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Abstract

We consider the problem of the binary classi£cation on im-
balanced data, in which nearly all the instances are la-
belled as one class, while far fewer instances are labelled
as the other class, usually the more important class. Tradi-
tional machine learning methods seeking an accurate per-
formance over a full range of instances are not suitable
to deal with this problem, since they tend to classify all
the data into the majority, usually the less important class.
Moreover, some current methods have tried to utilize some
intermediate factors, e.g., the distribution of the training
set, the decision thresholds or the cost matrices, to in¤u-
ence the bias of the classi£cation. However, it remains
uncertain whether these methods can improve the perfor-
mance in a systematic way. In this paper, we propose a
novel model named Biased Minimax Probability Machine.
Different from previous methods, this model directly con-
trols the worst-case real accuracy of classi£cation of the
future data to build up biased classi£ers. Hence, it provides
a rigorous treatment on imbalanced data. The experimen-
tal results on the novel model comparing with those of three
competitive methods, i.e., the Naive Bayesian classi£er, the
k-Nearest Neighbor method, and the decision tree method
C4.5, demonstrate the superiority of our novel model.

1 Introduction

Learning classi£ers from imbalanced or skewed datasets is
an important topic, arising very often in practice in classi£-
cation problems. In such problems, almost all the instances
are labelled as one class, while far fewer instances are la-
belled as the other class, usually the more important class.
It is obvious that traditional classi£ers seeking an accurate
performance over a full range of instances are not suitable
to deal with imbalanced learning tasks, since they tend to
classify all the data into the majority class, which is usually
the less important class.

To cope with imbalanced datasets, there are types of
methods, such as the methods of sampling [7], the meth-
ods of moving the decision thresholds [9][10], and the
methods of adjusting the cost-matrices[9]. The £rstschool
of methods aims to reduce the data imbalance by “down-
sampling” (removing) instances from the majority class or
“up-sampling” (duplicating) the training instances from the
minority class or both. The second school of methods tries
to adapt the decision thresholds to impose bias on the minor-
ity class. Similarly, the third school of methods improves
the prediction performance by adjusting the weight (cost)
for each class.

A common problem for all the three families of methods
is that they lack a rigorous and systematic treatment on im-
balanced data. To adapt to the imbalanced learning, these
methods adjust some intermediate factors, e.g., the prior
probabilities (in the sampling methods), decision thresh-
olds, and cost matrices, which are not directly related to the
classi£cation accuracy and sometimes may cause problems.
For example, down-sampling the data will lose information,
while up-sampling will introduce noise. According to [10],
one open question is that whether simply varying the skew-
ness of the data distribution can improve predictive perfor-
mance systematically. Furthermore, Breiman et al. [3] es-
tablishes the connection among the distribution of the train-
ing data, the prior probability of each class, the costs of
misclassi£cation of each class, and the setup of the deci-
sion threshold. Changing one of these factors is equivalent
to changing other factors. Thus, simply changing thresh-
olds or adjust the weight for each class lacks the systematic
foundation in the same sense as the sampling method.

In this paper, based on extending Mimimax Probability
Machine (MPM) [8], a competitive model compared with
a state-of-the-art classi£er, the Support Vector Machine,we
propose a novel model named Biased Minimax Probabil-
ity Machine (BMPM) to handle the tasks of learning from
imbalanced data. Different from the sampling methods,
BMPM does not remove or duplicate data. When compared
with the methods of changing the thresholds or weights,
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it constructs the classi£cation hyperplane by directly con-
trolling the lower bound of the real accuracy of the future
data. This distinguishes BMPM from the currently pro-
posed methods and demonstrates its rigorous and system-
atic treatment on imbalanced data.

This paper is organized as follows. In the next section,
we introduce the theory foundation of this paper.We then
in Section 3 apply the BMPM to deal with the imbalanced
learning tasks. Following that, we evaluate the BMPM
model on a series of experiments in Section 4. Finally, we
conclude this paper and present future work in Section 5.

2 Biased Minimax Probability Ma-
chine

In this section, we £rst introduce the model de£nition of
BMPM. Next, we prove the solvability of BMPM. Follow-
ing that, we propose an ef£cient algorithm to solve the cor-
responding optimization problem. We then in Section 2.4,
discuss the kenerlization of the BMPM model to attack non-
linear classi£cation tasks.

2.1 Model De£nition

We assume two random vectors x and y represent two
classes of data with mean and covariance matrices as
{x,Σx} and {y,Σy}, respectively in a two-category classi-
£cation task, where x, y, x, y ∈ Rn, and Σx, Σy ∈ Rn×n.
For convenience, we also use x and y to represent the cor-
responding class of the x data and the y data respectively.

With given reliable {x,Σx}, {y,Σy} for two classes of
data, we try to £nd a hyperplane aT z = b (a 6= 0, z ∈ Rn,
b ∈ R, superscript T denotes the transpose) with aT z >

b being considered as class x and aT z < b being judged
as class y to separate the important class of data (x) with
a maximal probability while keeping the accuracy of less
important class of data (y) acceptable. We formulate this
objective as follows:

max
α,β,b,a6=0

α s.t. inf
x∈{x,Σx}

Pr{aTx ≥ b} ≥ α , (1)

inf
y∈{y,Σy}

Pr{aTy ≤ b} ≥ β , (2)

β ≥ β0 , (3)

where α represents the lower bound of the accuracy for
the classi£cation, or the worst-case accuracy of future data
points x; likewise β. The parameter β0 is a pre-speci£ed
positive constant, which represents an acceptable accuracy
level for the less important class y.

The above formulation is derived from the MPM [8],
which requires the probabilities of correct classi£cation for

both classes to be an equal value α. Through this formu-
lation, the BMPM model can handle the biased classi£ca-
tion in a direct way.First, this model provides a different
treatment on different classes, i.e, the hyperplane aT∗ z = b∗
given by the solution of this optimization will favor the clas-
si£cation of the important class x over the less important
class y. Second, given the reliable mean and covariance
matrices, the derived decision hyperplane is directly asso-
ciated with two real accuracy indicators of classi£cation of
the future data, i.e., α and β, for each class. Third, this
model inherits the distribution-free feature of MPM. With
no assumption on data, the derived hyperplane seems to be
more general and valid than generative classi£ers.Fourth,
as shown shortly in this paper, either we can simply modify
this BMPM optimization to automatically search the best
β0 in terms of some criteria popular in the machine learning
literature, or slightly different from the current setting, we
can quantitatively generate the trade-off curve between the
accuracies on different classes and leave the task of choos-
ing the best β0 to the practitioners.

2.2 Solvability

First, by applying Lemma 1 in [8], we can obtain the fol-
lowing transformed optimization problem:

max
α,β,b,a6=0

α s.t. (4)

−b+ aTx ≥ κ(α)
√

aTΣxa , (5)

b− aTy ≥ κ(β)
√

aTΣya , (6)

β ≥ β0 , (7)

where κ(α) =
√

α
1−α , κ(β) =

√

β
1−β . Constraint (6)

is the direct result of the Lemma.Similarly, by changing
aTx ≥ b to aT (−x) ≤ −b, (5) can be obtained from (1).
From (5) and (6), we get

aTy + κ(β)
√

aTΣya ≤ b ≤ aTx− κ(α)
√

aTΣxa . (8)

If we eliminate b from this inequality, we obtain

aT (x− y) ≥ κ(α)
√

aTΣxa+ κ(β)
√

aTΣya . (9)

Since the magnitude of a does not in¤uence the solution of
(9), without loss of generality, we set aT (x − y) = 1. In
addition, κ(α) increases monotonically with α, maximizing
α is equivalent to maximizing κ(α). Thus, the problem can
be further modi£ed to

max
α,β,a6=0

κ(α) s.t. (10)

1 ≥ κ(α)
√

aTΣxa+ κ(β)
√

aTΣya ,(11)

aT (x− y) = 1 , (12)

κ(β) ≥ κ(β0) , (13)
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where (13) is equivalent to (7) due to the monotonic prop-
erty of the function κ.

Lemma 1 The maximum value of κ(α) under the con-
straints of (11), (12), and (13) is achieved when the right
hand side of (11) is strictly equal to 1.

Proof: Assume the maximum is achieved when
1 > κ(α)

√

aTΣxa + κ(β)
√

aTΣya . A new solu-
tion constructed by increasing κ(α) with a small positive
amount and maintaining κ(β) and a unchanged will sat-
isfy the constraints and will be a better solution. ¥

Since Σx and Σy can be considered as positive de£nite

matrices,1 we obtain κ(α) =
1−κ(β)

√
aTΣya√

aTΣxa
. It is a linear

function with respect to κ(β). Since
√

aTΣya is a positive
term, this optimization function is maximized when κ(β)
is set to its lower bound κ(β0). The BMPM optimization
problem is changed to:

max
a6=0

1− κ(β0)
√

aTΣya
√

aTΣxa
s.t. aT (x− y) = 1 . (14)

Further the above formulation (14) can be written as the so-
called Fractional Programming (FP) problem [11],

max
a6=0

f(a)

g(a)
, s.t. a ∈ A = {a|aT (x− y) = 1} , (15)

where f(a) = 1 − κ(β0)
√

aTΣya, g(a) =
√

aTΣxa .
In the following, we propose Lemma 2 to show that this FP
problem is solvable.

Lemma 2 The Fractional Programming problem (15) is a
strictly quasiconcave problem and is thus solvable.

Proof: It is easy to see that the domain A is a convex set
on Rn, f(a) and g(a) are differentiable on A. Moreover,
since Σx and Σy can be both considered as positive de£nite
matrices, f(a) is a concave function on A and g(a) is a
convex function on A. Then f(a)

g(a) is a concave-convex FP or
a pseudoconcave problem. Hence it is strictly quasiconcave
on A according to [11]. Therefore, every local maximum
is a global maximum [11]. In other words, this Fractional
Programming problem is solvable. ¥

2.3 Practical Solving Method

Many methods can be used to solve the FP problem. For ex-
ample, a conjugate gradient method can solve this problem
in n (the dimension of the data points) steps if the initial

1In practice, we can always add a small positive amount to the diagonal
elements of these two matrices and make them positive de£nite.

point is suitably assigned [1]. In each step, the compu-
tational cost to calculate the conjugate gradient is O(n2).
Thus this method has a worst-case O(n3) time complexity.
Adding the time cost to estimate x, y, Σx, Σy, the total cost
is O(n3+Nn2), where N is the number of the data points.
This computational cost is the same order to the Minimax
Probability Machine [8] and the linear Support Vector Ma-
chine.

In this paper, we use the Rosen Gradient projection
method [1] to solve the concave-convex FP problem, which
is proven to converge to a local maximum with a worse-
case linear convergence rate [1]. More importantly, the lo-
cal maximum will be exactly the global maximum in this
problem.

From Lemma 1, we can see that the inequalities in (8)
will become equalities at the maximum point. The optimal
b will thus be obtained by

b∗ = aT∗ x− κ(α∗)
√

aT∗ Σxa∗ = aT∗ y + κ(β0)
√

aT∗ Σya∗

where a∗ and α∗ are obtained by solving the FP problem.

2.4 Extension into Nonlinear Classi£cations

As the classi£er derived from above BMPM is given in a lin-
ear con£guration, to handle more general cases, namely, the
nonlinear classi£cation tasks, we need to develop methods
to extend the linear BMPM. Fortunately, as shown in [8],
the kenerlization trick can be used to map the n-dimensional
data points into a high-dimensional feature space Rf , where
a linear classi£er corresponds to a nonlinear hyperplane in
the original space. It is easy to verify the kernelization pro-
cedure similar to [8] can be applied to BMPM as well. To
save space, we omit the kernelization in this paper and refer
the interested readers to [8, 5].

3 BMPM for Imbalanced Learning

In this section, we £rst review four standard imbalanced
learning criteria, which are widely used in previous liter-
atures. We then, based on two of them, apply BMPM to the
imbalanced learning tasks.

3.1 Four Criteria

In general, four criteria are used to evaluate the performance
of classi£ers in learning from imbalanced data. They are
(1) Minimum Cost criterion (MC), (2) the criterion of Max-
imum Geometry Mean (MGM) of the accuracy on the ma-
jority class and the minority class, (3) the criterion of the
Maximum Sum (MS) of the accuracy on the majority class
and the minority class, and (4) the criterion of Receiver Op-
erating Characteristic (ROC) analysis.
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The MC criterion [2] minimizes the cost measured by
Cost = Fp · CFp

+ Fn · CFn
, where Fp is the number of

the false positive, CFp
is the cost of a false positive, Fn is

the number of false negative, and CFn
is the cost of a false

negative. However, the cost of misclassi£cation is gener-
ally unknown in real cases, this restricts the usage of this
measure. The criterion of MGM maximizes the geometric
mean of the accuracy [6], but it contains a nonlinear form,
which is not easy to be automatically optimized. Compara-
tively, MS maximizing the sum of the accuracy on the pos-
itive class and the negative class (or maximizing the dif-
ference between the true-positive and false-positive proba-
bility) [4], is a linear form. The ROC analysis originated
in signal detection theory has been introduced to evaluate
the performance in learning from imbalanced data [12] [9].
This criterion plots a so-called ROC curve to visualize the
tradeoff between the false-positive rate and the true-positive
rate and leaves the task of the selection of a speci£c tradeoff
to the real practitioners. It has been suggested that the area
beneath an ROC curve can be used as a measure of accuracy
in many applications [12]. Thus, a good classi£er in learn-
ing from imbalanced data should have a larger area under
the ROC curve.

Based on the above review, in this paper, we will focus
on using the criterion of MS and the ROC curve analysis to
evaluate the imbalanced learning.

3.2 BMPM for MS

When using BMPM for the criterion of MS, we can modify
the formulation of BMPM as follows:

max
α,β,b,a6=0

α+ β s.t. (16)

inf
x∈{x,Σx}

Pr{aTx ≥ b} ≥ α , (17)

inf
y∈{y,Σy}

Pr{aTy ≤ b} ≥ β , (18)

The above formulation directly maximizes the sum of the
lower bounds of the accuracies so as to maximize the sum
of the accuracies. In comparison, to achieve the maximum
sum of the accuracies, other approaches, e.g., the meth-
ods of sampling or the methods of adapting the weights
often have to search the best sampling proportion or the
best weights by trials, which are in general very time-
consuming.

It is interesting that a similar modi£cation can be made
when the cost for each class is known. Maximizing a
weighted worst-case accuracy, i.e., Cxα+Cyβ instead, will
be easily derived in this case, where Cx, Cy are the costs for
x and y respectively.

Similar to BMPM and applying Lemma 1, we can trans-

form (16) as follows:

max
α,β,a6=0

α+ β s.t. (19)

1 = κ(α)
√

aTΣxa+ κ(β)
√

aTΣya ,(20)

aT (x− y) = 1. (21)

It can be further transformed as:

max
β,a6=0

κ2(α)

κ2(α) + 1
+ β s.t. (22)

aT (x− y) = 1, (23)

where κ(α) =
1−κ(β)

√
aT

∑

y
a√

aT
∑

x
a

.

The optimization of (22) corresponds to £nding an op-
timal β∗, making f(β∗) = α(β∗) + β∗ maximal, where

α(β∗) = κ2(α)
κ2(α)+1 . Therefore, if we £x β to a speci£c value,

the optimization will be equivalent to maximizing α(β) and
further equivalent to maximizing κ(α), which is exactly the
BMPM problem. We then change β and repeat the BMPM
optimization procedure until an optimal β∗ is found, such
that f(β∗) is maximized. The above procedure is also the
so-called line search problem. Many methods can be used
to solve it.In this paper, we use the Quadratic Interpolation
(QI) method, which is shown to converge superlinearly [1].

3.3 BMPM for ROC Analysis

It is straightforward to apply the BMPM model to plot the
ROC curve, since the lower bounds α and β directly and
quantitatively control the accuracies for two classes. We
only need to adapt the acceptable level for β, namely β0,
from 0 to 1, to obtain a sequence of trade-off between the
accuracy of the positive class and the negative class. This
demonstrates one of advantages of BMPM over the other
methods by adapting the weights or thresholds.

4 Experimental Results

In this section, we evaluate the performance of BMPM,
in both the linear (BMPML) and Gaussian (BMPMG) ker-
nel setting, on two real-world imbalanced datasets, namely
the Recidivism dataset and the Rooftop dataset in compar-
ison with three competitive classi£ers: the Naive Bayesian
(NB) classi£er,the k-Nearest Neighbor (k-NN) method, and
the decision tree classi£er C4.5.To adapt to the imbalanced
learning, these three methods are modi£ed by changing ei-
ther the priority distribution or the cost matrices according
to the methods introduced in [9]. For the k-NN methods,
k is set to the odd number from 1 to 21, but only the best
three results are presented for brevity. The width parameter
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for the Gaussian kernel is tuned via cross validation meth-
ods.

The Recidivism dataset was obtained from a cohort of
releasees of the North Carolina prison system in a time pe-
riod from July 1, 1977 to June 30, 1978. There are totally
4, 618 individuals in this dataset, including a training set
with 1, 540 individuals and a test set with 3, 078 individuals.
In the training set, 570 (27.5%) individuals were recidivists
and 970 (72.5%) were not. In the test set, 1, 151 individuals
were recidivists and 1, 927 were not. Although this dataset
is not skewed as severely as other reported dataset such as
the Rooftop dataset used in the following, it is enough to use
this dataset to evaluate the performance of the imbalanced
learning.

We £rst present the experimental results based on the MS
criterion in the 2-4 columns of Table 1. It is clearly ob-
served that BMPML and BMPMG outperform other meth-
ods. Next we present the experimental results based on the
ROC analysis. By setting the thresholds or costs with trials
for the NB, the k-NN, and C4.5, the ROC curves are gen-
erated with good shapes as evenly distributed along their
length as possible. As discussed in [9], although this gener-
ation method may increase the running time for some meth-
ods, e.g., the k-NN, it works well in C4.5 and the NB and is
suf£cient to evaluate the performance of imbalanced learn-
ing. For the BMPM model, since the lower bounds β0
serves as the accuracy indicators, we simply vary it from
0 to 1 to generate the corresponding ROC curve. The ROC
curves are shown in Figure 1(a). As seen in this £gure, the
performances of BMPML and BMPMG are again superior
to those of other methods. In addition, in real applications,
not all the portions of the ROC curve are of great interest.
Usually, those with a small false positive rate and a high true
positive rate should be more of interest and importance. We
thus especially show the portion of the ROC curve in the
range when the false positive rate FP ∈ [0, 0.5] and the true
positive rate TP ∈ [0.5, 1]. As shown in Figure 1(b), in
this critical portion of the ROC curve, the superiority of the
BMPL and BMPMG is more obvious than the whole ROC
curve analysis. This again demonstrates our model’s ad-
vantages over other methods. To quantitatively demonstrate
the difference, we show the areas beneath the ROC curves
approximated by using the trapezoid rule in the 6 column
of Table 1. The BMPML and BMPMG show a consistent
superiority to the NB, the best of the other three methods.

The Rooftop datasetconsists of 17, 048 overhead images,
in which 781 images are labelled as positive examples while
17, 048 images are labelled as negative examples [9]. It is
clearly observed that this is a severely skewed dataset.

We randomly split the rooftop data into a training set
with 60% data and a test set with 40% data. We construct
the classi£ers ten times with the same hold-out proportion
and use the average of the results as the performance met-

ric. The results are summarized in 7-12 columns of Ta-
ble 1 and Figure 1(c). As is clearly observed, for both
criteria, the BMPM methods demonstrate its superiority to
other methods, since they have higher sums of the accu-
racies and larger areas under the ROC curves. Similar to
what we do in Recivisim dataset, we also plot the more crit-
ical proportion of the ROC curve in Figure 1(d). The pre-
dominance of the BMPML and the BMPMG are clearly ob-
served. To evaluate the performance more reliably, we per-
form a signi£cance test based on both LabMRMC [9] and a
T-test. The analysis shows that the accuracies of BMPML
and BMPMG are signi£cantly different from those of other
methods at p ≤ 0.05, both in terms of the MS criterion and
the ROC curve criterion. Note that in the above, BMPM
already includes MPM in the case of α = β. Since the
ROC curve plots all the results when β is changed from 0
to 1, the result of MPM is thus implicitly contained in our
experiments.

5 Conclusion and Future Work

In this paper, we propose a novel model named Biased Min-
imax Probability Machine to deal with the task of learn-
ing from imbalanced datasets. Given the reliable estimation
of the mean and covariance of data, this model constructs
the classi£cation boundary by directly controlling the lower
bound of the real accuracy and thus provides a systemat-
ical and rigorous treatment on skewed data. We prove the
solvability, and propose ef£cient algorithms to solve the op-
timization problem of BMPM. Moreover, we evaluate our
novel model on two real world datasets in terms of two crite-
ria. In both criteria, the performance is shown to be the best
when compared with other competitive methods such as the
Naive Bayesian classi£er, the k-Nearest Neighbor method,
and the decision tree classi£er, C4.5.

Some important issues need to be checked as our future
work. Firstly, how to estimate the means and covariances
accurately and robustly? Secondly, are there other more
ef£cient methods to solve the Fractional Programming op-
timization problem? Can some decomposable techniques
be applied in the Gram matrix and thus speed up the least-
squares training? Finally, how to extend the scheme to the
multi-category tasks is also one of our research topics in the
near future.
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Table 1: Evaluation on Recidivism and Rooftop using the MS criterion and ROC analysis
Dataset Recidivism Rooftop

Criterion MS (%) ROC (%) MS (%) ROC (%)

Method TN TP (TN+TP) / 2 Method Area Method TN TP (TN+TP) / 2 Method Area
NB 61.8 63.8 62.7 NB 66.5 NB 79.7± 0.4 81.8± 0.8 80.7± 0.7 NB 86.8± 0.6

k-NN(9) 62.6 54.6 58.6 k-NN(11) 61.6 kNN(7) 75.1± 0.6 80.7± 0.6 77.9± 0.5 kNN(9) 86.0± 0.9
k-NN(11) 62.4 55.4 58.9 k-NN(13) 61.9 kNN(13) 74.1± 0.5 81.4± 0.8 77.7± 0.6 kNN(11) 85.7± 0.6
k-NN(13) 55.7 62.0 58.9 k-NN(17) 61.5 kNN(15) 74.3± 0.7 82.1± 0.7 78.2± 0.7 kNN(15) 85.8± 0.6

C4.5 74.1 49.0 61.5 C4.5 63.8 C4.5 81.8± 0.4 79.4± 0.6 80.6± 0.5 C4.5 87.4± 0.6
BMPML 70.4 57.5 63.9 BMPML 68.4 BMPML 80.2± 0.6 82.3± 0.6 81.2± 0.6 BMPML 87.9± 0.6
BMPMG 72.0 57.7 64.9 BMPMG 68.0 BMPMG 80.0± 0.9 84.1± 1.0 82.0± 0.9 BMPMG 88.2± 0.9
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Figure 1: ROC curves for the Recidivism and the Rooftop dataset. Sub£gures (a) and (c) show a full range of the ROC
curves for Recidivism and Rooftop respectively, while sub£gures (b) and (d) show a critical portion of the ROC curves for
Recidivism and Rooftop respectively, which is more important in real applications. All £gures demonstrate the superiority of
the BMPM model.
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