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o Methods

o Experiments
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ONE SLIDE TAKEAWAY (IMPORTANT)

o Task \‘

e Improve user engagement by re-ranking social updates

o Main results

 We demonstrate that recommender systems + preference-
based learning can be used to re-rank social updates.

e Alinear model can achieve 60% of the performance of latent
factor models, on average.

e Atensor factorization model with regression on explicit features
works the best.

e The cold-start problem makes it impossible to model some
kinds of interactions.
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SOCIAL UPDATE STREAMS

Problems?




SocIAL UPDATE STREAMS

Information overload
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OVERVIEW OF LINKEDIN

o Founded in Dec. 2002, launched in May 2003
o 160M? users in 200 countries and territories
o Biggest social network for professionals

Linked [T}

1 As of March 2012
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LINKEDIN HOMEPAGE
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PROBLEM DEFINITION

For a given recipient and updates from his/her
social connections (senders), we want to re-rank
these updates to optimize user engagement.




DATASET

April, 2011 | September, 2011

Impressions 3M-4M 10M-20M
Updates 30M-40M 100M-200M
Clicked Updates 3M-4M 10M-20M
Non-clicked Updates 27M-36M 90-180M
Distinct Updates 10M-20M 20M-30M
Recipients 1M-2M 4AM-5M
Producers 4M-5M 6M-7M

The numbers are obfuscated for commercial reason.




EVALUATION METRIC

o Precision@k

# of clicks in top & positions
k

o Average Precision (AP) for ranked list i

Yy, Precision@ k x1iy
# of clicks for ranked list of ranked list i

o [l position k is clicked.
o m: total number of positions evaluated.

o Mean Average Precision (MAP)
e average AP across all ranked lists




METHODS

o Linear Models
e Feature Model
e Bias Model
e Hybrid Model
o Latent Factor Models
o Matrix Factorization

e Tensor Factorization
» Regression-based Tensor Factorization




METHODS

o Linear Models
e Feature Model
e Bias Model
e Hybrid Model
o Latent Factor Models
o Matrix Factorization

e Tensor Factorization
» Regression-based Tensor Factorization

From the simplest to
the most complex




METHODS

Linear Models: Feature Model
1 T T
f?( ) — /6?(?) Qf)r(a) T ai’(i) d)z,

o utilize explicit features.

o f, represents the estimation of user’s click on update I.
o r(i) Is the recipient of update i.

o ¢ is a feature vector.

o f and a are coefficients.




METHODS

Linear Models: Latent Bias Model
£ =4 bi + bi(iy + br(iy + begiy + bs(iy

o utilize categorical features.

o t(i) is the type of update i.

o c(i) Is the type of sender of update i.
o s(i) is the sender of update i.




METHODS

Linear Models: Latent Bias Model

fl(g) — pf/ + b»g, + bt(’l) + b?‘(i) + b(_”:('i) _I_ bS(i)

o utilize categorical features.

o t(i) is the type of update i.

o c(i) Is the type of sender of update i.
o s(i) is the sender of update i.




METHODS

Combining Feature and Bias
3 — gD £
1 1 (!
Incorporating Temporal Effects

4 *k
fi — f@( ) +< X trecency




METHODS

Learning through L,-regularized logistic regression

ll (yl fl(*)) — log 1 -+ eXp(_y'z,f::)




METHODS

Linear Model Summary

e Simple
e Fast
 [ntuitive




METHODS

Linear Model Summary

e Simple
e Fast
 [ntuitive

Does not exploit user-user, user-item interactions at all




METHODS

Latent Factor Model: Matrix Factorization

How to utilize pair-wise interactions?




METHODS

Latent Factor Model: Matrix Factorization

o user-item interaction?

= ? ?
— ? ?
§- ? ?




METHODS

Latent Factor Model: Matrix Factorization

o user-user interaction?
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METHODS

Latent Factor Model: Matrix Factorization

O user-user interaction?
o user-item interaction?




METHODS

Latent Factor Model: Matrix Factorization

Ji = p+bi + by + by + 0y + bsay + 773(1)775(-@:)




METHODS

Latent Factor Model: Matrix Factorization

Ji =+ bi + begiy + brgiy + by + bsay |+ 773@)775(-@:)

l l

Latent Bias Model Matrix Factorization

o very similar to basic MF model used in SVD++

[Koren 2010] a




METHODS

Higher-order interactions?

AN /
S o




METHODS

Latent Factor Model: Tensor Factorization

Q
+

o Recipient-Type-Sender relationships
o CP decomposition




METHODS

Latent Factor Model: Tensor Factorization

pbi4be (i) by (i) Fbe (i) +bs ()

+E n"‘(’*’-’:)akns(i),knt(-@l),k

|

Latent Bias Model

1

Tensor Factorization




METHODS

How about other explicit features?




METHODS

How about other explicit features?

o Regression-based latent factor models
e another layer of regression
e replacing zero-mean with regression-based mean

Moiw) = M@, () + €2 re{R,S, T}

T
b;r(*) — U, qbr(*) _|_ Eb:c




METHODS
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METHODS

Learning procedure
o Maximum A Posterior (MAP)
o Stochastic Gradient Descent




METHODS

Going beyond pointwise learning
o Optimizing Bayesian Personalized Ranking (BPR)

> % o 1)

meE O.I;’_|_ -?16(91_,;’_

[Rendle et al. 2009] °




EXPERIMENTS

Models

Baseline (BL)

Feature Model (FM)
Latent Bias Model (LFM)
Feature Bias Model (FBM)
Matrix Factorization (MF)

Tensor Factorization (TF)
Matrix Factorization with Features (MF2)
Tensor Factorization with Features (TF2)




EXPERIMENTS

Models

Features

Comments

Seniority the seniority level of a user

Visiting how frequently a user visits LinkedIn
PageRank discretized PageRank scores
Connectedness how well a user is connected to others
Social strength social strength between recipient and sender

Professionalism how professional an update’s language is

Recency the freshness of an update




EXPERIMENTS: PAIRWISE LEARNING
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EXPERIMENTS: PAIRWISE LEARNING
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EXPERIMENTS: PAIRWISE LEARNING
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EXPERIMENTS: PAIRWISE LEARNING
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EXPERIMENTS: PARAMETER SENSITIVITY
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EXPERIMENTS

Example of highly ranked types of updates

Job Seeker Product Update 0.5765
Joining Sub-Group 0.5407
Company News 0.4592
Joining Group 0.2625
Profile Picture Update 0.2516
Initiating Direct Ads Campaign 0.2253

Profile Update 0.1394




CONCLUSIONS

o We demonstrate that recommender systems +
preference-based learning can be used to re-rank social
updates.

o A linear model can achieve 60% of the performance of
latent factor models, on average.

o A tensor factorization model with regression on explicit
features works the best.

o The cold-start problem makes it impossible to model
some kinds of interactions.




THANK YOU.

Liangjie Hong
PhD candidate

WUME Lab

Lehigh University
Ih307@cse.lehigh.edu




EXPERIMENTS: COMPARISON

Training/Testing BL FM LBM FBM

4 01(Tr.)/4_08(Te.) || 0.5278 | 0.5317 | 0.5943 | 0.5520

4 08(Tr.)/4_15(Te.) || 0.5435 | 0.5509 | 0.6040 | 0.5574

4 15(Tr.)/4 _22(Te.) || 0.5218 | 0.5246 | 0.5823 | 0.5235

9 01(Tr.)/9_10(Te.) || 0.4829 | 0.4911 | 0.5457 | 0.4984

9 10(Tr)/9_18(Te.) || 0.4779 | 0.4798 | 0.5432 | 0.4915

O 18(Tr.)/9 _25(Te.) || 0.4768 | 0.4803 | 0.5329 | 0.4886
Training/Testing MF TF MF 2 TEF2
4 01(Tr.)/4_08(Te.) 0.5955 | 0.6258 | 0.5951 | 0.6336
4 08(Tr.)/4_15(Te.) 0.6079 | 0.6228 | 0.6088 | 0.6535
4 15(Tr.)/4_22(Te.) 0.5962 | 0.6014 | 0.5991 | 0.6312
9 01(Tr.)/9_10(Te.) 0.5511 | 0.5766 | 0.5523 | 0.6003
9 10(Tr.)/9_18(Te.) 0.5412 | 0.5833 | 0.5449 | 0.6109
9 18(Tr.)/9_25(Te.) 0.5359 | 0.5799 | 0.5362 | 0.5992




EXPERIMENTS

The effects of pairwise learning

Training/Testing LBM MF MF'2 TF TF2

4 01(Tr.)/4_08(Te.) 0.6169 | 0.6033 | 0.6151 0.6358 | 0.6532
4 08(Tr.)/4_15(Te.) 0.6188 | 0.6168 | 0.6188 | 0.6528 | 0.6641
4 15(Tr.)/4_22(Te.) 0.5897 | 0.6104 | 0.6191 0.6014 | 0.6402
9 01(Tr.)/9_10(Te.) 0.5644 | 0.5716 | 0.5723 | 0.5966 | 0.6207
9 10(Tr.)/9 _18(Te.) 0.5593 | 0.5621 0.5607 | 0.5999 | 0.6183




EXPERIMENTS

MAP
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EXPERIMENTS

Parameter Sensitivity
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