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Signals and signal models

@ Real-world processes produce signals, i.e., observable outputs
o discrete (from a codebook) vs continous
o stationary (with const. statistical properties) vs nonstationary
o pure vs corrupted (by noise)

@ Signal models provide basis for
e signal analysis, e.g., simulation
e signal processing, e.g., noise removal
e signal recognition, e.g., identification
@ Signal models can be
e deterministic — exploit some known properties of a signal
e statistical — characterize statistical properties of a signal
@ Statistical signal models
e Gaussian processes o Markov processes
o Poisson processes o Hidden Markov processes

Marcin Marszatek A Tutorial on Hidden Markov Models



Introduction
©00000

Signals and signal models

Signal can be well characterized as a parametric random
process, and the parameters of the stochastic process can be
determined in a precise, well-defined manner
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Discrete (observable) Markov model

Figure: A Markov chain with 5 states and selected transitions

@ N states: 51,5;,...,Sn

@ In each time instant t = 1,2,..., T a system changes
(makes a transition) to state g
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Discrete (observable) Markov model

@ For a special case of a first order Markov chain
P(q: = Sjlqt—1 = Si, tt—2 = Sk, ...) = P(q: = Sj|qt—1 = Si)

@ Furthermore we only assume processes where right-hand side
is time independent — const. state transition probabilities

aj = P(q: = 5jlqt-1 = 5)) 1<ij<N

where
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Discrete hidden Markov model (DHMM)

Figure: Discrete HMM with 3 states and 4 possible outputs

@ An observation is a probabilistic function of a state, i.e.,
HMM is a doubly embedded stochastic process

o A DHMM is characterized by
o N states S; and M distinct observations vy (alphabet size)
e State transition probability distribution A
o Observation symbol probability distribution B
o Initial state distribution 7
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Discrete hidden Markov model (DHMM)

e We define the DHMM as A = (A, B, m)

° A:{aij} aij:P(Qt-s-IZSthZSi) 1<ij<N
4] B:{b,k} b;k:P(Ot:Vk|qt:S,') 1§I§N

1<k<M
om={m} m=Pl@a=25) 1<i<N

@ This allows to generate an observation seq. O = 0;0;...01

@ Set t =1, choose an initial state g; = S; according to the
initial state distribution

@ Choose O; = v, according to the symbol probability
distribution in state S;, i.e., bjx

© Transit to a new state g;+1 = S according
to the state transition probability distibution
for state S;, i.e., ajj

Q Sett=t+1,
if t < T then return to step 2
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Three basic problems for HMMs

Evaluation Given the observation sequence O = 0;0,...O7 and
a model A = (A, B, ), how do we efficiently
compute P(O|)), i.e., the probability of the
observation sequence given the model

Recognition Given the observation sequence O = 01 0,...O1 and
a model A = (A, B, ), how do we choose a
corresponding state sequence @ = g1go...gT which is
optimal in some sense, i.e., best explains the
observations

Training Given the observation sequence O = 01 0,...01, how
do we adjust the model parameters A = (A, B, ) to
maximize P(O|\)
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Brute force solution to the evaluation problem

@ We need P(O|)), i.e., the probability of the observation
sequence O = 07 0;...071 given the model A

@ So we can enumerate every possible state sequence
Q=q1q2...97

@ For a sample sequence @

T T
P(0|QA) = [T P(Otlae, ) = [ ] oo
t=1 =

@ The probability of such a state sequence @ is

T T
P(Q|>‘) = P(ql) H 'D(qt|qt*1) =Tq H g:_1q:
t=2 t=2
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Brute force solution to the evaluation problem

@ Therefore the joint probability

T T
P(0,QIN) = P(QINP(0|Q, N) = g, [ [ 2414 [ [ baco
t=2 =1

@ By considering all possible state sequences

O’/\ Zﬂ'th QIOIHaqt 19t qtot

@ Problem: order of 2TN T calculations

o N7 possible state sequences
e about 2T calculations for each sequence
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Forward procedure

e We define a forward variable «(t) as the probability of the
partial observation seq. until time t, with state S; at time t

Ozj(t) = P(010;...0, g = Sj|>\)
@ This can be computed inductively

Oéj(l) = ijjol 1<j <N

aj(t+1) = Za, )aj)bjo,, 1<t<T-1

e Then with N?T operations:

P(OIY) = ZP (0,97 = SN = 3 a(T)

i=1
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Forward procedure

Figure: Operations for
computing the forward
variable «a;(t + 1)

Figure: Computing o(t)
in terms of a lattice
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Backward procedure

Figure: Operations for
computing the backward
variable 3;(t)

@ We define a backward '
variable f3j(t) as the piii e
probability of the partial
observation seq. after time t, given state S; at time t
ﬂ,‘(l’) = P(Ot+10t + 2...OT|qt = 5,',)\)

@ This can be computed inductively as well

Bi(T)=1 1

Bysath

IN
IN

N

i

IN

N
Bi(t —1) =Y ajbjo,fj(t) 2st=T
j=1
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Uncovering the hidden state sequence

@ Unlike for evaluation, there is no single “optimal” sequence

o Choose states which are individually most likely
(maximizes the number of correct states)

e Find the single best state sequence
(guarantees that the uncovered sequence is valid)

@ The first choice means finding argmax; ~y;(t) for each t, where
7i(t) = P(q: = Si|O0, A)

@ In terms of forward and backward variables

B P(Ol...Ot,qt:5;\)\)P(Ot+1...0ﬂqt:5,-,/\)
o= P(O)
;(t)Bi(t)

=S 05,
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Viterbi algorithm

@ Finding the best single sequence means computing
argmaxg P(Q|O, \), equivalent to argmaxg P(Q, O|))

@ The Viterbi algorithm (dynamic programming) defines 0;(t),
i.e., the highest probability of a single path of length t which
accounts for the observations and ends in state S;

5j(t) = max P(qlqg...qt =/, 01020t|)\)
q1,q2;---,qt—1

@ By induction
5j(1) = 7jbjo, 1<j<N
5j(t + 1) = (maxd;(t)a;j)bjom 1<t<T-1
1

e With backtracking (keeping the maximizing argument for each
t and j) we find the optimal solution
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Backtracking

Figure: lllustration of the backtracking procedure (© G.W. Pulford
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Estimation of HMM parameters

@ There is no known way to analytically solve for the model
which maximizes the probability of the observation sequence
@ We can choose A = (A, B, ) which locally maximizes P(O|)\)

e gradient techniques
o Baum-Welch reestimation (equivalent to EM)

@ We need to define §;(t), i.e., the probability of being in state
S; at time t and in state S; at time t 41

§i(t) = P(g: = Si, gr+1 = 5|0, \)
. _ ai(t)anfOt+15j(t + 1)
S =0
_ ai(t)ajbjo.,, fj(t +1)
ity S ait)aibjo,, Bi(t +1)
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Estimation of HMM parameters

Figure: Operations for
computing the &;(t) Si
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@ Recall that ~;(t) is a probability of state S; at time t, hence

N
i) =D &(t)
=

@ Now if we sum over the time index t

° ZtT:_ll ~i(t) = expected number of times that S; is visited*
= expected number of transitions from state S;
° ZtT:_ll &ij(t) = expected number of transitions from S; to §;
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Baum-Welch Reestimation

@ Reestimation formulas

it (1) b‘.kzw
Sty Sl )

@ Baum et al. proved that if current model is A = (A, B, ) and
we use the above to compute A = (A, B, ) then either

o A= )\_— we are in a critical F_)oint of the likelihood function
o P(O|X) > P(O|X) — model X is more likely

7 =i(l) &=

o If we iteratively reestimate the parameters we obtain a
maximum likelihood estimate of the HMM

@ Unfortunately this finds a local maximum and the surface can
be very complex
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Non-ergodic HMMs

@ Until now we have only considered
ergodic (fully connected) HMMs ' 2

e every state can be reached from
any state in a finite number of
steps

Figure: Ergodic HMM

o Left-right (Bakis) model good for speech recognition

@ as time increases the state index increases or stays the same
e can be extended to parallel left-right models

Figure: Left-right HMM

Figure: Parallel HMM
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Gaussian HMM (GMMM)

@ HMMs can be used with continous observation densities

@ We can model such densities with Gaussian mixtures
M
bjO = Z ijN(Ou Hjm, U_/m)
m=1

@ Then the reestimation formulas are still simple

T
)} Bl e IUO, Wy, Ui 2 yilj, k)
- _ =1

Sk =T m
25y, k)
t=1k=1

Goo= & e
I B ) 8 || |2, 6n O M Uy

,
2 j, K- (O, = O, — w

M . Up = T
rgl yl(jl k)

Marcin Marszatek A Tutorial on Hidden Markov Models



Extensions
ooe

More fun

Autoregressive HMMs

State Duration Density HMMs
Discriminatively trained HMMs

e maximum mutual information
instead of maximum likelihood

HMMs in a similarity measure

ICondltlonal Random Fields can Figure: Random Oxford
oosely.be .understood as a fields © R. Tourtelot
generalization of an HMMs
e constant transition probabilities replaced with arbitrary
functions that vary across the positions in the sequence of
hidden states
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