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Introduction to Collaborative Filtering

? =?

Recommending based on the target user’s past behavior and other users’ interest
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Motivation

At working place Working place

Home

At working place At home

? =?

Not only personalized, but also context-aware
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Motivation

Not only context-aware, but also suitable for implicit feedback data
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What is New!

• First work on context aware recommendation for implicit• First work on context-aware recommendation for implicit 
feedback domains

• Taking MAP optimization from learning-to-rank to 
recommendation models with a new fast learning algorithmrecommendation models with a new fast learning algorithm
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Problem

• Given: Users’ implicit feedback on items under different• Given: Users  implicit feedback on items under different 
contexts

• Target: To recommend a list of items to each user under any 
given context as accurate as possiblegiven context, as accurate as possible

Items Top-N recommendation

Users

p

Context-aware

Optimal in terms of a ranking measure

Contexts

Optimal in terms of a ranking measure
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Challenges

• How to incorporate contextual information?• How to incorporate contextual information?
• A tensor factorization model

• What to optimize for training the recommendation model? And 
How?How?

• MAP capturing the quality of recommendation list based on implicit 
feedback data

• but MAP is non-smooth thus not able to be directly optimized• but MAP is non smooth, thus not able to be directly optimized
• A smoothed version of MAP

• How to ensure the proposed solution scalable?
• A fast learning algorithmA fast learning algorithm
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How to incorporate contextual 
information?

• CP tensor factorization• CP tensor factorization 

U,V,C are latent factors 
(parameters to be learned)

U, V, C not optimized for ymik;

but for MAP
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The Non-smoothness of MAP

• Average precision (AP) of a ranked list of items for a given• Average precision (AP) of a ranked list of items for a given 
user (user m) and a given context (context type k) 

y f r

• AP(y r) non-smooth over model parameters

Mobile app
y

(Obs) (pred) (rank)

Angry birds 1 0.6 3

Draw something 0 0.8 2

Fruit ninja 0 0.2 4
• AP(y,r) non smooth over model parameters
• MAP: Mean AP across users and contexts

ibook 0 0.1 5

DragonVale 1 0.9 1

Problem: r is a non-smooth function of f, thus, MAP non-smooth over 
model parameters 

9SIGIR 2012, Portland, USA, August 13, 2012



How to smooth MAP?

• Borrow techniques from learning to rank:• Borrow techniques from learning-to-rank:

• Smoothed MAP:• Smoothed MAP:

• Updating U, V, C by gradient-based method to optimize MAP

( , ) ( , , , )MAP L f Y L U V C Y≈ = Smooth over U, V and C

Updating U, V, C by gradient based method to optimize MAP
• Theoretically, optimal U, V, C can be obtained.
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Complexity issue

• Updating U and C:       and 
• Linear to the number of observations in the tensor data Y

L
U
∂
∂

L
C
∂
∂

• Linear to the number of observations in the tensor data Y

• Updating V:
• Quadratic to the number of items!

L
V
∂
∂

Quadratic to the number of items!
• Not scalable in the case of large number of items!
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How to ensure scalability?

• Fast learning• Fast learning
• Per combination of user m and context k, update V of  a set of 

representative items (Buffer)
• Relevant items• Relevant items

• Top-ranked irrelevant items

• Using an AP property
• Updating positions of items that are ranked below the lowest ranked• Updating positions of items that are ranked below the lowest ranked 

relevant item would not improve AP
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Fast Learning

How many (ns) to sample?

Whether necessary to select 
representative irrelevant items?

How beneficial from using the 
l t k d it ?
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Experimental Evaluation
Data sets

• Appazaar (Main):• Appazaar (Main): 
• 300K observations of implicit feedback 
• 1767 users; 7701 mobile apps/items; 9 context types
• Context defined by motion speed (3 possible states) and• Context defined by motion speed (3 possible states) and 

location (3 possible states)
• < benchmarking datasets; but > other datasets in 

context-aware recommendationcontext aware recommendation
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Experimental Evaluation
Experimental Protocol

timetime

70% 20%10%

data

userID

itemID

contextID

userID

?

contextID

Test dataValidation

Training data

(Items holdout)

Evaluation metrics: MAP, Precision@N
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Experimental Evaluation
Impact of Fast Learning (I)

Sampling size: 200

Rep irrel itemsRep. irrel. items

MAP: 0.102

VS

Sampling size: 200

Random items

A small sample size is enough

MAP: 0.083 (-18%)

Benefit from rep. irrel. items

16SIGIR 2012, Portland, USA, August 13, 2012



Experimental Evaluation
Impact of Fast Learning (II)

A side benefit from 
AP property

Using lowest-ranked relevant item help to improve the quality of rep. irrel. 
items, and also reduce buffer construction time
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Experimental Evaluation
Impact of Fast Learning (III)

Training time per iterationTraining time per iteration 
at different scales of 
training set

Empirically validate the linear complexity of the fast learning algorithm
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Experimental Evaluation
Performance

• Context free baselines (Appazaar)• Context-free baselines (Appazaar)
• Pop: Naive, the popularity of each item under a given context
• iMF (Hu and Koren, ICDM’08): SotA, no context
• BPR-MF (Rendle et al UAI’09): SotA no context• BPR-MF (Rendle et al., UAI 09): SotA, no context
• TFMAP-noC: Variant of TFMAP, no context

Performance comparison between TFMAP and context-free baselines

TFMAP-noC outperforms all the other baselines significantly. (Opt. MAP!)

TFMAP introduces another 5% improvement over TFMAP-noC. (Use context!)
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Conclusions and Future Work

• Our contribution• Our contribution
• First work on context-aware recommendation for implicit feedback 

domains

• Propose a new recommendation model that directly optimizes MAP• Propose a new recommendation model that directly optimizes MAP

• Succeed in addressing the scalability issue of the proposed model

• Future work
• To optimize other evaluation metrics for top-N recommendation (e g• To optimize other evaluation metrics for top N recommendation (e.g., 

MRR, to appear in RecSys ‘12)

• To take metadata of users and items into account
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Questions & Answers

• Contact info: y.shi@tudelft.nl

Thank you !

We thank SIGIR for providing a travel grant for the first author.

Telefonica Research is looking for interns!
Contact: alexk@tid.es or linas@tid.es
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