Near-Optimal Hashing
Algorithms for Approximate
Near(est) Neighbor Problem

Piotr Indyk
MIT

Joint work with: Alex Andoni, Mayur Datar, Nicole Immorlica,
Vahab Mirrokni

Definition

« Given: a set P of points in R
* Nearest Neighbor: for any

query q, returns a point peP -~

minimizing ||p-qll
» r-Near Neighbor: for any

guery g, returns a point peP
s.t. ||p-q|| < r (if it exists)

Nearest Neighbor: Motivation

* Learning: nearest f‘R

neighbor rule
 Database retrieval

* Vector quantization,
a.k.a. compression

Brief History of NN

« Performance:

The case of d=2

« Compute Voronoi diagram

* Given g, perform point
location

— Space: O(n)
— Query time: O(log n)

The case of d>2

Voronoi diagram has size n©)
We can also perform a linear scan: O(dn) time

That is pretty much all what known for exact
algorithms with theoretical guarantees
In practice:

— kd-trees work “well” in “low-medium” dimensions
— Near-linear query time for high dimensions

Approximate Near Neighbor

« c-Approximate r-Near Neighbor: build data
structure which, for any query q:
— If there is a point peP, ||p-q|| =
— itreturns p'eP, ||p-q||l =cr

O

 Reductions:

— c-Approx Nearest Neighbor reduces to c-Approx
Near Neighbor O

(log overhead)
— One can enumerate all approx near neighbors
— can solve exact near neighbor problem

— Other apps: c-approximate Minimum Spanning
Tree, clustering, etc.

Approximate algorithms

Space/time exponential in d [Arya-Mount-et al,
[Kleinberg’97], [Har-Peled'02], [Arya-Mount-..]

Space/time polynomial in d [Kushilevitz-Ostrovsky-
Rabani’98], [Indyk-Motwani’98], [Indyk’98], [Gionis-Indyk-Motwani’99],
[Charikar’'02], [Datar-Immorlica-Indyk-Mirrokni’04], [Chakrabarti-

Regev’04], [Panigrahy’06], [Ailon-Chazelle’06]...

Space Time Comment Norm Ref

dn+n4e® d*logn/e?or1 | c=1+¢ Hamm, |, [KOR’98, IM’98]

nQ(1/e?) o(1) [AIP’07?]

dn+nT+e() dne(©) p(c)=1/c Hamm, |, [IM’'98], [Cha’02]
p(c)<1/c l, [DIIM’04]

dn * logs dno(©) o(c)=0(log c/c) Hamm, 1, [Ind’01]
o(c)=0(1/c) 1, [Pan’06]

dn+n7+e(©) dne(©) p(c)=1/c2 + o(1) l, [AI'06]

dn * logs dno(c) o(c)=0(1/c?) 1, [AI'06]

Locality-Sensitive Hashing
» Idea: construct hash o
functions g: RY — U such that " ®
for any points p,q:

—If [|p-q|| =, then Pr[g(p)=9g(q)] Lol 1®
£

Is-high” “not-so-small”

O
@

O
®

— If ||p-ql| >cr, then Pr[g(p)=g(q)] [%®

IS “small’ O

 Then we can solve the
problem by hashing

LSH [Indyk-Motwani’98]

A family H of functions h: RY — U is called
(P,,P,,r.cr)-sensitive, if for any p,q:
—if [[p-q|| <r then Pr[h(p)=h(q)]> P,
—if ||p-q|| >cr then Pr[h(p)=h(q) 1 < P,

« Example: Hamming distance
— LSH functions: h(p)=p;, i.e., the i-th bit of p
— Probabillities: Pr[h(p)=h(q) | = 1-D(p,q)/d

p=10010010
g=11010110

LSH Algorithm

 \We use functions of the form

g(p)=<h4(p).ho(p),....h(p)>
* Preprocessing:
— Selectg,...g,
— For all peP, hash p to buckets g.(p)...g,(p)

* Query:
— Retrieve the points from buckets g,(q), 9,(q), ..., until

 Either the points from all L buckets have been retrieved, or
« Total number of points retrieved exceeds 2L

— Answer the query based on the retrieved points
— Total time: O(dL)

Analysis

 LSH solves c-approximate NN with:
— Number of hash fun: L=n°, p=log(1/P1)/log(1/P2)
— E.g., for the Hamming distance we have p=1/c
— Constant success probability per query q

e Questions:

— Can we extend this beyond Hamming distance ?

* Yes:
— embed |, into |, (random projections)
— |, into Hamming (discretization)

— Can we reduce the exponent p ?

Projection-based LSH

[Datar-Immorlica-Indyk-Mirrokni’'04]

» Define hy ,(p)=L(p*X+b)/w.:
— W=T
— X=(X,...X,) , where X is chosen P

from:
 Gaussian distribution (for I, norm)

* “s-stable” distribution” (for I, norm)
— b is a scalar

 Similar to the |, — |, =Hamming
route

) l.e., p*X has same distribution as ||p||. Z, where Z is s-stable

Analysis

 Need to:

— Compute Pr[h(p)=n(q)] as a function of ||p-ql
and w; this defines P, and P,

— For each ¢ choose w that minimizes

p=logqp,(1/P4)
 Method:

— For |,: computational
— For general |_: analytic

pxe

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

p(w) for various c’s: |,

T T I
c=1.1 ——
c=15 ———---
I c=25 - B
c=5
\ c=10 -——-
\
\
— \ 777777777777777777777777777777]
]
I ! I
5 10 15 20

5

p(w) for various C’'s

T | T T H
| ! i
| B '
| . | i
| : | |
| i ! I
I F ! .,
” o W i
155_._h_um | I
Htt ! ,
i by ! |
TR , |
Oo0o W i
! i
1 .
i
! .
i i
| .
! |
] .
i
! .
— | i
| .
! I
I .
i
! .
1 i
1 .
! I
I .
i
! .
| i
| .
I i
| .
i
! i
A i
|
I i
] .
i
! .
i i
| .
! i
1 .
i
! .
| i
I .
- _ i
| .
i
! .
| i
I .
! I
I .
i
! .
| i
] .
! I
1 .
i
! .
\ i
1 .
1
__ i
\ i
_. j
,, i
\ i
1 h
! i
- ' j
| i
.. ;
| B
| i
1
|
I
|
1
\
/
/ B
/ s
, P
L il R 1 1 1 1
S «Q ~ < o} <. 0 N -~
o o o o o o o o o

20

15

10

0.9

0.8

0.7

0.6

0.5

— rho
- 1lc

i
2

Approximation factor ¢

New LSH scheme
[Andoni-Indyk’06]

Instead of projecting onto R, ; y
project onto R!, for constant t ® W
Intervals — lattice of balls \
— Can hit empty space, so hash until "

Y

a ball is hit
Analysis:
— p=1/c2+ O(log t/t1?2)
— Time to hash is t°® ®

— Total query time: dn'/c*+o(1)

[Motwani-Naor-Panigrahy’006]:
LSH in |, must have p = 0.45/c?

Connections to OO‘ 5
OO

« [Charikar-Chekuri-Goel-Guha-Plotkin’98]
— Consider partitioning of R9 using balls of radius R

— Show that Pr[Ball(p) # Ball(q)] < ||p-q||//R * d"/2
» Linear dependence on the distance — same as Hamming
* Need to analyze R~||p-g|| to achieve non-linear behavior!
(as for the projection on the line)
« [Karger-Motwani-Sudan’94]
— Consider partitioning of the sphere via random vectors u
from N9(0,1) :
pisin Cap(u)ifu*p=T
— Showed Pr[Cap(p) = Cap(q) | <exp[- (2T/||p+ql|)?/2]

» Large relative changes to ||p-q|| can yield only small relative
changes to ||p+q||

Proof idea 50
ox Yo

« Claim: p=log(P1)/log(P2)—1/c? OO0,
— P1=Pr(1), P2=Pr(c)
— Pr(z)=prob. of collision when distance z

* Proof idea:
— Assumption: ignore effects of mapping into R!
— Pr(z) is proportional to the volume of the cap

— Fraction of mass in a cap is proportional to
the probability that the x-coordinate of a
random point u from a ball exceeds x

— Approximation: the x-coordinate of u has
approximately normal distribution

— Pr(x) ~ exp(-A x?)
— p=log[exp(-A12)]/ log [exp(-Ac?)] = 1/c?

New LSH scheme, ctd.

 How does it work in practice ?

 The time t°dn1c*+f() js not very
practical
— Need t=30 to see some improvement

 |dea: a different decomposition of R!

— Replace random balls by Voronoi 6
diagram of a lattice
— For specific lattices, finding a cell 6

containing a point can be very fast
—fast hashing

Leech Lattice LSH

« Use Leech lattice in R?4 | t=24
— Largest kissing number in 24D: 196560
— Conjectured largest packing density in 24D
— 24 is 42 inreverse...

* Very fast (bounded) decoder: about 519
operations [Amrani-Beery’94]

 Performance of that decoder for c=2:

— 1/c? 0.25
— 1/c 0.50
— Leech LSH, any dimension: p~0.36

— Leech LSH, 24D (no projection): p=0.26

Conclusions

We have seen:
— Algorithm for c-NN with dn/c**(") query time
(and reasonable space)
« Exponent tight up to a constant

— (More) practical algorithms based on Leech lattice
We haven't seen:

— Algorithm for c-NN with dn®("/<?) query time and dn log n space
Immediate questions:

— Getrid of the o(1)

— ...or came up with a really neat lattice...

— Tight lower bound

Non-immediate questions:

— Other ways of solving proximity problems

Advertisement

+ See LSH web page (linked from my web
page for):
— Experimental results (for the ‘04 version)
— Pointers to code

Experiments

Experiments (with ‘04 version)

E2LSH: Exact Euclidean LSH (with Alex Andoni)

— Near Neighbor

— User sets r and P = probability of NOT reporting a point within
distance r (=10%)

— Program finds parameters k,L,w so that:
* Probability of failure is at most P
« Expected query time is minimized
Nearest neighbor: set radius (radiae) to accommodate
90% queries (results for 98% are similar)
— 1 radius: 90%
— 2 radiae: 40%, 90%
— 3 radiae: 40%, 65%, 90%
— 4 radiae: 25%, 50%, 75%, 90%

Data sets

MNIST OCR data, normalized (LeCun et al)
— d=784

— n=60,000

Corel_hist

— d=64

— n=20,000

Corel_uci

— d=64

— n=68,040

Aerial data (Manjunath)
— d=60

— n=275,476

Other NN packages

* ANN (by Arya & Mount):
— Based on kd-tree
— Supports exact and approximate NN
* Metric trees (by Moore et al):
— Splits along arbitrary directions (not just x,y,..)
— Further optimizations

E2LSH-1
E2LSH-2
E2LSH-3
E2LSH-4
ANN

MT

Running times

MNIST Speedup Corel hist Speedup Corel uci Speedup |Aerial

0.00960
0.00851

0.25300 29.72274
0.20900 24.55357

0.00024
0.00018

0.00018 1.011236
0.00130 7.303371

0.00070
0.00055

0.00274 4.954792
0.00650 11.75407

0.07400
0.00833
0.00668
0.00741
0.01700

Speedup

1.109281
2.54491

LSH vs kd-tree (MNIST)

02 -
0.18
0.16 -

0.14
0.12

0.1
0.08 ~

0.06 -
0.04 -
0.02 -
O n T \ T \ \ #v\

0 10 20 30 40 50 60 70

Caveats

 For ANN (MNIST), setting e=1000% results in:

— Query time comparable to LSH
— Correct NN in about 65% cases, small error otherwise

 However, no guarantees

« LSH eats much more space (for optimal
performance):
— LSH: 1.2 GB
— Kd-tree: 360 MB

