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Learning and Similarity

Training set
Generalization: Giving an unknown sample x  to 
predict a suitable label y

should be similar to one of the classes
How to calculate the similarity?
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Similarity measurement

Similarity measurement:
length of x:
distance of x and x’:

cosine similarity:

Dot product determines the similarity!
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Similarity Vs. Kernel

Dot product is not sufficient
Input space is not a dot product space
More general similarity measurement by applying 
a map. 

is called feature space or Hilbert space. 
Define a similarity measure from the dot product
in 



Kernel trick

Using a linear classifier algorithm to solve a non-
linear problem by mapping the original non-linear 
observations into a higher-dimensional space 



Kernel trick

Nonlinear mapping: 

The dot product can be computed in    , without 
explicitly using or even knowing the mapping    .



Kernel trick

Examples of common kernels:

Any algorithm that only depends on the dot    
product can benefit from the kernel trick.
Think of kernel as a nonlinear similarity 
measurement.



Structural Risk Minimization (SRM)

Training error reflects the accuracy of training set.

A “simple” function that explains most of the data is preferable to a 
complex one (Occam’s razor) .

Expected error

Training error
Complexity term
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Structural Risk Minimization (SRM)

We cannot obtain the 
expected risk itself, we 
will minimized the 
bound.
keep the empirical risk 
zero, while minimizing
the complexity term.

Find the best tradeoff between 
empirical error and complexity



Structural Risk Minimization

where R is the radius of the smallest ball around the 
training data, R is fixed for a given data set.
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Margin is the minimal 
distance of a sample to 
the decision surface
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Structural Risk Minimization

Minimize the training error
Minimize the complexity term         minimize

maximize the margin
The original problem:
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Lagrange function

Introduce a Lagrange multiplier      
Lagrange:

At the deviation, we have 

i.e.                                    

and 

Substitute both 
into L to get the 
dual problem



The Support Vector expansion

Karush-Kuhn-Tucker conditions: 

Support Vector(on the margin)

irrelevant
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Dual problem

Dual: maximize

By solving the dual optimization problem, one 
obtains the coefficients     ,and W can be solved by 
the value of it.
The solution is determined by the examples on the 
margin

subject to



Kernel expressions

Original problem:

Dual problem:  



Soft Margin SVMs

C-SVM: 
for          minimize
subject to 

is slack variable, which is used to relax the hard 
margin constraint.

determines the tradeoff between the empirical 
risk and the complexity term. 



Soft Margin SVMs

Dual problem:

KKT conditions:

Only when       is on the margin or inside the 
margin area, the corresponding      is nonzero.   
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Multiple Kernel Learning

Using multiple kernels can improve performance

can simply be classical kernels with different 
parameters.

mK



Algorithm for SimpleMKL

Primal problem:

Optimization Problem:



Algorithm for SimpleMKL

Check whether object value 
decreases or not

The maximum admissible step size
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