Context-Aware Online Commercial Intention Detection

Derek Hao Hu1, Dou Shen, Jian-Tao Sun, Qiang Yang, and Zheng Chen HKUST, Microsoft Research

Outline

- Motivation
- Difficulties
- Problem Formulation
- Solution
- Experiment
- Conclusion

Motivation

People with commercial intention vs. Search engine

- Online purchase
- Online research before actual transactions
- Most web users start their online behaviors by submitting a web query to a search engine

Difficulties

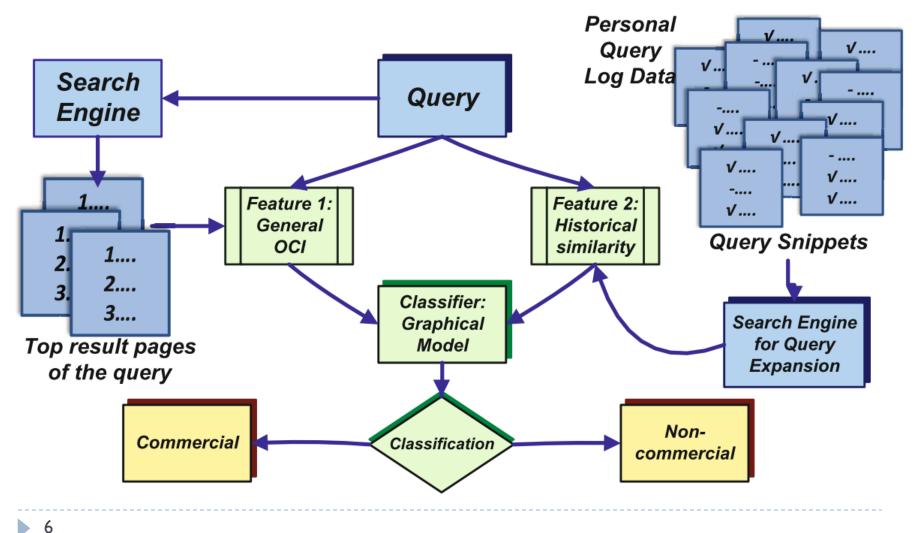
Queries are very short

- 93% queries contains less than 4 terms
- Web query often has multiple meanings (ambiguous)
- Intention of a web query can vary for different context

Problem Formulation

- Same as the first work in [1]
- Binary classification problem:
 - ▶ Query \rightarrow {Commercial, Non-Commercial}
 - Query:
 - Text of query term
 - User query history
 - Query timestamp
 - Clickthrough log

Overview



Overview

- Query log: <U,T,Q,[C]>
 - U: User ID (IP address)
 - T: Query timestamp
 - Q:Text of query term
 - C: Clickthrough log

Modeling Query Logs

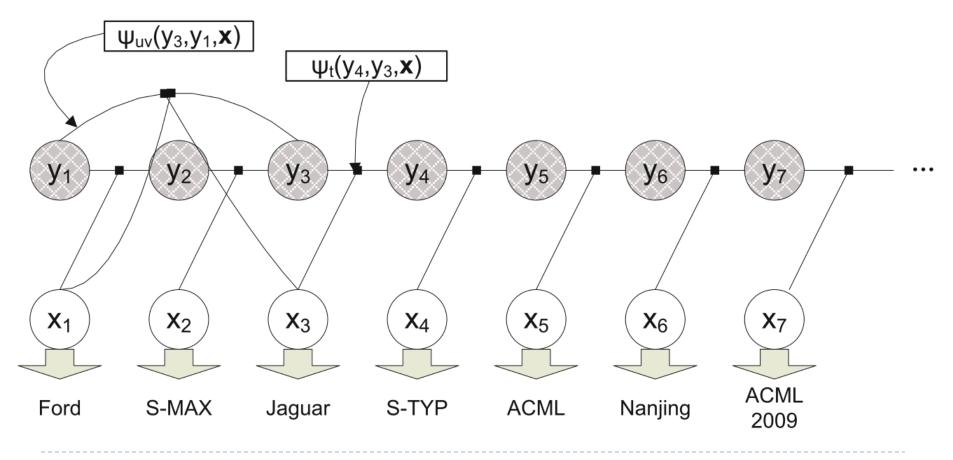
- Skip-chain Conditional Random Field (SCCRF)
- p(y|x) x is the observed personal query log of length L; y is the label of the query
- y_t is the OCI value of tth query
- Threshold: 0.5

Modeling Query Logs

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(x)} \prod_{t=1}^{n} \Psi_t(y_t, y_{t-1}, \mathbf{x}) \prod_{(u,v) \in I} \Psi_{uv}(y_u, y_v, \mathbf{x})$$

- Ψ_t : linear-chain edges
- Ψ_{uv} : skip edges
- > Z(x) : normalization factor

SCCRF



Modeling Query Logs

$$\Psi_t\left(y_t, y_{t-1}, \mathbf{x}\right) = \exp\left(\sum_k \lambda_{1k} f_{1k}\left(y_t, y_{t-1}, \mathbf{x}, t\right)\right)$$

$$\Psi_{uv}\left(y_{u}, y_{v}, \mathbf{x}\right) = \exp\left(\sum_{k} \lambda_{2k} f_{2k}\left(y_{u}, y_{v}, \mathbf{x}, u, v\right)\right)$$

- ▶ λ_{1k} , λ_{2k} : parameters
- f_{1k} , f_{2k} : features function

Modeling Semantic Similarities between Queries

"First order" query expansion:

Retrieve the result pages of two queries as documents and get TFIDF vector A and B, then use cosine similarity:

$$\theta = \arccos \frac{A \cdot B}{\|A\| \cdot \|B\|}$$

"Second order" query expansion

$$f(y_u, y_v, x) = \max_{1 \le i \le m, 1 \le j \le m} g(S_{ui}, S_{vj})$$

- $g(S_{ui}, S_{vj})$: value of similarities between query snippet
- S_{ui} : ith query snippet of the uth query

Modeling Semantic Similarities between Queries

- Kernel function for Similarity
 - Top n returned Web page p_i
 - Get TFIDF vector v_i for each page p_i
 - Truncate v_i to include m highest terms (m=50)
 - C(x) be the centroid of L2 normalized vectors

$$C(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{v_i}{\|v_i\|_2}$$

• QE(x) be the L2 normalization of C(x)

$$QE(x) = \frac{C(x)}{\left\|C(x)\right\|_2}$$

Similarity: $K(x, y) = QE(x) \cdot QE(y)$

Input:

- N: the length of a query log,
- Each query item is represented by $\{x_i, y_i\}$
- x_i is the ith query and y_i is the corresponding ith label for x_i .
- Q, which is a newly asked query.

• Output:

> P, which is the probability for Q as being commercial intended.

Assumption:

Assume all the queries in the personal query log we considered here are issued by the same user or user group

Parameters:

- θ: suggests the confidence parameter for us to add the skip edges
- L: the length of the personal query log training data

1: for i = 1 to N - L + 1 do

2: Initialize the i^{th} training data as empty.

- 3: **for** j = 0 to L 1 **do**
- 4: Add the $(i+j)^{th}$ query x_{i+j} to the i^{th} training data.
- 5: end for

6: **end for**

7: for i = 1 to N do

- 8: Issue the query x_i to the search engine to get the top P landing pages. P can be tuned to reflect more information from landing pages. To simplify, we set P = 10 in our experiments.
- 9: Compute the corresponding OCI value of these landing pages from the baseline method
- 10: Use these values as features for f_1 .
- 11: end for

12: Train the corresponding SCCRF model from the training set created.

- 13: for i = N L + 2 to N do
- 14: Add the query x_i to the test personal query log.

15: end for

- 16: Add the query Q to the test personal query log. Now it contains L terms.
- 17: for i = 1 to L do
- 18: **for** j = 1 to i 1 **do**
- 19: Compute the semantic similarity of T_i and T_j , i.e. $K(T_i, T_j) = QE(T_i) \cdot QE(T_j)$ as defined.
- 20: **if** $K(T_i, T_j) > \theta$ **then**
- 21: Add a skip edge between y_i and y_j , corresponding to the feature function $f_2(y_i, y_j, \mathbf{x})$.
- 22: end if
- 23: end for
- 24: end for

- AOL query log dataset (<u>http://www.gregsadetsky.com/aol-data/</u>)
- Live Search collected in March 2008
- IO0 users at least IO0 queries

Labeler	AOL Commercial	AOL Non-commercial	Live Commercial	Live Non-Commercial
1	1238	8627	919	8819
2	1430	8435	1025	8713
3	1117	8748	973	8765
Sum	1247	8306	936	8738

Baseline classifier [1]

Dataset	Precision	Recall	F1-Measure
AOL	0.817	0.796	0.806
Live Search	0.802	0.836	0.809

Proposed Algorithm with varying parameter θ , L=50

θ	AOL (Variance)	Live Search (Variance)
$\theta = 0.01$	$0.863 \ (0.002)$	$0.872 \ (0.003)$
$\theta = 0.02$	$0.887 \ (0.005)$	$0.878 \ (0.003)$
$\theta = 0.04$	$0.892 \ (0.003)$	$0.881 \ (0.004)$
$\theta = 0.08$	$0.901 \ (0.005)$	$0.893 \ (0.002)$
$\theta = 0.1$	$0.913 \ (0.002)$	$0.901 \ (0.004)$
$\theta = 0.2$	$0.912 \ (0.005)$	$0.908 \ (0.003)$
$\theta = 0.4$	$0.902 \ (0.004)$	$0.883 \ (0.006)$
$\theta = 0.8$	$0.871 \ (0.003)$	$0.852 \ (0.008)$
Baseline	0.806	0.809

Proposed Algorithm with varying parameter L, θ =0.1

L	AOL (Variance)	Live Search (Variance)
L = 5	$0.872 \ (0.010)$	$0.871 \ (0.013)$
L = 10	$0.893 \ (0.011)$	0.878(0.010)
L = 15	$0.882 \ (0.009)$	$0.891 \ (0.005)$
L = 20	$0.901 \ (0.005)$	$0.891 \ (0.003)$
L = 25	$0.910 \ (0.004)$	0.897 (0.007)
L = 30	$0.913 \ (0.002)$	$0.901 \ (0.004)$
L = 40	$0.909 \ (0.003)$	$0.903 \ (0.005)$
L = 50	$0.905 \ (0.003)$	$0.902 \ (0.003)$
Baseline	0.806	0.809

Training Time with varying parameter L, θ =0.1

L	AOL Time	Live Search Time
L = 5	1.7s	1.7s
L = 10	3.0s	4.1s
L = 15	4.9s	5.2s
L = 20	6.2s	6.8s
L = 25	9.0s	10.2s
L = 30	11.1s	11.7s
L = 40	14.0s	14.1s
L = 50	15.3s	16.3s

Pentium Core 2 Dual 2.13GHz CPU

Comparison of first-order vs. second-order query expansion

Dataset	Baseline	First-Order	Second-Order
AOL		· /	0.913(0.002)
Live Search	0.809	$0.826\ (0.006)$	0.901(0.004)

Reference

- 1. Dai, H.K., Zhao, L, Nie, Z., Wen, J.R., Wang, L. and Li, Y., Detecting online commercial intention (oci), WWW, 2006
- 2. Hu, D.H., Yang, Q. and Li, Y., An algorithm for analyzing personalized online commercial intention, ADKDD, 2008