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Examples

Mongkok

Hong Kong

Object: Locating a Twitter user based on the content
of tweets.
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Motivation

Motivation

Location sparsity problem of Twitter
26% users have listed a user location as granular as a
city name.
Twitter begin to support per-tweet geo-tagging since
August 2009. However, fewer than 0.42% tweets are
tagged.
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Motivation

Motivation

Personalized information services
Local news providing
Regional advertisements
Location-based application (earthquake detection)

Avoid the need for sensitive data (private user
information, IP address)
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Problem

Challenges

Tweets status updates are noisy. Mixing a variety of
daily interests.

Twitter users often rely on shorthand and
non-standard vocabulary for informal
communication.

A user may span multiple locations beyond their
immediate home location.

A user may have more than one associated
locations.
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Problem

Problem Defined

Given tweets of Twitter users, our goal is to estimate
the city-level location of a user based purely on the
content of their tweets.
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Problem

Problem Defined

Formally, the location estimation problem is defined
as follows:

Given a set of tweets Stweets(u) posted by user u;
Estimate a user’s probability of being located in city i :
p(i |Stweets(u)), such that the city with maximum
probability lest(u) is the user’s actual location lact(u).
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Dataset

Data Crawling

API: twitter4j (open-source library for java).

Two crawling strategies:
Crawling through Twitter’s public timeline API. (Active
Twitter Users)
Crawling by breadth-first search through social edges to
crawl each user’s friends. (Sub Social Graph of Twitter)
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Dataset

Dataset Description

From Sep 2009 to Jan 2010

Users: 1,074,375

Tweets: 29,479,600

75.05% users list location, but overly general
(California) or nonsensical (Wonderland).

21% users list a location as granular as a city name.

5% users list latitude/longitude coordinate.
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Dataset

Dataset Filter

Filter all listed locations that have a valid city-level
label.

Users: 130,689

Tweets: 4,124,960

Test Set:
Extract users with 1000+ tweets and latitude/longitude
coordinates. (Generated by smartphone)
Users: 5,190
Tweets: more than 5 million
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Evaluation Metrics

Evaluation Metrics

Error Distance for user u
ErrDist(u) = d(lact(u), lest(u))

Average Error Distance for all users U:

AvgErrDist(U) =
∑

u∈U ErrDist(u)
|U|

Accuracy:

Accuracy(U) = |{u|u∈U ∧ ErrDist(u)6100}|
|U|
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Baseline

Baseline Location Estimation

p(i |Swords(u)) =
∑

w∈Swords(u)
p(i |w)× p(w).

Swords(u) is the set of words extracted from user u.

p(w) is the probability of the word w in the whole
dataset, p(w) = count(w)

t

p(i |w) the likelihood that each word w is issued by a
user located in city i .
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Baseline

Baseline Location Estimation Result

Accuracy: 10.12%

AvgErrDist: 1773 miles

Problem:
Local Words: isolate the words which can distinguish
location of the user.
Tweet Sparsity: location sparsity of words in tweets.
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Identifying Local Words

Spatial variation model

Given a word, decide if it is local or non-local.

Spatial variation model (Backstrom et al., WWW’08)
Analysis of geographic distribution of terms in search
engine query logs.
Cd−α is the approximately probability of the query
issued from a place with a distance d from the center.
C is a constant to specify the frequency of the center.
α control the speed of the frequency falls.
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Identifying Local Words

Identifying Local Words in Tweets

C and α can be used to determine if the word is
local.

For a word w , given a center and the central
frequency is C, compute the maximum-likelihood
value.

For each city i , users from i tweet word w n times:
n > 0, then multiply the overall probability by (Cd−αi )n.
n = 0, then multiply the overall probability by 1− Cd−αi .
di is the distance between city i and the center of word
w .
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Identifying Local Words

Identifying Local Words in Tweets

To avoid underflow, logarithms are added.

Suppose S is the set of occurrences for word w ,
then:

f (C, α) =
∑
i∈S

log Cdi
−α +

∑
i /∈S

log(1− Cdi
−α)

It has exactly one local maximum (unimodal)
Lattices
Golden section search
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Identifying Local Words

Identifying Local Words in Tweets
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Identifying Local Words

Identifying Local Words in Tweets
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Identifying Local Words

Identifying Local Words in Tweets
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Tweet Sparsity

Laplace Smoothing (Add-One Smoothing)

p(i |w) = 1+count(w ,i)
V+N(w)

,

count(w , i): term count of word w in city i ;

V : the size of vocabulary;

N(w): total count of w in all cities.
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Tweet Sparsity

State-Level Smoothing

State probability:

ps(s|w) =
∑

i∈Sc p(i|w)

|Sc | ,

Sc : set of cities in the state s.

State-level smoothing:

p′(i |w) = λ× p(i |w) + (1− λ)× ps(s|w),
i : a city in the state s;
1− λ: amount of smoothing.
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Tweet Sparsity

Lattice-Based Neighborhood Smoothing

Per-lattice probability:

p(lat |w) =
∑

i∈Sc
p(i |w),

lat : a lattice.
Sc : set of cities in lat .

Lattice probability:

p′(lat |w) = µ∗p(lat |w)+(1− µ) ∗
∑

lati∈Sneighbors

p(lati |w),

µ: parameter.
neighbors: 8 lattice around lat .
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Tweet Sparsity

Lattice-Based Neighborhood Smoothing

Lattice-based neighborhood smoothing:

p′(i |w) = λ ∗ p(i |w) + (1− λ) ∗ p′(lat |w),
i : a city in the lattice lat ;
λ: smoothing parameter.
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Tweet Sparsity

Model-Based Smoothing

p′(i |w) = C(w)d−α(w)
i ,

C(w), α(w): optimized parameters for word w .
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Tweet Sparsity

Smoothing Comparison

Geographic Range Parameters Complexity
Laplace None None Low

State-Level State λ High
Neighborhood Neighbor Lattices µ, λ Highest
Model-Based Global None Lowest
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Model and Smoothing Comparison
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Model and Smoothing Comparison
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Capacity of Estimator
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Number of Tweets
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Conclusion

A probabilistic framework for estimating city-level
location of Twitter users based on the content of
tweets.

Local words identifying and some smoothing can
improve the estimation

100 tweets are enough for locating.
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Thanks!

Q & A
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