On Going Research Works

Mo Mingzhen CS&E, CUHK

Outline

- Previous Work
- Current Work
 - Privacy Preserving
 - Multiple Graphs Combination
- Summary

PREVIOUS WORK

Previous Work

CURRENT WORK

- Objective
 - Be difficult to predict
 - NOT to predict incorrectly

- Methods
 - G(E,V)
 - Edge: Changing weights of graph
 - Node: Supernode

• Changing weights of graph

• Supernode

 $\min \sum_{i,j} \left\| S_{i,j}^{"} - S_{i,j} \right\|$

- Current Result
 - StudiVZ data
 - Size: 1400
 - 6 Classes
 - 80% 90% labeled

- Learning Methods
 - Supuevised Learning (SL)
 - SSL
 - Basci Graph
 - Local & Global Consistency (LGC) Graph

Average of accuracy

Accuracy	SL	Basic Graph	LGC Graph
Before	75%	95%	95%
After	0%	5%	20%

- On-going Part
 - Current methods are local strategies (1st order subgraph)
 - and that's the angle of view of network security
 - Think of global strategy, considering Laplacian
 Smoothing (Machine Learning)

Accuracy	SL	Basic Graph	LGC Graph	
Before	75%	95%	95%	
After	0%	5%	20%	
		Because of global		
		consistency of learning		

CURRENT WORK

Multiple Graphs Combination

Multiple Graphs Combination

- Objective
 - Better combine profile info. graph and relational info. graph.

 Looking for a more reasonable and effective method, besides linear combination and Co-Training framework.

Multiple Graphs Combination

- Method
 - Similar Matrix Factorization

$$\min_{L,F} \frac{1}{2} \|X - LF^T\|^2 + \frac{\alpha}{2} \left(\|L\|^2 + \|F\|^2 \right) + \frac{\beta}{2} \sum_{i=1}^n \sum_{j=1}^n A_{ij} \|L_{i*} - L_{j*}\|^2$$

Cost function: profile info.

Regularization: relation info.

L(nxc) is the label matrix, F(fxc) is a feature matrix, V(nxc) is the profile informatrix

X(nxf) is the profile info. matrix

A(nxn) is the adjacency matrix for relational info.

n: # of data, c: # of class, f: # of feature

Multiple Graphs Combination

- On-going Part
 - Writing codes to solve this optimization problem
 - Apply on the real data sets

SUMMARY

Summary

- Two on-going works, based on a previous one
- Network, Privacy Preserving
 Finding a global strategy
- Learning, Graphs Combination
 - Writing codes and doing experiments

Thank You

