed, under very general
conditions.
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Dirichlet Processes
Representations of Dirichlet Processes

Posterior Dirichlet process:

G ∼ DP(α, H)

θ|G ∼ G
⇐⇒

θ ∼ H

G|θ ∼ DP
�
α + 1, αH+δθ

α+1

�

Blackwell-MacQueen urn scheme:

θn|θ1:n−1 ∼
αH +

�n−1
i=1 δθi

α + n − 1
Chinese restaurant process:

p(customer n sat at table k |past) =

�
nk

n−1+α if occupied table
α

n−1+α if new table

Stick-breaking construction:

πk = βk

k−1�

i=1

(1− βi) βk ∼ Beta(1, α) θ∗k ∼ H G =
∞�

k=1

πkδθ∗
k
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Outline

1 Applications

2 Dirichlet Processes

3 Representations of Dirichlet Processes

4 Modelling Data with Dirichlet Processes

5 Practical Course
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Density Estimation

Recall our approach to density estimation with Dirichlet processes:

G ∼ DP(α, H)

xi ∼ G

The above does not work. Why?

Problem: G is a discrete distribution; in particular it has no density!

Solution: Convolve the DP with a smooth distribution:

G ∼ DP(α, H)

Fx(·) =

�
F (·|θ)dG(θ)

xi ∼ Fx

⇒

G =
∞�

k=1

πkδθ∗
k

Fx(·) =
∞�

k=1

πk F (·|θ∗k )

xi ∼ Fx
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Clustering

Recall our approach to density estimation:

G =
∞�

k=1

πkδθ∗
k
∼ DP(α, H)

Fx(·) =
∞�

k=1

πk F (·|θ∗k )

xi ∼ Fx

Above model equivalent to:

zi ∼ Discrete(π)

θi = θ∗zi

xi |zi ∼ F (·|θi) = F (·|θ∗zi
)

This is simply a mixture model with an infinite number of components.
This is called a DP mixture model.
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Clustering

DP mixture models are used in a variety of clustering applications,
where the number of clusters is not known a priori.

They are also used in applications in which we believe the number of
clusters grows without bound as the amount of data grows.

DPs have also found uses in applications beyond clustering, where the
number of latent objects is not known or unbounded.

Nonparametric probabilistic context free grammars.
Visual scene analysis.
Infinite hidden Markov models/trees.
Haplotype inference.
...

In many such applications it is important to be able to model the same
set of objects in different contexts.

This corresponds to the problem of grouped clustering and can be
tackled using hierarchical Dirichlet processes.

[Teh et al. 2006]
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Grouped Clustering
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Grouped Clustering
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Hierarchical Dirichlet Processes

Hierarchical Dirichlet process:

G0|γ, H ∼ DP(γ, H)

Gj |α, G0 ∼ DP(α, G0)

θji |Gj ∼ Gj

θji

Gjα

G0

i = 1, . . . , n

H

γ

j = 1, . . . , J
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Hierarchical Dirichlet Processes

G0|γ, H ∼ DP(γ, H) G0 =
∞�

k=1

βkδθ∗
k

β|γ ∼ Stick(γ)

Gj |α, G0 ∼ DP(α, G0) Gj =
∞�

k=1

πjkδθ∗
k

πj |α,β ∼ DP(α,β)

θ∗k |H ∼ HG0

G1 G2
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Summary

Dirichlet process is “just” a glorified Dirichlet distribution.

Draws from a DP are probability measures consisting of a weighted sum
of point masses.

Many representations: Blackwell-MacQueen urn scheme, Chinese
restaurant process, stick-breaking construction.

DP mixture models are mixture models with countably infinite number of
components.

I have not delved into:

Applications.
Generalizations, extensions, other nonparametric processes.
Inference: MCMC sampling, variational approximation.

Also see the tutorial material from Ghaharamani, Jordan and Tresp.
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Bayesian Nonparametrics

Parametric models can only capture a bounded amount of information
from data, since they have bounded complexity.

Real data is often complex and the parametric assumption is often
wrong.

Nonparametric models allow relaxation of the parametric assumption,
bringing significant flexibility to our models of the world.

Nonparametric models can also often lead to model selection/averaging
behaviours without the cost of actually doing model selection/averaging.

Nonparametric models are gaining popularity, spurred by growth in
computational resources and inference algorithms.

In addition to DPs, HDPs and their generalizations, other nonparametric
models include Indian buffet processes, beta processes, tree
processes...

[Tutorials at Workshop on Bayesian Nonparametric Regression,
Isaac Newton Institute, Cambridge, July 2007]
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Outline
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Exploring the Dirichlet Process

Before using DPs, it is important to understand its properties, so that we
understand what prior assumptions we are imposing on our models.

In this practical course we shall work towards implementing a DP
mixture model to cluster NIPS papers, thus the relevant properties are
the clustering properties of the DP.

Consider the Chinese restaurant process representation of DPs:

First customer sits at the first table.
Customer n sits at:

Table k with probability nk

α+n−1 where nk is the number of customers
at table k .
A new table K + 1 with probability α

α+n−1 .

How does number of clusters K scale as a function of α and of n (on
average)?

How does the number nk of customers sitting around table k depend on
k and n (on average)?
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Exploring the Pitman-Yor Process

Sometimes the assumptions embedded in using DPs to model data are
inappropriate.

The Pitman-Yor process is a generalization of the DP that often has
more appropriate properties.

It has two parameters: d and α with 0 ≤ d < 1 and α > −d .
When d = 0 the Pitman-Yor process reduces to a DP.

It also has a Chinese restaurant process representation:

First customer sits at the first table.
Customer n sits at:

Table k with probability nk−d

α+n−1 where nk is the number of customers
at table k .
A new table K + 1 with probability α+Kd

α+n−1 .

How does K scale as a function of n, α and d (on average)?
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Dirichlet Process Mixture Models

We model a data set x1, . . . , xn using the following model:

G ∼ DP(α, H)

θi |G ∼ G

xi |θi ∼ F (·|θi) for i = 1, . . . , n

Each θi is a latent parameter modelling xi , while G is the unknown
distribution over parameters modelled using a DP.

This is the basic DP mixture model.

Implement a DP mixture model.

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 65 / 90
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Dirichlet Process Mixture Models
Infinite Limit of Finite Mixture Models

Different representations lead to different inference algorithms for DP
mixture models.

The most common are based on the Chinese restaurant process and on
the stick-breaking construction.

Here we shall work with the Chinese restaurant process representation,
which, incidentally, can also be derived as the infinite limit of finite
mixture models.

A finite mixture model is defined as follows:

θ∗k ∼ H for k = 1, . . . , K

π ∼ Dirichlet(α/K , . . . ,α/K )

zi |π ∼ Discrete(π) for i = 1, . . . , n

xi |θ∗zi
∼ F (·|θ∗zi

)
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Dirichlet Process Mixture Models
Collapsed Gibbs Sampling in Finite Mixture Models

A finite mixture model is defined as follows:

θ∗k ∼ H for k = 1, . . . , K

π ∼ Dirichlet(α/K , . . . ,α/K )

zi |π ∼ Discrete(π) for i = 1, . . . , n

xi |θ∗zi
∼ F (θ∗zi

)

Assuming H is conjugate to F (·|θ), we can integrate out both π and θ∗
k
’s,

leaving us with zi ’s only.

The simplest MCMC algorithm is to Gibbs sample zi ’s (collapsed Gibbs
sampling):

p(zi = k |z¬i , x) ∝ p(zi = k |z¬i)p(xi |z¬i , x¬i

k )

p(xi |z¬i , x¬i

k ) =

�
p(xi |θ∗k )p(θ∗k |{xj : j �= i , zj = k}) dθ∗k
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Aside: Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo sampling is a dominant and diverse family of
inference algorithms for probabilistic models. Here we are interested in
obtaining samples from the posterior:

z(s) ∼ p(z|x) =

�
p(z,θ∗,π|x) dθ∗dπ

The basic idea is to construct a sequence z(1), z(2), . . . so that for large
enough t , z(t) will be an (approximate) sample from the posterior p(z|x).
Convergence to the posterior is guaranteed, but (most of the time) there
is no convergence diagnostics, only heuristics. Won’t worry about this.
Given the previous state z(t−1), we construct z(t) by making a small
(stochastic) alteration to z(t−1) so that z(t) is “closer” to the posterior.
In Gibbs sampling, this alteration is achieved by taking an entry, say zi ,
and sampling it from the conditional:

z
(t)
i
∼ p(zi |z(t−1)

¬i
, x) z(t)

¬i
= z(t−1)

¬i

[Neal 1993]
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Aside: Exponential Families

An exponential family of distributions is parametrized as:

p(x |θ) = exp
�
t(θ)�s(x)− φ(x)− ψ(θ)

�

s(x) = sufficient statistics vector.
t(θ) = natural parameter vector.

ψ(θ) = log
�

x �

exp
�
t(θ)�s(x �)− φ(x �)

�
(log normalization)

The conjugate prior is an exponential family distribution over θ:

p(θ) = exp
�
t(θ)�ν − ηψ(θ)− ξ(ν, η)

�

The posterior given observations x1, . . . , xn is in the same family:

p(θ|x) = exp
�
t(θ)� (ν +

�
i
s(xi))− (η + n)ψ(θ)− ξ(ν +

�
i
s(xi), η + n)

�

The marginal probability is:

p(x) = exp (ξ(ν +
�

i
s(xi), η + n)− ξ(ν, η)−

�
i
φ(xi))

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 69 / 90



university-logo

Aside: Exponential Families

An exponential family of distributions is parametrized as:

p(x |θ) = exp
�
t(θ)�s(x)− φ(x)− ψ(θ)

�

s(x) = sufficient statistics vector.
t(θ) = natural parameter vector.

ψ(θ) = log
�

x �

exp
�
t(θ)�s(x �)− φ(x �)

�
(log normalization)

The conjugate prior is an exponential family distribution over θ:

p(θ) = exp
�
t(θ)�ν − ηψ(θ)− ξ(ν, η)

�

The posterior given observations x1, . . . , xn is in the same family:

p(θ|x) = exp
�
t(θ)� (ν +

�
i
s(xi))− (η + n)ψ(θ)− ξ(ν +

�
i
s(xi), η + n)

�

The marginal probability is:

p(x) = exp (ξ(ν +
�

i
s(xi), η + n)− ξ(ν, η)−

�
i
φ(xi))

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 69 / 90



university-logo

Aside: Exponential Families

An exponential family of distributions is parametrized as:

p(x |θ) = exp
�
t(θ)�s(x)− φ(x)− ψ(θ)

�

s(x) = sufficient statistics vector.
t(θ) = natural parameter vector.

ψ(θ) = log
�

x �

exp
�
t(θ)�s(x �)− φ(x �)

�
(log normalization)

The conjugate prior is an exponential family distribution over θ:

p(θ) = exp
�
t(θ)�ν − ηψ(θ)− ξ(ν, η)

�

The posterior given observations x1, . . . , xn is in the same family:

p(θ|x) = exp
�
t(θ)� (ν +

�
i
s(xi))− (η + n)ψ(θ)− ξ(ν +

�
i
s(xi), η + n)

�

The marginal probability is:

p(x) = exp (ξ(ν +
�

i
s(xi), η + n)− ξ(ν, η)−

�
i
φ(xi))

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 69 / 90



university-logo

Aside: Exponential Families

An exponential family of distributions is parametrized as:

p(x |θ) = exp
�
t(θ)�s(x)− φ(x)− ψ(θ)

�

s(x) = sufficient statistics vector.
t(θ) = natural parameter vector.

ψ(θ) = log
�

x �

exp
�
t(θ)�s(x �)− φ(x �)

�
(log normalization)

The conjugate prior is an exponential family distribution over θ:

p(θ) = exp
�
t(θ)�ν − ηψ(θ)− ξ(ν, η)

�

The posterior given observations x1, . . . , xn is in the same family:

p(θ|x) = exp
�
t(θ)� (ν +

�
i
s(xi))− (η + n)ψ(θ)− ξ(ν +

�
i
s(xi), η + n)

�

The marginal probability is:

p(x) = exp (ξ(ν +
�

i
s(xi), η + n)− ξ(ν, η)−

�
i
φ(xi))

Yee Whye Teh (Gatsby) DP August 2007 / MLSS 69 / 90



university-logo

Dirichlet Process Mixture Models
Back to Collapsed Gibbs Sampling in Finite Mixture Models

Finite mixture model:

θ∗k ∼ H for k = 1, . . . , K

π ∼ Dirichlet(α/K , . . . ,α/K )

zi |π ∼ Discrete(π) for i = 1, . . . , n

xi |θ∗zi
∼ F (θ∗zi

)

Integrating out both π and θ∗
k
’s, the Gibbs sampling conditional

distributions for z are:

p(zi = k |z¬i , x) ∝ p(zi = k |z¬i , x¬i)p(xi |z¬i , x¬i

k )

p(zi = k |z¬i , x¬i) ∝ (n¬i

k + α/K )

p(xi |z¬i , x¬i

k ) =
�

p(xi |θ∗k )p(θ∗
k
|{xj : j �= i , zj = k}) dθ∗

k

= exp
�
ξ(ν + s(xi) +

�
j �=i:zj=k

s(xj), η + 1 + n¬i

k
)

− ξ(ν +
�

j �=i:zj=k
s(xj), η + n¬i

k
)− φ(xi)

�

Demo: fm_demo2d
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Dirichlet Process Mixture Models
Taking the Infinite Limit

Imagine that K � 0 is really large.

Only a few components will be “active” (i.e. with nk > 0), while most are
“inactive”.

p(zi = k |z¬i , x) ∝
�

(n¬i

k
+ α/K )p(xi |z¬i , x¬i

k
) if k active;

(α/K )p(xi) if k inactive.

p(zi = k active|z¬i , x) ∝ (n¬i

k + α/K )p(xi |z¬i , x¬i

k )

≈ n
¬i

k p(xi |z¬i , x¬i

k )

p(zi inactive|z¬i , x) ∝ (α(K − Kactive)/K )p(xi)

≈ αp(xi)

This gives an inference algorithm for DP mixture models in Chinese
restaurant process representation.
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Dirichlet Process Mixture Models
Further Details

Rearrange mixture component indices so that 1, . . . , Kactive are active,
and the rest are inactive.

p(zi = k ≤ Kactive|z¬i , x) ∝ n
¬i

k p(xi |z¬i , x¬i

k )

p(zi > Kactive|z¬i , x) ∝ αp(xi)

If zi takes on an inactive value, instantiate a new active component, and
increment Kactive.

If nk = 0 for some k during sampling, delete that active component, and
decrement Kactive.
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If nk = 0 for some k during sampling, delete that active component, and
decrement Kactive.
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Clustering NIPS Papers

I have prepared a small subset of NIPS papers for you to try clustering
them.
We concentrate on a small subset of papers, and a small subset of
“informative” words.
Each paper is represented as a bag-of-words. Paper i is represented by
a vector xi = (xi1, . . . , xiW ):

xiw = c if word w occurs c times in paper i .

Model papers in cluster k using a Multinomial distribution:

p(xi |θ∗k ) =
(
�

w
xiw )!�

w
xiw !

�

w

(θ∗kw )xiw

The conjugate prior for θ∗
k

is a Dirichlet:

p(θ∗k |b) =
Γ(

�
w

bw )�
w

Γ(bw )

�

w

(θ∗kw )bw−1
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Clustering NIPS Papers
Specifying the Priors

We shall use a symmetric Dirichlet prior for the cluster parameters θ.
Specifically bw = b/W for some b > 0.

The model:

H = Dirichlet(b/W , . . . , b/W )

G ∼ DP(α, H)

θi ∼ G

xi ∼ Multinomial(ni , θi)

Only two numbers to set: α and b.

α controls the a priori expected number of clusters.

b controls the number of words assigned to each cluster.

What are reasonable values for α and b?
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Clustering NIPS Papers
Sensitivity to Priors

When building models and making inferences, and one does not “trust”
ones prior very much, then it is important to perform sensitivity analysis.

Sensitivity analysis is about determining how much our inference
conclusions depend on the setting of the model priors.

If our conclusions depend strongly on the priors which we don’t trust
very much, then we cannot trust our conclusions either.

If our conclusions do not depend strongly on the priors, then we can
more strongly trust our conclusions.

What part of our model should we worry about?

H = Dirichlet(b/W , . . . , b/W )

G ∼ DP(α, H)

θi ∼ G

xi ∼ Multinomial(ni , θi)
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Summary

We explored some properties of the Dirichlet process.

We implemented a Dirichlet process mixture model.

We applied a Dirichlet process mixture model to clustering NIPS papers.

We considered ways of specifying the hyperparameters of the model,
and explored the sensitivity to these hyperparameters.

Dirichlet processes are not that mysterious or hard.
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Bibliography I
Dirichlet Processes and Beyond in Machine Learning

Dirichlet Processes were first introduced by [Ferguson 1973], while [Antoniak 1974] further developed DPs as well as introduce
the mixture of DPs. [Blackwell and MacQueen 1973] showed that the Blackwell-MacQueen urn scheme is exchangeable with the
DP being its de Finetti measure. Further information on the Chinese restaurant process can be obtained at
[Aldous 1985, Pitman 2002]. The DP is also related to Ewens’ Sampling Formula [Ewens 1972]. [Sethuraman 1994] gave a
constructive definition of the DP via a stick-breaking construction. DPs were rediscovered in the machine learning community by
[?, Rasmussen 2000].

Hierarchical Dirichlet Processes (HDPs) were first developed by [Teh et al. 2006], although an aspect of the model was first
discussed in the context of infinite hidden Markov models [Beal et al. 2002]. HDPs and generalizations have been applied across
a wide variety of fields.
Dependent Dirichlet Processes are sets of coupled distributions over probability measures, each of which is marginally DP
[MacEachern et al. 2001]. A variety of dependent DPs have been proposed in the literature since then
[Srebro and Roweis 2005, Griffin 2007, Caron et al. 2007]. The infinite mixture of Gaussian processes of
[Rasmussen and Ghahramani 2002] can also be interpreted as a dependent DP.
Indian Buffet Processes (IBPs) were first proposed in [Griffiths and Ghahramani 2006], and extended to a two-parameter family
in [Griffiths et al. 2007b]. [Thibaux and Jordan 2007] showed that the de Finetti measure for the IBP is the beta process of
[Hjort 1990], while [Teh et al. 2007] gave a stick-breaking construction and developed efficient slice sampling inference algorithms
for the IBP.
Nonparametric Tree Models are models that use distributions over trees that are consistent and exchangeable. [Blei et al. 2004]
used a nested CRP to define distributions over trees with a finite number of levels. [Neal 2001, Neal 2003] defined Dirichlet
diffusion trees, which are binary trees produced by a fragmentation process. [Teh et al. 2008] used Kingman’s coalescent
[Kingman 1982b, Kingman 1982a] to produce random binary trees using a coalescent process. [Roy et al. 2007] proposed
annotated hierarchies, using tree-consistent partitions first defined in [Heller and Ghahramani 2005] to model both relational and
featural data.

Markov chain Monte Carlo Inference algorithms are the dominant approaches to inference in DP mixtures. [Neal 2000] is a
good review of algorithms based on Gibbs sampling in the CRP representation. Algorithm 8 in [Neal 2000] is still one of the best
algorithms based on simple local moves. [Ishwaran and James 2001] proposed blocked Gibbs sampling in the stick-breaking
representation instead due to the simplicity in implementation. This has been further explored in [Porteous et al. 2006]. Since
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Bibliography II
Dirichlet Processes and Beyond in Machine Learning

then there has been proposals for better MCMC samplers based on proposing larger moves in a Metropolis-Hastings framework
[Jain and Neal 2004, Liang et al. 2007a], as well as sequential Monte Carlo [Fearnhead 2004, Mansingkha et al. 2007].
Other Approximate Inference Methods have also been proposed for DP mixture models. [Blei and Jordan 2006] is the first
variational Bayesian approximation, and is based on a truncated stick-breaking representation. [Kurihara et al. 2007] proposed an
improved VB approximation based on a better truncation technique, and using KD-trees for extremely efficient inference in large
scale applications. [Kurihara et al. 2007] studied improved VB approximations based on integrating out the stick-breaking
weights. [Minka and Ghahramani 2003] derived an expectation propagation based algorithm. [Heller and Ghahramani 2005]
derived tree-based approximation which can be seen as a Bayesian hierarchical clustering algorithm. [Daume III 2007] developed
admissible search heuristics to find MAP clusterings in a DP mixture model.

Computer Vision and Image Processing. HDPs have been used in object tracking
[Fox et al. 2006, Fox et al. 2007b, Fox et al. 2007a]. An extension called the transformed Dirichlet process has been used in
scene analysis [Sudderth et al. 2006b, Sudderth et al. 2006a, Sudderth et al. 2007], a related extension has been used in fMRI
image analysis [Kim and Smyth 2007, Kim 2007]. An extension of the infinite hidden Markov model called the nonparametric
hidden Markov tree has been introduced and applied to image denoising [Kivinen et al. 2007].
Natural Language Processing. HDPs are essential ingredients in defining nonparametric context free grammars
[Liang et al. 2007b, Finkel et al. 2007]. [Johnson et al. 2007] defined adaptor grammars, which is a framework generalizing both
probabilistic context free grammars as well as a variety of nonparametric models including DPs and HDPs. DPs and HDPs have
been used in information retrieval [Cowans 2004], word segmentation [Goldwater et al. 2006b], word morphology modelling
[Goldwater et al. 2006a], coreference resolution [Haghighi and Klein 2007], topic modelling
[Blei et al. 2004, Teh et al. 2006, Li et al. 2007]. An extension of the HDP called the hierarchical Pitman-Yor process has been
applied to language modelling [Teh 2006a, Teh 2006b, Goldwater et al. 2006a].[Savova et al. 2007] used annotated hierarchies to
construct syntactic hierarchies. Theses on nonparametric methods in NLP include [Cowans 2006, Goldwater 2006].
Other Applications. Applications of DPs, HDPs and infinite HMMs in bioinformatics include
[Xing et al. 2004, Xing et al. 2006, Xing et al. 2007, Xing and Sohn 2007a, Xing and Sohn 2007b]. DPs have been applied in
relational learning [Shafto et al. 2006, Kemp et al. 2006, Xu et al. 2006], spike sorting [Wood et al. 2006a, Görür 2007]. The HDP
has been used in a cognitive model of categorization [Griffiths et al. 2007a]. IBPs have been applied to infer hidden causes
[Wood et al. 2006b], in a choice model [Görür et al. 2006], to modelling dyadic data [Meeds et al. 2007], to overlapping clustering
[Heller and Ghahramani 2007], and to matrix factorization [Wood and Griffiths 2006].
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