# Near-Optimal Hashing Algorithms for Approximate Near(est) Neighbor Problem

#### Piotr Indyk MIT

Joint work with: Alex Andoni, Mayur Datar, Nicole Immorlica, Vahab Mirrokni

#### Definition

- Given: a set P of points in R<sup>d</sup>
- Nearest Neighbor: for any query q, returns a point p∈P minimizing ||p-q||
- r-Near Neighbor: for any query q, returns a point p∈P s.t. ||p-q|| ≤ r (if it exists)



 $\bigcirc$ 

## **Nearest Neighbor: Motivation**

- Learning: nearest neighbor rule
- Database retrieval
- Vector quantization, a.k.a. compression





#### **Brief History of NN**

## The case of d=2

- Compute Voronoi diagram
- Given q, perform point location
- Performance:
  - Space: O(n)
  - Query time: O(log n)



## The case of d>2

- Voronoi diagram has size n<sup>O(d)</sup>
- We can also perform a linear scan: O(dn) time
- That is pretty much all what known for exact algorithms with theoretical guarantees
- In practice:
  - kd-trees work "well" in "low-medium" dimensions
  - Near-linear query time for high dimensions

#### **Approximate Near Neighbor**

- c-Approximate r-Near Neighbor: build data structure which, for any query q:
  - If there is a point  $p \in P$ ,  $||p-q|| \le r$
  - it returns  $p' \in P$ ,  $||p-q|| \leq cr$
- Reductions:
  - c-Approx Nearest Neighbor reduces to c-Approx
     Near Neighbor

(log overhead)

- One can enumerate all approx near neighbors
- $\rightarrow$  can solve exact near neighbor problem
- Other apps: c-approximate Minimum Spanning Tree, clustering, etc.



 $\bigcirc$ 

## Approximate algorithms

- Space/time exponential in d [Arya-Mount-et al], [Kleinberg'97], [Har-Peled'02], [Arya-Mount-...]
- Space/time polynomial in d [Kushilevitz-Ostrovsky-Rabani'98], [Indyk-Motwani'98], [Indyk'98], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06]...

| Space                               | Time                         | Comment                   | Norm                 | Ref               |
|-------------------------------------|------------------------------|---------------------------|----------------------|-------------------|
| dn+n <sup>4/ε<sup>2</sup></sup>     | d * logn / $\epsilon^2$ or 1 | c=1+ ε                    | Hamm, I <sub>2</sub> | [KOR'98, IM'98]   |
| $\mathbf{n}^{\Omega(1/\epsilon^2)}$ | O(1)                         |                           |                      | [AIP'0?]          |
| <br>dn+n <sup>1+p(c)</sup>          | dn <sup>ρ(c)</sup>           | ρ(c)=1/c                  | Hamm, I <sub>2</sub> | [IM'98], [Cha'02] |
|                                     |                              | ρ(c)<1/c                  | l <sub>2</sub>       | [DIIM'04]         |
| dn * logs                           | dn <sup>σ(c)</sup>           | σ(c)=O(log c/c)           | Hamm, I <sub>2</sub> | [Ind'01]          |
|                                     |                              | σ(c)=O(1/c)               | l <sub>2</sub>       | [Pan'06]          |
| <br>dn+n <sup>1+p(c)</sup>          | dn <sup>p(c)</sup>           | $\rho(c)=1/c^2+o(1)$      | <sub>2</sub>         | [Al'06]           |
| dn * logs                           | dn <sup>σ(c)</sup>           | σ(c)=O(1/c <sup>2</sup> ) | 2                    | [Al'06]           |

## Locality-Sensitive Hashing

- Idea: construct hash functions g:  $\mathbb{R}^{d} \rightarrow \mathbb{U}$  such that  $^{\circ_{p}}$  • for any points p,q:
  - If ||p-q|| ≤ r, then Pr[g(p)=g(q)] is <u>"high</u>" "not-so-small"
  - If ||p-q|| >cr, then Pr[g(p)=g(q)] is "small"



 Then we can solve the problem by hashing

#### LSH [Indyk-Motwani'98]

- A family H of functions h: R<sup>d</sup> → U is called (P<sub>1</sub>,P<sub>2</sub>,r,cr)-sensitive, if for any p,q:
  – if ||p-q|| <r then Pr[ h(p)=h(q) ] > P<sub>1</sub>
  – if ||p-q|| >cr then Pr[ h(p)=h(q) ] < P<sub>2</sub>
- Example: Hamming distance
  - LSH functions:  $h(p)=p_i$ , i.e., the i-th bit of p
  - Probabilities: Pr[h(p)=h(q)] = 1-D(p,q)/d

p=10010010 q=11010110

# LSH Algorithm

- We use functions of the form  $g(p) = \langle h_1(p), h_2(p), \dots, h_k(p) \rangle$
- Preprocessing:
  - Select  $g_1 \dots g_L$
  - For all  $p \in P$ , hash p to buckets  $g_1(p) \dots g_L(p)$
- Query:
  - Retrieve the points from buckets  $g_1(q), g_2(q), ..., until$ 
    - Either the points from all L buckets have been retrieved, or
    - Total number of points retrieved exceeds 2L
  - Answer the query based on the retrieved points
  - Total time: O(dL)

## Analysis

- LSH solves c-approximate NN with:
  - Number of hash fun: L=n<sup> $\rho$ </sup>,  $\rho$ =log(1/P1)/log(1/P2)
  - E.g., for the Hamming distance we have  $\rho=1/c$
  - Constant success probability per query q
- Questions:
  - Can we extend this beyond Hamming distance ?
    - Yes:
      - embed  $I_2$  into  $I_1$  (random projections)
      - $-I_1$  into Hamming (discretization)
  - Can we reduce the exponent  $\rho$  ?

#### **Projection-based LSH**

[Datar-Immorlica-Indyk-Mirrokni'04]

- Define  $h_{X,b}(p) = \lfloor (p^*X+b)/w \rfloor$ :
  - w ≈ r
  - X=(X<sub>1</sub>...X<sub>d</sub>), where X<sub>i</sub> is chosen from:
    - Gaussian distribution (for I<sub>2</sub> norm)
    - "s-stable" distribution\* (for I<sub>s</sub> norm)
  - b is a scalar
- Similar to the  $I_2 \rightarrow I_1 \rightarrow Hamming$  route



<sup>\*</sup> I.e.,  $p^*X$  has same distribution as  $||p||_s$  Z, where Z is s-stable

## Analysis

- Need to:
  - Compute Pr[h(p)=h(q)] as a function of ||p-q|| and w; this defines P<sub>1</sub> and P<sub>2</sub>
  - For each c choose w that minimizes

 $\rho = \log_{1/P2}(1/P_1)$ 

W

- Method:
  - For I<sub>2</sub>: computational
  - For general I<sub>s</sub>: analytic













## New LSH scheme

[Andoni-Indyk'06]

- Instead of projecting onto R<sup>1</sup>, project onto R<sup>t</sup>, for constant t
- Intervals  $\rightarrow$  lattice of balls
  - Can hit empty space, so hash until a ball is hit
- Analysis:
  - $-\rho = 1/c^2 + O(\log t / t^{1/2})$
  - Time to hash is t<sup>O(t)</sup>
  - Total query time: dn<sup>1/c<sup>2</sup>+o(1)</sup>
- [Motwani-Naor-Panigrahy'06]: LSH in  $I_2$  must have  $\rho \ge 0.45/c^2$





#### Connections to



- [Charikar-Chekuri-Goel-Guha-Plotkin'98]
  - Consider partitioning of R<sup>d</sup> using balls of radius R
  - Show that  $Pr[Ball(p) \neq Ball(q)] \leq ||p-q||/R * d^{1/2}$ 
    - Linear dependence on the distance same as Hamming
    - Need to analyze R≈||p-q|| to achieve non-linear behavior! (as for the projection on the line)
- [Karger-Motwani-Sudan'94]
  - Consider partitioning of the sphere via random vectors u from N<sup>d</sup>(0,1) :

p is in Cap(u) if  $u^*p \ge T$ 

- Showed  $Pr[Cap(p) = Cap(q)] \le exp[-(2T/||p+q||)^2/2]$ 
  - Large relative changes to ||p-q|| can yield only small relative changes to ||p+q||



## Proof idea

- Claim:  $\rho = \log(P1)/\log(P2) \rightarrow 1/c^2$ 
  - P1=Pr(1), P2=Pr(c)
  - Pr(z)=prob. of collision when distance z
- Proof idea:
  - Assumption: ignore effects of mapping into R<sup>t</sup>
  - Pr(z) is proportional to the volume of the cap
  - Fraction of mass in a cap is proportional to the probability that the x-coordinate of a random point u from a ball exceeds x
  - Approximation: the x-coordinate of u has approximately normal distribution

 $\rightarrow$  Pr(x)  $\approx$  exp(-A x<sup>2</sup>)

 $- \rho = \log[\exp(-A1^2)] / \log[\exp(-Ac^2)] = 1/c^2$ 





## New LSH scheme, ctd.

- How does it work in practice ?
- The time t<sup>O(t)</sup>dn<sup>1/c<sup>2</sup>+f(t)</sup> is not very practical
  - Need t $\approx$ 30 to see some improvement
- Idea: a different decomposition of R<sup>t</sup>
  - Replace random balls by Voronoi diagram of a lattice
  - For specific lattices, finding a cell containing a point can be very fast
     →fast hashing



## Leech Lattice LSH

- Use Leech lattice in R<sup>24</sup>, t=24
  - Largest kissing number in 24D: 196560
  - Conjectured largest packing density in 24D
  - 24 is 42 in reverse...
- Very fast (bounded) decoder: about 519 operations [Amrani-Beery'94]

#### • Performance of that decoder for c=2:

- $1/c^2$  0.25 - 1/c 0.50
- Leech LSH, any dimension:  $\rho \approx 0.36$
- Leech LSH, any unnension.  $p \approx 0$
- Leech LSH, 24D (no projection):  $\rho \approx 0.26$

### Conclusions

- We have seen:
  - Algorithm for c-NN with  $dn^{1/c^2+o(1)}$  query time
    - (and reasonable space)
      - Exponent tight up to a constant
  - (More) practical algorithms based on Leech lattice
- We haven't seen:
  - Algorithm for c-NN with  $dn^{O(1/c^2)}$  query time and  $dn \log n$  space
- Immediate questions:
  - Get rid of the o(1)
  - ...or came up with a really neat lattice...
  - Tight lower bound
- Non-immediate questions:
  - Other ways of solving proximity problems

### Advertisement

- See LSH web page (linked from my web page for):
  - Experimental results (for the '04 version)
  - Pointers to code

## Experiments

# Experiments (with '04 version)

- E<sup>2</sup>LSH: Exact Euclidean LSH (with Alex Andoni)
  - Near Neighbor
  - User sets r and P = probability of NOT reporting a point within distance r (=10%)
  - Program finds parameters k,L,w so that:
    - Probability of failure is at most P
    - Expected query time is minimized
- Nearest neighbor: set radius (radiae) to accommodate 90% queries (results for 98% are similar)
  - 1 radius: 90%
  - 2 radiae: 40%, 90%
  - 3 radiae: 40%, 65%, 90%
  - 4 radiae: 25%, 50%, 75%, 90%

### Data sets

- MNIST OCR data, normalized (LeCun et al)
  - d=784
  - n=60,000
- Corel\_hist
  - d=64
  - n=20,000
- Corel\_uci
  - d=64
  - n=68,040
- Aerial data (Manjunath)
  - d=60
  - n=275,476

## Other NN packages

- ANN (by Arya & Mount):
  - Based on kd-tree
  - Supports exact and approximate NN
- Metric trees (by Moore et al):
  - Splits along arbitrary directions (not just x,y,..)
  - Further optimizations

# Running times

|         | MNIST   | Speedup  | Corel_hist | Speedup  | Corel_uci | Speedup  | Aerial  | Speedup  |
|---------|---------|----------|------------|----------|-----------|----------|---------|----------|
| E2LSH-1 | 0.00960 |          |            |          |           |          |         |          |
| E2LSH-2 | 0.00851 |          | 0.00024    |          | 0.00070   |          | 0.07400 |          |
| E2LSH-3 |         |          | 0.00018    |          | 0.00055   |          | 0.00833 |          |
| E2LSH-4 |         |          |            |          |           |          | 0.00668 |          |
| ANN     | 0.25300 | 29.72274 | 0.00018    | 1.011236 | 0.00274   | 4.954792 | 0.00741 | 1.109281 |
| MT      | 0.20900 | 24.55357 | 0.00130    | 7.303371 | 0.00650   | 11.75407 | 0.01700 | 2.54491  |

#### LSH vs kd-tree (MNIST)



### Caveats

- For ANN (MNIST), setting  $\varepsilon = 1000\%$  results in:
  - Query time comparable to LSH
  - Correct NN in about 65% cases, small error otherwise
- However, no guarantees
- LSH eats much more space (for optimal performance):
  - LSH: 1.2 GB
  - Kd-tree: 360 MB