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OVERVIEW 

 Social Update Streams 

 Overview of LinkedIn 

 Social Stream Ranking & Dataset 

 Methods 

 Experiments 

 Conclusion 
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ONE SLIDE TAKEAWAY 

 Task 

 Improve user engagement by re-ranking social updates 

 Main results 

 We demonstrate that recommender systems + preference-

based learning can be used to re-rank social updates. 

 A linear model can achieve 60% of the performance of latent 

factor models, on average. 

 A tensor factorization model with regression on explicit features 

works the best. 

 The cold-start problem makes it impossible to model some 

kinds of interactions. 
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SOCIAL UPDATE STREAMS 
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SOCIAL UPDATE STREAMS 

Problems? 
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SOCIAL UPDATE STREAMS 

Information overload 
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SOCIAL UPDATE STREAMS 

Information shortage 
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SOCIAL UPDATE STREAMS 
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OVERVIEW OF LINKEDIN 
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OVERVIEW OF LINKEDIN 

 Founded in Dec. 2002, launched in May 2003 

 160M1 users in 200 countries and territories 

 Biggest social network for professionals 

1 As of March 2012 
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OVERVIEW OF LINKEDIN 

11 



LINKEDIN HOMEPAGE 
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LINKEDIN HOMEPAGE 
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OVERVIEW OF LINKEDIN 
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OVERVIEW OF LINKEDIN 
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OVERVIEW OF LINKEDIN 
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PROBLEM DEFINITION 

For a given recipient and updates from his/her 

social connections (senders), we want to re-rank 

these updates to optimize user engagement. 

17 



DATASET 

Data Summary April, 2011 September, 2011 

Impressions 3M-4M 10M-20M 

Updates 30M-40M 100M-200M 

Clicked Updates 3M-4M 10M-20M 

Non-clicked Updates 27M-36M 90-180M 

Distinct Updates 10M-20M 20M-30M 

Recipients 1M-2M 4M-5M 

Producers 4M-5M 6M-7M 

The numbers are obfuscated for commercial reason. 
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EVALUATION METRIC 

 Precision@k 



# of clicks in top 𝑘  positions
k  

 

 Average Precision (AP) for ranked list i 



 Precision@ 𝑘 ×𝑙𝑘
𝑚
𝑘=1

# of clicks for ranked list of ranked list 𝑖
 

 

 𝑙𝑘: position k is clicked. 

 𝑚: total number of positions evaluated. 

 

 Mean Average Precision (MAP) 

 average AP across all ranked lists 
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METHODS 

 Linear Models 

 Feature Model 

 Bias Model 

 Hybrid Model 

 Latent Factor Models 

 Matrix Factorization 

 Tensor Factorization 

 Regression-based Tensor Factorization 
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METHODS 

 Linear Models 

 Feature Model 

 Bias Model 

 Hybrid Model 

 Latent Factor Models 

 Matrix Factorization 

 Tensor Factorization 

 Regression-based Tensor Factorization 

From the simplest to 

the most complex 
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METHODS 

Linear Models: Feature Model 

 

 

 

 

 utilize explicit features. 

 𝑓𝑖 represents the estimation of user’s click on update i. 

 𝑟(𝑖) is the recipient of update i. 

 𝜙 is a feature vector. 

 𝛽 and 𝛼 are coefficients. 
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METHODS 

Linear Models: Latent Bias Model 

 

 

 

 

 utilize categorical features. 

 𝑡(𝑖) is the type of update i. 

 𝑐(𝑖) is the type of sender of update i. 

 𝑠(𝑖) is the sender of update i. 
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METHODS 

Linear Models: Latent Bias Model 

 

 

 

 

 utilize categorical features. 

 𝑡(𝑖) is the type of update i. 

 𝑐(𝑖) is the type of sender of update i. 

 𝑠(𝑖) is the sender of update i. 
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METHODS 

Combining Feature and Bias 

 

 

 

Incorporating Temporal Effects 
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METHODS 

Learning through L2-regularized logistic regression 
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METHODS 

Linear Model Summary 

 

 Simple 

 Fast 

 Intuitive 
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METHODS 

Linear Model Summary 

 

 Simple 

 Fast 

 Intuitive 

 

 

Does not exploit user-user, user-item interactions at all 
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METHODS 

Latent Factor Model: Matrix Factorization 

 

How to utilize pair-wise interactions? 
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METHODS 

Latent Factor Model: Matrix Factorization 

 

 user-item interaction? 
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METHODS 

Latent Factor Model: Matrix Factorization 

 

 user-user interaction? 
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METHODS 

Latent Factor Model: Matrix Factorization 

 

 user-user interaction? 

 user-item interaction? 
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METHODS 

Latent Factor Model: Matrix Factorization 
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METHODS 

Latent Factor Model: Matrix Factorization 

 

 

 

 

 

 

 

 very similar to basic MF model used in SVD++ 

 

 

Latent Bias Model Matrix Factorization 

34 [Koren 2010] 



METHODS 

Higher-order interactions? 
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METHODS 

Latent Factor Model: Tensor Factorization 

 

 

 

 

 

 

 Recipient-Type-Sender relationships 

 CP decomposition 
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METHODS 

Latent Factor Model: Tensor Factorization 

 

 

 

 

 

 

 

 

 

Latent Bias Model Tensor Factorization 
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METHODS 

How about other explicit features? 
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METHODS 

How about other explicit features? 

 

 Regression-based latent factor models 

 another layer of regression 

 replacing zero-mean with regression-based mean 
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METHODS 
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METHODS 
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METHODS 
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METHODS 

Learning procedure 

 Maximum A Posterior (MAP) 

 Stochastic Gradient Descent 
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METHODS 

Going beyond pointwise learning 

 Optimizing Bayesian Personalized Ranking (BPR) 

 

 

 

 

 

 

 

44 [Rendle et al. 2009] 



EXPERIMENTS 

Models 

 

 

 

 

 

 

 

Methods 

Baseline (BL) 

Feature Model (FM) 

Latent Bias Model (LFM) 

Feature Bias Model (FBM) 

Matrix Factorization (MF) 

Tensor Factorization (TF) 

Matrix Factorization with Features (MF2) 

Tensor Factorization with Features (TF2) 
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EXPERIMENTS 

Models 

 

 

 

 

 

 

 

Features Comments 

Seniority the seniority level of a user 

Visiting how frequently a user visits LinkedIn 

PageRank discretized PageRank scores 

Connectedness how well a user is connected to others 

Social strength social strength between recipient and sender 

Professionalism how professional an update’s language is 

Recency the freshness of an update 
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EXPERIMENTS: PAIRWISE LEARNING 
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EXPERIMENTS: PAIRWISE LEARNING 
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EXPERIMENTS: PAIRWISE LEARNING 
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EXPERIMENTS: PAIRWISE LEARNING 
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EXPERIMENTS: PARAMETER SENSITIVITY 
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EXPERIMENTS 

Example of highly ranked types of updates 
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Type Description Bias 𝒃𝒕 

Job Seeker Product Update 0.5765 

Joining Sub-Group 0.5407 

Company News 0.4592 

Joining Group 0.2625 

Profile Picture Update 0.2516 

Initiating Direct Ads Campaign 0.2253 

Profile Update 0.1394 



CONCLUSIONS 

 We demonstrate that recommender systems + 

preference-based learning can be used to re-rank social 

updates. 

 A linear model can achieve 60% of the performance of 

latent factor models, on average. 

 A tensor factorization model with regression on explicit 

features works the best. 

 The cold-start problem makes it impossible to model 

some kinds of interactions. 
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EXPERIMENTS: COMPARISON 
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EXPERIMENTS 

The effects of pairwise learning 
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EXPERIMENTS 
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EXPERIMENTS 

Parameter Sensitivity 
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